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We shall define McShane integral of functions with values in a6 complete ranked countably normed
spece. We shall relate this definition to the definition given by Gordon for Banach-valued functions
f2]. Further, we give some simple properties of the integral and state its Cauchy criterion. As
particuler examples, we shall show that r-continuous functions and simple functions are McShane

integrable.

1 Preliminaries

We give some of the definitions and few results
we shall need in the next section.

Definition 2.1 Let X be a nonempty set such
that, for each z € X, there exists a nonempty
class P(x) consisting of subsets U(z) of X, called
preneighborhoods of x such that z € U(x) when-
ever U(z) € P{z). Put V = Uzex P(z). Suppose
further that for eachn € N, where N = {0,1, ...},
there is assigned a nonempty class V,, C V sat-
isfying the following: For each U(z) € P{z) and
for every n € N, there exists a W{z) € V,, for
some m > n such that W(z) C U(z). Then the
space X endowed with the classes P(x) and V,,
for each z € X and for each n € N is called
a ranked space. It is sometimes denoted by the
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ordered triple (X, V, V). Further, if U(z) is a
preneighborhood of z and U{z) € V,,, then we
say that it is of rank n. In this case, z is the
center of U(z).

Example 2.2 Let X = [a,)]. Foreachz € X, let
P(z) be the usual neighborhood system of z and
foreachn € N, let V,, = {(mﬁigﬁ—l,aﬁﬁ)ﬂ)( :
z € [a,b]}. If V is the union of all P(z), then
(X,V, V) is a ranked space.

Definition 2.3 A sequence of preneighborhoods
{Ui(z;,n{i))}, ie., a sequence of prenecighbor-
hoods U; of z; with ranks n(7), is called a fun-
damental sequence (f.s. for brevity) if it satisfies
the following conditions:

{€1)The sequence of preneighborhoods is de-
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creasing, i.e., Up DU} D ...

(C2) n(0) < n(1) < ... <n(k) <nlk+1) < ..
and

(C3) For every n € N, there exists a k € N such
that k > n,zx = 2x4, and n(k) < n(k +1).

Definition 2.4 A ranked space (X,V,V,) is
said to be r-separaied if it satisfies the ff. condi-
tion : For every z,y € X,z # v, and for every f.s.
{Ui(z)} of center z and f.s. {W;(y)} of center y,
there exists a k € N such that Ug(z)NWy(z) = 0.

Definition 2.5 Let X be a vector space with
a countable sequence of compatible norms {p,}
(see {3]). Then X is called a countably normed
space or simply a CN-space. It is sometimes
denoted by (X, {pn}). Further, in this space, we
have the ff:

(a) A sequence {z;} in X is a convergent sequence
if there is a vector z € X such that p,(z;—x) = 0
as § — oo for every norm py,.

(b) A sequence {z;} in X is a Cauchy sequence
in X if it is a Cauchy sequence for every norm
Pn-

{c¢) X is complete if every Cauchy sequence in X
converges.

Theorem- 2.6[1] Let X be a C'N-space with a
sequence {pn} of increasing norms, ie., po(z) <
pi{z) € ... for every x € X. Then (X, V,V,),
where

P(z) = {2+ S :n € N}z € X),
Va={z+ Sn:z€ X}(n € N),
and
Sn={y€ X :pa(y) < %}(n € N},
is a ranked space.

Definition 2.7 Let X be a C'N-space with a
sequence {pn} of increasing norms. We call the
ranked space (X,V,V,) described in Theorem
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2.6 as renked countably normed space or simply
ranked CN-space.

Lemma 2.8{1] Every
(X, {pn}) is r-separated.

ranked C N-space

For sequences of sets {A4;} and {B;}, {4} <
{B;} means that for every Bj, there exists a set
Ay such that Ay C B;.

In the succeeding discussions, the set [a, b] is en-
dowed with the structure given in Example 2.2,

Definition 2.9 Let F and X be ranked spaces.
A mapping F : E — X is r-continuousat e € I/
if for every f.s. u, = {U;(e)} of center e there is a
f.s. vpey = {W;(f(e))} of center f(e) in X such

that {f(U;(e))}< {W;(f(e))}.

Theorem 2.10 [6] Let (X,{p.}) be a CN-
space. A a Sfunction
f i [a,b) — (X,{pn}) is r-continuous at
t € [a,b] if and only if it is continuous at ¢
for every norm py,.

