McShane Integral of Functions With Values in a Ranked Countably Normed Space

Sergio R. Canoy, Jr. Department of Mathematics College of Science and Mathematics MSU-Iligan Institute of Technology Iligan City 9200

Keywords: McShane integral, ranked CN-space, Hilbertian, nuclearity, r-separated, r-differentiable

We shall define McShane integral of functions with values in a complete ranked countably normed space. We shall relate this definition to the definition given by Gordon for Banach-valued functions [2]. Further, we give some simple properties of the integral and state its Cauchy criterion. As particular examples, we shall show that r-continuous functions and simple functions are McShane integrable.

1 Preliminaries

We give some of the definitions and few results we shall need in the next section.

Definition 2.1 Let X be a nonempty set such that, for each $x \in X$, there exists a nonempty class P(x) consisting of subsets U(x) of X, called preneighborhoods of x such that $x \in U(x)$ whenever $U(x) \in P(x)$. Put $V = \bigcup_{x \in X} P(x)$. Suppose further that for each $n \in N$, where $N = \{0, 1, ...\}$, there is assigned a nonempty class $V_n \subset V$ satisfying the following: For each $U(x) \in P(x)$ and for every $n \in N$, there exists a $W(x) \in V_m$ for some m > n such that $W(x) \subset U(x)$. Then the space X endowed with the classes P(x) and V_n for each $x \in X$ and for each $n \in N$ is called a ranked space. It is sometimes denoted by the

ordered triple (X, V, V_n) . Further, if U(x) is a preneighborhood of x and $U(x) \in V_n$, then we say that it is of $rank \ n$. In this case, x is the center of U(x).

Example 2.2 Let X = [a, b]. For each $x \in X$, let P(x) be the usual neighborhood system of x and for each $n \in N$, let $V_n = \{(x - \frac{1}{2^{n+1}}, x + \frac{1}{2^{n+1}}) \cap X : x \in [a, b]\}$. If V is the union of all P(x), then (X, V, V_n) is a ranked space.

Definition 2.3 A sequence of preneighborhoods $\{U_i(x_i, n(i))\}$, i.e., a sequence of preneighborhoods U_i of x_i with ranks n(i), is called a fundamental sequence (f.s. for brevity) if it satisfies the following conditions:

(Č1)The sequence of preneighborhoods is de-

creasing, i.e., $U_0 \supset U_1 \supset ...$

- (C2) n(0) < n(1) < ... < n(k) < n(k+1) < ...; and
- (C3) For every $n \in N$, there exists a $k \in N$ such that $k \ge n, x_k = x_{k+1}$ and n(k) < n(k+1).

Definition 2.4 A ranked space (X, V, V_n) is said to be *r-separated* if it satisfies the ff. condition: For every $x, y \in X, x \neq y$, and for every f.s. $\{U_i(x)\}$ of center x and f.s. $\{W_i(y)\}$ of center y, there exists a $k \in N$ such that $U_k(x) \cap W_k(x) = \emptyset$.

Definition 2.5 Let X be a vector space with a countable sequence of compatible norms $\{p_n\}$ (see [3]). Then X is called a *countably normed space* or simply a CN-space. It is sometimes denoted by $(X, \{p_n\})$. Further, in this space, we have the ff:

- (a) A sequence $\{x_j\}$ in X is a convergent sequence if there is a vector $x \in X$ such that $p_n(x_j-x) \to 0$ as $j \to \infty$ for every norm p_n .
- (b) A sequence $\{x_j\}$ in X is a Cauchy sequence in X if it is a Cauchy sequence for every norm p_n .
- (c) X is *complete* if every Cauchy sequence in X converges.

Theorem 2.6[1] Let X be a CN-space with a sequence $\{p_n\}$ of increasing norms, i.e., $p_0(x) \leq p_1(x) \leq \dots$ for every $x \in X$. Then (X, V, V_n) , where

$$P(x) = \{x + S_n : n \in N\} (x \in X),$$
$$V_n = \{x + S_n : x \in X\} (n \in N),$$

and

$$S_n = \{y \in X : p_n(y) < \frac{1}{2^n}\} (n \in N),$$

is a ranked space.

Definition 2.7 Let X be a CN-space with a sequence $\{p_n\}$ of increasing norms. We call the ranked space (X, V, V_n) described in Theorem

2.6 as ranked countably normed space or simply ranked CN-space.

