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From the Editor

The Journal of Computational Innovations and Engineering Applications (JCIEA) is a peer-reviewed and abstracted 
journal published twice a year by De La Salle University, Manila, Philippines. JCIEA aims to promote and facilitate 
the dissemination of quality research outputs that can push for the growth of the nation’s research productivity.   

In its second issue, 7 articles are selected, which will provide valuable references for researchers and practitioners.

The first article is “Predicting the Quality of Demosaiced Images Using the Sparsity of Chroma Gradients.” 
This paper explores a no-reference simple metric for inferring the quality of the estimated image by measuring 
the sparsity of chroma gradients along four directions (SCG4). The said measure is shown to be significantly 
correlated with respect to the PSNR in simulations using the Kodak image database. 

The second article, “Development and Implementation of an Integrated Services Digital Broadcasting-Terrestrial 
(ISDB-T) Decoder Using GNU Radio and USRP1,” discussed the implementation of an ISDB-T decoder in a 
Software-Defined Radio (SDR) platform. 

The third article, “Efficient Load Balancing Technique for Parallel Ray Tracing Using A Reservoir,” proposed 
an alternative load balancing technique to further increase computing efficiency and improve ray tracing’s 
applicability for mainstream purposes. The load balancing technique that uses a reservoir was implemented to 
tackle the issue of using heterogeneous computers in the network and to minimize the communication overhead 
introduced by parallel applications. 

The fourth article is “Analog Realization of a Low-Voltage Sixteen Selectable Fractional-Order Differentiator 
in a 0.35um CMOS Technology.” This paper focused on the design and implementation of sixteen selectable 
fractional-order differentiators in a 0.35um CMOS technology operated at 1.5-V supply. In comparison with the 
previous work that uses generic microcontroller for switching an FOD from one order to the next, this design 
of a 16 selectable FOD was realized in an analog microelectronic scale, thus, the physical implementation is 
relatively smaller. 

The fifth article, “Comparison of Logit and Neural Network Models in Inter-Island Discrete Choice Analysis,” 
wherein the researchers addressed the non-linear behavior and inter-dependence of variables using neural networks 
in modeling inter-island travel choice. The neural network model is statistically acceptable in describing travel 
choice behavior, while the logit model is more inclined to model the decision-making process. 



vi

The sixth article, “Selection of Artificial Neural 
Network Training Algorithms in the Detection and 
Classification of Wavelet de-noised Musical Tone 
Stimulated EEG Signals,” musical tones were used 
to stimulate the brain and EEG signals are used to 
detect and classify these stimulations. Artificial Neural 
Network-based classifier was employed for detection 
and classification. Wavelet based de-noising was used 
to smoothen the musical tone stimulated EEG signals 
and among the 110 known mother wavelets, the reverse 
biorthogonal ‘rbio3.1’ and ‘rbio3.3’ using the ‘rigrsure’ 
thresholding method satisfied the selection criteria for 
better de-noising effects. 

The seventh article, “Fuzzy   Implementation for 
MCU on Power Savings and Efficient Irrigation 
System (MPSEIS) for Smart Farming,” the researchers 
present a self-learning controller for motor speed 

to be utilized on Three Phase Motor using Variable 
Frequency Driver (VFD) for irrigation system of Smart 
Farming using fuzzy logic algorithm developed inside 
a Micro-Control Unit (MCU) environment. To test 
the controller’s performance, different frequencies 
using variable frequency driver (VFD) in real time 
undergoing different water level and power load 
variations.

The JCIEA editorial board expresses their warmest 
thanks and deepest gratitude to the distinguished 
authors for their outstanding contribution to JCIEA 2nd 
volume. They likewise express profound appreciation 
to the reviewers for their assistance and cooperation.   
Original research outputs are most welcome to JCIEA. 
There is no publication fee in this journal, and the 
research papers are assured of fair and fast peer review 
process. For further information, please visit www.
dlsu.edu.ph/offices/publishinghouse/journals.asp.

	
			   Prof. Elmer P. Dadios, PhD 
			   Editor-in-Chief, JCIEA



Abstract—The design of most modern cameras 
utilizes a color filter array that downsamples and 
interleaves the red, green, and blue pixels of an image 
into a single mosaiced image. Such a design makes it 
necessary to interpolate the missing pixels for each color 
channel using a process known as demosaicing. While 
it is possible to fill in these pixels, the resulting images 
are inexact estimates of the true image, with different 
algorithms offering various levels of success. However, 
this degree of success cannot be directly quantified in 
the absence of the true image, making it difficult to 
design adaptive algorithms for demosaicing. This paper 
explores a no-reference simple metric for inferring 
the quality of the estimated image by measuring the 
sparsity of chroma gradients along four directions 
(SCG4). The said measure is shown to be significantly 
correlated with respect to the PSNR in simulations 
using the Kodak image database.

Index Terms—demosaicing, color filter array, 
gradient, sparsity.

I.  Introduction

WITH the growing presence of imaging systems in the 
modern world, it is not surprising that the underlying 

technology behind such imaging devices have received 
a proportional amount of attention. In particular, digital 
imaging sensors have continuously been developed through 
the years. One of the most apparent aspects of this growth is
seen in the resolution of the imaging sensors. As consumer 
video is pushing for 4K video resolutions and higher, 
sensor technology has to cope with the market demand. 
Alongside the increasing resolution [1], [2], [3], there is 
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also a growing commercial interest in high speed video 
captures [4], [5], [6].

Fig. 1. Bayer color filter array (CFA). Each color site 
is comprised of a color filter (typically a chemical dye) 
placed in from of a photodetector.