Definition 2.11 Let 6 be a pos-
itive function on {a,b]. A division
D = {{[x, v]; £)} of [a,b] is called a free é-fine di-
vision of [a, ] if
[u,v] C (€ — 6(€),€ + 6(€) for each [u,v] in D.
Note that the tag £ of [u,v] is not necessarily an
element of [u,v] (and hence, the term "free”).

Definition 2.12 [2] Let (Y,p) be a Banach
space. A function
f 2 [a,8] — (Y,p) is said to be McShane in-
tegrable to a vector z € Y on [a,b] if for every
€ > (1, there exists §(¢) > 0 such that for any free
d-fine division D = {([u,v};£)} of [a,b], we have

p(D)Y FOw—u)—2) <e.

In what follows, we assume that (X, {p,}) isa
complete ranked CN-space and N = {0,1,2,...}.
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Definition 2.13 A function f [a,b] —
(X, {pn}) is said to be McShane integrable to a
vector z € X on [a,b] if for every n € N there
exists 8,(£) > 0 on [a,b] such that for any free
dn-fine division D = {([u,v];£)} of [a, b], we have

pa((D) Y FE)w—w) —2) < 2i

Also, we write
b b
(M) / F(t)dt = (M) / ez

2 Results

Theorem 3.1 If f : [a,b] — (X,{pn}) is
McShane integrable on [a,b], then its integral is
unique.

Proof: Suppose f is McShane integrable to z;
and zg. Then for every n, there exists a suitable
0n(€) > 0 on [a,b] such that for any free J,-fine
division D = {{[u,v];§)} of [a, b], we have

1

(D)) fE)w—w) — =) < on

and

Pnl(D) 3 FE® — ) — 22) < o
Thus, for all n € N, we have

pr(n1 —2) < palzr — (D) Y f(E)(v —w))

+ (D) Y F ()0 —u) — )
1
Let n be fixed (but arbitrary) and let ¢ > 0. Then

there exists a natural number m > n such that
Qm%, < €. Therefore,

<

7A

pm(zl - 32)
1
am—1

Pn(zl - 22)

ASA
™
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Accordingly, pn(z1 — z2) = 0. Hence, z; — 22 = 0,
i.e., z; = #. This proves the theorem.

Theorem 3.2 If f,g : [e,b] — (X, {pn}) are
McShane integrable on [a,b], then so are f + g
and af for every real number a. Moreover,

) [ g =) / () + ) / @

and
oy '(@f) = (M)a / ).

Proof: Let f and g be McShane integrable to =
and 3, respectively. Then for any n € N, there
exists a suitable 8,41(€) > 0 on [a, b such that
for any free 8,1-fine division D = {{[u,v];£)} of
[a, b}, we have

Pt (D) Y0 FO ~w) ~2) < =

and
pr1(D) Y €0 — ) —9) < oy

Define & (£) = 8,41(€) for every £ € [a,b]. Then
forany free d}-fine division D = {([u,v];£)} of
[a, ], we have

Pa((D) 22(f() + 9O Hv —u) — (= +))

Prir((D) D _(F(6) + 9())v —w) - (z +v))
< (D) Y f(@) (0 — w) = 2) + Py ((D)
> gl@) (v —w) —y)

1

<§;.

IA

A

This proves that f + ¢g is McShane integrable to
z +y on [a, b]. The second part can be proved in
a similar manner.

Theorem 3.3 Leta <c<b If f:[a,b —
(X, {pn}) iz McShane integrable on [a,c] and
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on [c,b], then f is McShane integrable on [a, b].

Moreover,
b
M) / ;.

b c
a0 ["1=n [ 1+
a a
Proof: Suppose f is M-integrable to z; and 29
on [a,c] and [c, b}, respectively. Then, for any n,
there exist d,,, > 0 and d;,, > 0 such that if
D = {{[u,v]; )} is a free 6n+1-d1v1510n of [a, ]
and D* = {([u,v];£)} is a free 4, ,-division of
[¢,b], then

part( FOm — ) —2) < =

and

Paa(3 O ) —2) < iop

Define d,(£) > 0 as follows:

min{d,  (€),c— &}, if £ € [a,¢)
dn{€ min{d, 1(€),§{ ~c}, HLe(c—H.
min{; (£, 5510}, HE=c

Let D = {([u,v];£)} be a free d,-fine division of
[a,b]. Then the sum

D)> fO)w—u) = (D)D) _(FEO—u)
+H(D*) Y (6

where (D') Y. denotes a sum over a free 4] -
division D' of [a,¢] and (D*) 3} denotes a sum
over a free 4}  |-division D* of [c,b]. Therefore,

Pal(D) Y (F(E) (v - u) — (21 — 22))
< pa((D) D (FE)

+ pa (D)) (FO —u) — 22)
1
2_11'

v — Uu),

v—u)—z1)

<
Therefore, f is McShane integrable on [a, b].