Lemma 2.8[1] Every ranked CN-space $(X, \{p_n\})$ is r-separated.

For sequences of sets $\{A_i\}$ and $\{B_i\}$, $\{A_i\}$ < $\{B_i\}$ means that for every B_j , there exists a set A_k such that $A_k \subset B_j$.

In the succeeding discussions, the set [a, b] is endowed with the structure given in Example 2.2.

Definition 2.9 Let E and X be ranked spaces. A mapping $F: E \longrightarrow X$ is r-continuous at $e \in E$ if for every f.s. $u_e = \{U_i(e)\}$ of center e there is a f.s. $v_{f(e)} = \{W_j(f(e))\}$ of center f(e) in X such that $\{f(U_i(e))\} < \{W_j(f(e))\}$.

Theorem 2.10 [6] Let $(X, \{p_n\})$ be a CNspace. A a function $f : [a,b] \longrightarrow (X, \{p_n\})$ is r-continuous at $t \in [a,b]$ if and only if it is continuous at t for every norm p_n .

Definition 2.11 Let be \mathbf{a} DOSitive function on [a,b].Α division $D = \{([u,v];\xi)\}\ \text{of}\ [a,b]\ \text{is called a free δ-fine di-}$ visionof $[u,v] \subset (\xi - \delta(\xi), \xi + \delta(\xi))$ for each [u,v] in D. Note that the tag ξ of [u, v] is not necessarily an element of [u, v] (and hence, the term "free").

Definition 2.12 [2] Let (Y,p) be a Banach space. A function $f:[a,b] \longrightarrow (Y,p)$ is said to be *McShane integrable* to a vector $z \in Y$ on [a,b] if for every $\epsilon > 0$, there exists $\delta(\xi) > 0$ such that for any free δ -fine division $D = \{([u,v];\xi)\}$ of [a,b], we have

$$p((D)\sum f(\xi)(v-u)-z)<\epsilon.$$

In what follows, we assume that $(X, \{p_n\})$ is a complete ranked CN-space and $N = \{0, 1, 2, ...\}$.

Definition 2.13 A function $f:[a,b] \longrightarrow (X,\{p_n\})$ is said to be *McShane integrable* to a vector $z \in X$ on [a,b] if for every $n \in N$ there exists $\delta_n(\xi) > 0$ on [a,b] such that for any free δ_n -fine division $D = \{([u,v];\xi)\}$ of [a,b], we have

$$p_n((D)\sum f(\xi)(v-u)-z)<\frac{1}{2^n}.$$

Also, we write

$$(M)\int_a^b f(t)dt = (M)\int_a^b f = z.$$

2 Results

Theorem 3.1 If $f : [a,b] \longrightarrow (X,\{p_n\})$ is McShane integrable on [a,b], then its integral is unique.

Proof: Suppose f is McShane integrable to z_1 and z_2 . Then for every n, there exists a suitable $\delta_n(\xi) > 0$ on [a, b] such that for any free δ_n -fine division $D = \{([u, v]; \xi)\}$ of [a, b], we have

$$p_n((D)\sum f(\xi)(v-u)-z_1)<rac{1}{2^n}$$

and

$$p_n((D)\sum f(\xi)(v-u)-z_2)<rac{1}{2^n}.$$

Thus, for all $n \in N$, we have

$$p_n(z_1 - z_2) \le p_n(z_1 - (D) \sum f(\xi)(v - u))$$

 $+ p_n((D) \sum f(\xi)(v - u) - z_2)$
 $< \frac{1}{2^{n-1}}.$

Let n be fixed (but arbitrary) and let $\epsilon > 0$. Then there exists a natural number m > n such that $\frac{1}{2^{m-1}} < \epsilon$. Therefore,

$$p_n(z_1-z_2) \leq p_m(z_1-z_2)$$

$$< \frac{1}{2^{m-1}}$$

$$< \epsilon.$$

Accordingly, $p_n(z_1-z_2)=0$. Hence, $z_1-z_2=0$, i.e., $z_1=z_2$. This proves the theorem.

