McShane Integral of Functions With Values in a Ranked Countably Normed Space
S. Canoy, Jr. (pp. 26-33)
Abstract
We shall define McShane integral of functions with values in a complete ranked countably normed space. We shall relate this definition to the definition given by Gordon for Banach-valued functions [2]. Further, we give some simple properties of the integral and state its Cauchy criterion. As particular examples, we shall show that r-continuous functions and simple functions are McShane integrable.