Theorem 3.4 {Cauchy Criterion} A function
[ [a, b — (X, {pn}) is McShane integrable on

Tre MANILA JOURNAL OF SCIENCE

[a,b] if and only if for every n € N there ezists
1,l(é) > 0 such that for any free op-fine divisions

= {([u,v]; &)} and Dz = {(v/,v'];£")} of [a, ],
we have
(D) FE) @ —u)— (D2) D> FE) — o)

Proof: Clearly, the condition is necessary. We
prove the sufficiency of the condition. To this
end, suppose that for every n € N there exists
6n(€) > 0 such that for any free d,-fine divisions
Dy = {([fu,v}; £)} and Dy = {(w,v'};£")} of [a,b],

we have

Pal(D1) D F(E)w —w) — (D2) D F(€)(v' — )

1
<o

We assume further that §o(€) > §1(¢) >
d3(&) > ... for all £ € [a,b]. For each k € N, let
Dy be a fixed free d;-fine division of [a,b]. Put
sk = (D) X2 f(E) (v — u).

Now, fix n € N and let ¢ > 0. Choose m > n
such that ng < €. Then, we have

1
P8k = sw) < o <€

for k,k’ > m. This means that {sx}3>, is an
r-Cauchy sequence, i.e., it is a Cauchy sequence
for every norm p,. Since X is complete, this se-
quence is r-convergent. Thus, there exists s € X
such that p,(sp — s) -~ 0 as k — oo for all n.

Next, let n € N. Then there exists k > n
such that ppyi(sg — s) < 2,,% Therefore, if
D = {([u,v];£)} is a free d,-fine division (hence,
also a free d,,-fine division) of {a,b], then

P((D) 32(S () (v — ) — 3)

< pat((D) Y (FE — u) — s)
+ pnyrl{sk —5)

1 1 1
< oadt P ont Toon
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This proves the theorem.

The following result shows that every r-
continuous function is McShane integrable.

Theorem 3.5 If f : [a,b] — (X, {pn}) is7-
continuous on [a, b], then f is McShane integrable
there.

Proof: let n € N. Then f is continuous on
[a,b] for every p, by Theorem 2.10. 1t fol-
lows that f is uniformly continuous on [a,b]
for every p,. Hence, there exists a § > 0
such that whenever |t; — #| < 4, we have
17 (t0)— f ()l < Gjgmer- Let D1 = {([u,v];€)}
and Dy = {(u',v'];£')} be free §-fine divisions of
[a,b]. Then

Pal(D1) 3 F(E)(v—u)—(D2) (€)' —u"))

1 1
< W+W
1
= 2_ﬂ_

By Theorem 3.4, f is McShane integrable on
[a, b].

Next, we show that simple functions are also
McShane integrable.

Theorem 3.6 Let zqg € X and A a measurable
subset of [a,b]. Then the function g(t) = x4(t)zo
18 McShane integrable on [a,b] and

b
) [ = uA)ze,
a
where p is the Lebesgue measure.

Proof:  The result is trivial if g = @ (the zero
vector in X'). So, suppose g # # and let n € N.
Put « = pp(z¢) and H = [a,b]\A. Choose open
sets Gi1n and Gy, such that A C Gy, H C Gy,
#(G1n) < p(A)+ 3=, and u(Gan) < p(H) + L.
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Define 6,(£) > 0 as follows:

_ d‘LSt(§1 cﬂ)’
0n(€) = {dist(f, Gén)’

Let D = {([u,v];£)} be free d,-fine division of
[a,b], Da = {{[u,v];6) € D : ¢ € A} and
Dy ={([u,v];€) e D:£ € H} = D\D4. Then

(D)) xal@)w—u) = (Da)Y xal®){v—u))
= Z(” —u) < p{G1n
< p(d)+ $

fec A
if €€ H.

and

(D)) xu(@w—u) = (D) xa(®@-u)
= Z(U —u) < j#(G2n
< p(H)+ E%

Since x4 = X[q.4)\Xx#, We have

(D)) xal@)v-u) = (D) xpay()(w — )

—(D)Y " xu () (v —u)
> o) ~ w(H) - —
1

= wA) -

Combining this with the above inequalities yields

(D) 32 XA )0 =) — ()] <

Therefore,
pn((D) 32 xalé)(v — u)zo — p(A)zo)

= D)) xal&)(w - u)le
1

2_1'1.