Theorem 3.2 If $f, g : [a, b] \longrightarrow (X, \{p_n\})$ are McShane integrable on [a, b], then so are f + g and αf for every real number α . Moreover,

$$(M) \int_{a}^{b} (f+g) = (M) \int_{a}^{b} (f) + (M) \int_{a}^{b} (g)$$

and

$$(M)\int_a^b(\alpha f)=(M)\alpha\int_a^b(f).$$

Proof: Let f and g be McShane integrable to x and y, respectively. Then for any $n \in N$, there exists a suitable $\delta_{n+1}(\xi) > 0$ on [a, b] such that for any free δ_{n+1} -fine division $D = \{([u, v]; \xi)\}$ of [a, b], we have

$$p_{n+1}((D)\sum f(\xi)(v-u)-x)<\frac{1}{2^{n+1}}$$

and

$$p_{n+1}((D)\sum g(\xi)(v-u)-y)<rac{1}{2^{n+1}}.$$

Define $\delta_n^*(\xi) = \delta_{n+1}(\xi)$ for every $\xi \in [a,b]$. Then for any free δ_n^* -fine division $D = \{([u,v];\xi)\}$ of [a,b], we have

$$p_{n}((D)\sum(f(\xi)+g(\xi))(v-u)-(x+y))$$

$$\leq p_{n+1}((D)\sum(f(\xi)+g(\xi))(v-u)-(x+y))$$

$$\leq p_{n+1}((D)\sum f(x)(v-u)-x)+p_{n+1}((D)$$

$$\sum g(x)(v-u)-y)$$

$$< \frac{1}{2n}.$$

This proves that f + g is McShane integrable to x + y on [a, b]. The second part can be proved in a similar manner.

Theorem 3.3 Let a < c < b. If $f : [a, b] \longrightarrow (X, \{p_n\})$ is McShane integrable on [a, c] and

on [c,b], then f is McShane integrable on [a,b]. Moreover,

$$(M) \int_{a}^{b} f = (M) \int_{a}^{c} f + (M) \int_{c}^{b} f.$$

Proof: Suppose f is M-integrable to z_1 and z_2 on [a,c] and [c,b], respectively. Then, for any n, there exist $\delta'_{n+1} \geq 0$ and $\delta^*_{n+1} \geq 0$ such that if $D' = \{([u,v];\xi)\}$ is a free δ'_{n+1} -division of [a,c] and $D^* = \{([u,v];\xi)\}$ is a free δ^*_{n+1} -division of [c,b], then

$$p_{n+1}(\sum f(\xi)(v-u)-z_1) \leq \frac{1}{2^{n+1}}$$

and

$$p_{n+1}(\sum f(\xi)(v-u)-z_2)\leq \frac{1}{2^{n+1}}.$$

Define $\delta_n(\xi) > 0$ as follows:

$$\delta_{n}(\xi) = \begin{cases} \min\{\delta'_{n+1}(\xi), c - \xi\}, & \text{if } \xi \in [a, c) \\ \min\{\delta'_{n+1}(\xi), \xi - c\}, & \text{if } \xi \in (c - b] \\ \min\{\delta'_{n+1}(\xi), \delta'_{n+1}(\xi)\}, & \text{if } \xi = c \end{cases}$$

Let $D = \{([u, v]; \xi)\}$ be a free δ_n -fine division of [a, b]. Then the sum

$$(D) \sum f(\xi)(v - u) = (D') \sum (f(\xi)(v - u) + (D^*) \sum (f(\xi)(v - u),$$

where $(D')\sum$ denotes a sum over a free δ'_{n+1} -division D' of [a,c] and $(D^*)\sum$ denotes a sum over a free δ^*_{n+1} -division D^* of [c,b]. Therefore,

$$p_n((D)\sum (f(\xi)(v-u)-(z_1-z_2))$$

$$\leq p_{n+1}((D')\sum (f(\xi)(v-u)-z_1)$$

$$+ p_{n+1}((D^*)\sum (f(\xi)(v-u)-z_2)$$

$$< \frac{1}{2^n}.$$

Therefore, f is McShane integrable on [a, b].

Theorem 3.4 (Cauchy Criterion) A function $f:[a,b] \longrightarrow (X,\{p_n\})$ is McShane integrable on

[a,b] if and only if for every $n \in N$ there exists $\delta_n(\xi) > 0$ such that for any free δ_n -fine divisions $D_1 = \{([u,v];\xi)\}$ and $D_2 = \{(u',v'];\xi')\}$ of [a,b], we have

$$p_n((D_1)\sum f(\xi)(v-u)-(D_2)\sum f(\xi')(v'-u'))$$

 $<\frac{1}{2^n}.$

Proof: Clearly, the condition is necessary. We prove the sufficiency of the condition. To this end, suppose that for every $n \in N$ there exists $\delta_n(\xi) > 0$ such that for any free δ_n -fine divisions $D_1 = \{([u,v];\xi)\}$ and $D_2 = \{(u',v'];\xi')\}$ of [a,b], we have

$$p_n((D_1)\sum f(\xi)(v-u)-(D_2)\sum f(\xi')(v'-u')) < \frac{1}{2^n}.$$

We assume further that $\delta_0(\xi) \geq \delta_1(\xi) \geq \delta_2(\xi) \geq \dots$ for all $\xi \in [a,b]$. For each $k \in N$, let D_k be a fixed free δ_k -fine division of [a,b]. Put $s_k = (D_k) \sum f(\xi)(v-u)$.

Now, fix $n \in N$ and let $\epsilon > 0$. Choose m > n such that $\frac{1}{2^m} < \epsilon$. Then, we have

$$p_m(s_k - s_{k'}) < \frac{1}{2^m} < \epsilon$$

for $k, k' \geq m$. This means that $\{s_k\}_{k=1}^{\infty}$ is an r-Cauchy sequence, i.e., it is a Cauchy sequence for every norm p_n . Since X is complete, this sequence is r-convergent. Thus, there exists $s \in X$ such that $p_n(s_k - s) \longrightarrow 0$ as $k \longrightarrow \infty$ for all n.

Next, let $n \in N$. Then there exists k > n such that $p_{n+1}(s_k - s) < \frac{1}{2^{n+1}}$. Therefore, if $D = \{([u, v]; \xi)\}$ is a free δ_n -fine division (hence, also a free δ_{n+1} -fine division) of [a, b], then

$$p_n((D)\sum (f(\xi)(v-u)-s)$$

$$\leq p_{n+1}((D)\sum (f(\xi)(v-u)-s_k)$$

$$+ p_{n+1}(s_k-s)$$

$$< \frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} = \frac{1}{2^n}.$$

This proves the theorem.

The following result shows that every r-continuous function is McShane integrable.

Theorem 3.5 If $f:[a,b] \longrightarrow (X,\{p_n\})$ is r-continuous on [a,b], then f is McShane integrable there.

Proof: Let $n \in N$. Then f is continuous on [a,b] for every p_n by Theorem 2.10. It follows that f is uniformly continuous on [a,b] for every p_n . Hence, there exists a $\delta > 0$ such that whenever $|t_1 - t_2| < \delta$, we have $||f(t_1) - f(t_2)|| < \frac{1}{(b-a)2^{n+1}}$. Let $D_1 = \{([u,v];\xi)\}$ and $D_2 = \{(u',v'];\xi')\}$ be free δ -fine divisions of [a,b]. Then

$$p_n((D_1) \sum f(\xi)(v-u) - (D_2) \sum (f(\xi')(v'-u'))$$

$$< \frac{1}{2^{n+1}} + \frac{1}{2^{n+1}}$$

$$= \frac{1}{2^n}.$$

By Theorem 3.4, f is McShane integrable on [a, b].

Next, we show that simple functions are also McShane integrable.

Theorem 3.6 Let $x_0 \in X$ and A a measurable subset of [a,b]. Then the function $g(t) = \chi_A(t)x_0$ is McShane integrable on [a,b] and

$$(M)\int_a^b g = \mu(A)x_0,$$

where μ is the Lebesgue measure.

Proof: The result is trivial if $x_0 = \theta$ (the zero vector in X). So, suppose $x_0 \neq \theta$ and let $n \in N$. Put $\alpha = p_n(x_0)$ and $H = [a, b] \setminus A$. Choose open sets G_{1n} and G_{2n} such that $A \subset G_{1n}$, $H \subset G_{2n}$, $\mu(G_{1n}) < \mu(A) + \frac{1}{\alpha 2^n}$, and $\mu(G_{2n}) < \mu(H) + \frac{1}{\alpha 2^n}$.