This is the desired result.

<

Theorem 3.7 If f : [a,b] — (X,{pa}) is a
simple function given by f(t) = Y1, xa, ()=,
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where z; € X, A;NA; = 0 for i # j, and each
A; is a measureble subset of [a,b], then f is Mc-
Shane integrable on [a,b] and

b n
) [ 1 =Y wAa
a i=1

Proof: This follows from Theorem 3.3 and The-
orem 3.6.

Theorem 3.8 If f: [a,b] — (X, {pn})is Mec-
Shane integrable to the vector z on [a,b], then
for each n the following holds: Given any e > 0,
there exists §.(€) > O such that for any free d-
fine division D = {([u,v];£)} of [a,b], we have

p((D) Y F(O)v—u) - 2) <e

Proof: By assumption, there is, for everyn € N,
a d,(£) > 0 on [a, b] such that for any free §,-fine
division D = {{{u,v]; £)} of [, b], we have

pol(D) Y2 FO@ —u) = 2) < oo

Fix n € N. For every ¢ > 0, choose m € N
such that m > n and QLm < ¢. Then, for any free
dp-fine division D = {{[u,v];£)} of [a, b], we have

Pul(D) Y2 FE)0 — ) = 2) < 5 < e

Therefore,

pa((D) Y FO)w—u)—2) <.

Set 6.(¢) = 8 (€) for all £ € X. This shows that
the conclusion of the theorem holds.

Let (X, {pn}) be a complete C'N-space such
that {p,} is an increasing sequence of compatible
norms. If X, is the completion of X with respect
to the norm p,, then we obtain a sequence X,
of Banach spaces. From [4,p14-17], the sequence
{Xn} can be considered to have the relationship
Xy D X1 D... > X. Further, we have the follow-
ing result
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Theorem 3.9 [4] The space X is complete if
and only if X = M2, X,

The following result gives the relationship be-
tween Definition 2.12 and Definition 2.13.

Theorem 3.10 Let (X, {p,}) be a complete CN-
space such that {p,} is an increasing sequence
of compatible norms. A function f : [a,b] —
(X, {pn}) is McShane integrable to the vector z
on [a,b] if and only if f is McShane integrable
to the vector z on [a,b] as an (X,,pn)-valued
function for each n.

Proof: Suppose f is McShane integrable to the
vector z on [a,b] and let n € N. Since f is an
X-valued function and X, is the completion of X
with respect to p,, f is also an (X, p,)-valued
function. By Theorem 3.1 and Definition-2.12,
f is McShane integrable to the vector z on [a, b]
as an (X, p,)-valued function. Since n was ar-
bitrary, we obtain the desired result.

Conversely, suppose that f is McShane inte-
grable to the vector z; as a (Xi, pr)-valued func-
tion for each k € N. Let n € N and ¢ > 0. Let
m & N such that m < n. By Definition 2.12,
there exists a 8,(£) > 0 such that for any free
dp-fine division D = {{[u,v]; €)} of [a, b], we have

pa((D) D f(E) v —u) —2a) < c.

Since X, C X, pm(z) < pplz) for all z € X,
and z, € X,,, we have

Pm((D) Zf(ﬁ)('b‘ —u) — z,) <€

This means that f is McShane integrable to the
vector z, as an (X,,, pm)-valued function. Since
f is McShane integrable to the vector z;, as an
(Xm, Pm)-valued function, 2z, = z, by Theorem
3.1 Therefore, zp = z; = .... Let z be this com-
mon value. Then z € X by Theorem 3.9. There-
fore, if n € N, then there exists d,(£) > 0 such
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that for any free d,-fine division D = {([u,v];£)}
of [a,b], we have

Pol(D) 3 ()0~ w) = ) < o

This shows that f is McShane integrable to z on
{a,b].
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