Define $\delta_n(\xi) > 0$ as follows:

$$\delta_n(\xi) = \left\{ egin{aligned} dist(\xi, G_{1n}^c), & ext{if } \xi \in A \ dist(\xi, G_{2n}^c), & ext{if } \xi \in H. \end{aligned}
ight.$$

Let $D = \{([u,v];\xi)\}$ be free δ_n -fine division of $[a,b],\ D_A = \{([u,v];\xi) \in D : \xi \in A\}$ and $D_H = \{([u,v];\xi) \in D : \xi \in H\} = D \setminus D_A$. Then

$$(D) \sum \chi_A(\xi)(v-u) = (D_A) \sum \chi_A(\xi)(v-u)$$

$$= \sum (v-u) < \mu(G_{1n})$$

$$< \mu(A) + \frac{1}{\alpha 2^n}$$

and

$$(D) \sum \chi_{H}(\xi)(v-u) = (D_{H}) \sum \chi_{H}(\xi)(v-u)$$

$$= \sum (v-u) < \mu(G_{2n})$$

$$< \mu(H) + \frac{1}{\alpha^{2n}}.$$

Since $\chi_A = \chi_{[a,b]} \setminus \chi_H$, we have

$$(D) \sum \chi_{A}(\xi)(v-u) = (D) \sum \chi_{[a,b]}(\xi)(v-u) -(D) \sum \chi_{H}(\xi)(v-u) > \mu([a,b]) - \mu(H) - \frac{1}{\alpha 2^{n}} = \mu(A) - \frac{1}{\alpha 2^{n}}.$$

Combining this with the above inequalities yields

$$|(D)\sum \chi_A(\xi)(v-u)-\mu(A)|<\frac{1}{\alpha 2^n}.$$

Therefore, $p_n((D) \sum \chi_A(\xi)(v-u)x_0 - \mu(A)x_0)$ $= |(D) \sum \chi_A(\xi)(v-u)|\alpha$ $< \frac{1}{2^n}.$

This is the desired result.

Theorem 3.7 If $f:[a,b] \longrightarrow (X,\{p_n\})$ is a simple function given by $f(t) = \sum_{i=1}^n \chi_{A_i}(t)x_i$,

where $x_i \in X$, $A_i \cap A_j = \emptyset$ for $i \neq j$, and each A_i is a measurable subset of [a, b], then f is Mc-Shane integrable on [a, b] and

$$(M)\int_a^b f = \sum_{i=1}^n \mu(A_i)x_i.$$

Proof: This follows from Theorem 3.3 and Theorem 3.6.

Theorem 3.8 If $f:[a,b] \to (X,\{p_n\})$ is Mc-Shane integrable to the vector z on [a,b], then for each n the following holds: Given any $\epsilon > 0$, there exists $\delta_{\epsilon}(\xi) > 0$ such that for any free δ_{ϵ} -fine division $D = \{([u,v];\xi)\}$ of [a,b], we have

$$p_n((D)\sum f(\xi)(v-u)-z)<\epsilon.$$

Proof: By assumption, there is, for every $n \in N$, a $\delta_n(\xi) > 0$ on [a, b] such that for any free δ_n -fine division $D = \{([u, v]; \xi)\}$ of [a, b], we have

$$p_n((D)\sum f(\xi)(v-u)-z)<\frac{1}{2^n}.$$

Fix $n \in N$. For every $\epsilon > 0$, choose $m \in N$ such that $m \geq n$ and $\frac{1}{2^m} < \epsilon$. Then, for any free δ_m -fine division $D = \{([u, v]; \xi)\}$ of [a, b], we have

$$p_m((D)\sum f(\xi)(v-u)-z)<\frac{1}{2^m}<\epsilon.$$

Therefore,

$$p_n((D)\sum f(\xi)(v-u)-z)<\epsilon.$$

Set $\delta_{\epsilon}(\xi) = \delta_m(\xi)$ for all $\xi \in X$. This shows that the conclusion of the theorem holds.

Let $(X, \{p_n\})$ be a complete CN-space such that $\{p_n\}$ is an increasing sequence of compatible norms. If X_n is the completion of X with respect to the norm p_n , then we obtain a sequence X_n of Banach spaces. From [4,p14-17], the sequence $\{X_n\}$ can be considered to have the relationship $X_0 \supset X_1 \supset ... \supset X$. Further, we have the following result

Theorem 3.9 [4] The space X is complete if and only if $X = \bigcap_{n=0}^{\infty} X_n$.

The following result gives the relationship between Definition 2.12 and Definition 2.13.

Theorem 3.10 Let $(X, \{p_n\})$ be a complete CN-space such that $\{p_n\}$ is an increasing sequence of compatible norms. A function $f:[a,b] \longrightarrow (X, \{p_n\})$ is McShane integrable to the vector z on [a,b] if and only if f is McShane integrable to the vector z on [a,b] as an (X_n, p_n) -valued function for each n.

Proof: Suppose f is McShane integrable to the vector z on [a,b] and let $n \in N$. Since f is an X-valued function and X_n is the completion of X with respect to p_n , f is also an (X_n, p_n) -valued function. By Theorem 3.1 and Definition 2.12, f is McShane integrable to the vector z on [a,b] as an (X_n, p_n) -valued function. Since n was arbitrary, we obtain the desired result.

Conversely, suppose that f is McShane integrable to the vector z_k as a (X_k, p_k) -valued function for each $k \in N$. Let $n \in N$ and $\epsilon > 0$. Let $m \in N$ such that m < n. By Definition 2.12, there exists a $\delta_n(\xi) > 0$ such that for any free δ_n -fine division $D = \{([u, v]; \xi)\}$ of [a, b], we have

$$p_n((D)\sum f(\xi)(v-u)-z_n)<\epsilon.$$

Since $X_n \subset X_m$, $p_m(x) \leq p_n(x)$ for all $x \in X$, and $z_n \in X_m$, we have

$$p_m((D)\sum f(\xi)(v-u)-z_n)<\epsilon.$$

This means that f is McShane integrable to the vector z_n as an (X_m, p_m) -valued function. Since f is McShane integrable to the vector z_m as an (X_m, p_m) -valued function, $z_n = z_m$ by Theorem 3.1. Therefore, $z_0 = z_1 = \dots$ Let z be this common value. Then $z \in X$ by Theorem 3.9. Therefore, if $n \in N$, then there exists $\delta_n(\xi) > 0$ such

that for any free δ_n -fine division $D = \{([u, v]; \xi)\}$ of [a, b], we have

$$p_n((D)\sum f(\xi)(v-u)-z_n)<\frac{1}{2^n}.$$

This shows that f is McShane integrable to z on [a,b].

Acknowledgment The author would like to thank the referee for reading the manuscript and for his/her invaluable comments and suggestions.

References

[1] Canoy, S.R., On the r-differentiability of the Primitives of Henstock Integrable Functions with values in a Hilbertian CN-space with Nuclearity, Matimyas Matematika, Vol 23, No 3, September 2000.

- [2] Gordon, R., The McShane Integral of Banach-valued Functions, Illinois Journal Vol. 34, 1990, pp. 557-567.
- [4] Gordon, R., The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Vol.4, American Mathematical Society, 1994.
- [4] Gel'fand, I.M., and Shilov, G.E., Generalized Functions, Vol.2, Academic Press, New York and London, 1968.
- [5] Kunugi, K., Sur la Methode des Espaces Ranges, Proceedings of Japan Acad., 42(1966), 318-322.
- [6] Nakanishi, S., The Henstock Integral for Functions With Values in Nuclear Spaces, Math. Japonica, Vol. 39, 2(1994), 309-335.

KWIK-SERVE TRADING

(AGENTS FOR CONTREX, INC.)

IMPORTER, DISTRIBUTOR OF LABORATORY EQUIPMENT & SUPPLIES ON INDENT OR FORWARD SALE BASIS, REPAIR & ACCESSORIES

HEAD OFFICE: 8894 SAN PABLO STREET

SAN ANTONIO VALLEY 2

PARANAQUE, METRO MANILA

TELEPHONE NOS. 826-80-29

826-18-23

FAX NO:

826-80-29

DIRECT LINE:

330-26-55

E-MAIL ADDRESS: vanj@hotmail.com

CHEMLINE SCIENTIFIC ENTERPRISES

Distributor: SIGMA ' ALDRICH ' NASCO PRODUCT 'CHEMICALS
GLASSWARES ' SCIENTIFIC INTSTRUMENT & REPAIR ' GENERAL MERCHANDISE
Fabricator: FUMEHOOD ' LAMINAR FLOW ' SHAKER LABORATORY FURNITURE

Biochemicals and Reagent for Life science Research Aldrich
Organics and
Inorganics for
Chemical Synthesis

RBI Cell Signalling Neuroscience Chromotography
Products for Analysis
and Purification

#28 Law Street, Victoria, Subdivision Tandang Sora, Quezon City Tel. No: 984-1203;9841198;454-4987

Fax number 984-1201

E-mail: chemline@pworld.net.ph