Driven by the progressively rising requirements, 
researchers have come up with ways to improve sensor 
technologies. For instance, the construction of smaller 
sensors have enabled consumer devices such as mobile 
phones to capture high-resolution images and video [1], 
[2], [3]. Sensors with fast readout capabilities can now be 
utilized to capture high framerate videos (e.g. 1500 fps [6], 
10000 fps [5], etc). Improving sensitivities have allowed 
images and videos to be captured under poor lighting 
conditions [7], [8]. In a similar manner, developments in 
sensitivity have also allowed for the lower levels of noise 
in captured images. 

Despite the changes in sensor design throughout the 
years, one aspect of imaging sensors has remained vastly 
unchanged since the 1970s—the manner by which color 
is captured. At the very core of most imaging sensors is an 
array of photosensitive devices designed to capture incident 
light and translate the intensity into electronic signals [9]. 
However, these devices can only describe the intensity of 
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light captured over a broad spectrum and not for specific 
wavelengths, thus making them incapable of quantifying 
the intensity of different colors. 

To address this limitation, wavelength-specific filters 
are placed in front of the individual sensor cells to allow 
them to capture color-specific intensities. Collectively, these 
filters form what is known as a color filter array (CFA).  
A prominent example of this is the Bayer CFA [9] (shown 
in Figure 1), which is still used in many imaging sensors 
today. The downside to such an approach is that each cell in 
the array can only measure one particular color, effectively 
downsampling the individual color channels. The resulting 
captured image appears to be monochromatic (see Figure 2) as 
only a single flat image is obtained from the sensor. However, 
this flat image actually represents the interleaving of the 
intensities of three color channels.

As a result of the interleaving of color channels, the 
resulting image is often not in a usable form and has to be 
deinterleaved to form the individual color channels. This 
leaves missing pixels for each color channel which has 
to be interpolated to reconstruct the colored image. The 
interpolation process for images obtained through a CFA 
is specifically known as demosaicing and is generally a 
non-trivial reconstruction task as information is readily 
lost during the downsampling process. For this reason, 
demosaicing has been a subject of interest to many 
researchers since the conception of the CFA [11].

As with almost any reconstruction task, the true image, 
and subsequently the quality of the reconstruction, is 
unknown to the process. If such quality information were 
made available, an “oracle” process would be able to make 
optimal decisions during the reconstruction. Using this 
premise, this work proposes a no-reference metric that 
predicts the quality of demosaicing in the absence of the 
true image. By utilizing such a measure, more effective 
demosaicing algorithms can be designed. To understand how 
such a metric can be developed, we first introduce Bayer CFA 
along with some technical aspects of this array in Section II. 
An overview of some demosaicing paradigms is provided in 
Section III. Following this, the proposed metric is discussed 
in Section IV along with some experiments in Section V.

II. The Bayer CFA
While there have been many color filter array (CFA) 

designs proposed, the Bayer CFA is still one of the most 
widely used patterns today [9], [11] This CFA (as illustrated 
in Figure 1) creates a repeated array of red, green, and blue 
filters in such a way that every 2×2 pixel area of the entire 
array contains exactly two green pixels and one each of the 
red and blue pixels. This construction is consistent with 
the observation that the human eyes are generally more 

sensitive to green wavelengths thus making the spatial 
resolution of the green channel more significant towards 
our perception of visual quality. To describe the Bayer CFA, 
we begin by defining the intensities of the red, green, and 
blue color channels of an image as 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

, 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

, and  
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

, respectively for a given pixel coordinate 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
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The first term in the above expression is roughly
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:
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With slight abuse of notation, we omit the coordi-
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discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.
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region of the grid. While there are variations in
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and define the masks as:
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
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the spatial resolution of the green channel more
significant towards our perception of visual quality.
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niques can be applied to restore the resolution. The
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thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].
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Fig. 2. A mosaiced image of the Lighthouse image from  
the Kodak color image database [10] passed through  
a simulated Bayer CFA.
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With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

	 (2)

	

PREDICTING THE QUALITY OF DEMOSAICED IMAGES OCHOTORENA ET AL. 3

the spatial resolution of the green channel more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.
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the spatial resolution of the green channel more
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
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quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].
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The first term in the above expression is roughly
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
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work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
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the spatial resolution of the green channel more
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discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.
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This formulation implies that the mosaiced image is
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niques can be applied to restore the resolution. The
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quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
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cannot be restored upon doubling [11].
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each color channel independently leads to more

	 (10)
	
	

PREDICTING THE QUALITY OF DEMOSAICED IMAGES OCHOTORENA ET AL. 3

the spatial resolution of the green channel more
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nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
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niques can be applied to restore the resolution. The
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quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
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the spatial resolution of the green channel more
significant towards our perception of visual quality.
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With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.
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region of the grid. While there are variations in
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and define the masks as:
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.
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system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].
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Equipped with a fair understanding on the design of 
the Bayer CFA, the next task is to design a system for 
reconstructing the original image from the mosaiced 
samples. The most trivial approach to this problem is to 
simply interpolate the missing pixels of each channel 
given the known pixels. Since the red and blue channels 
are effectively downsampled to half of their resolution, 
image interpolation techniques can be applied to restore the 
resolution. The green channel, on the other hand, is sampled 
in a quincunx pattern and has more samples available, thus 
making interpolation more effective. A clear downside to 
naïve interpolation is that the high frequency components 
of the red and blue channels that were discarded during the 
downsampling process cannot be restored upon doubling 
[11]. 

Beyond simply the loss of information, handling each 
color channel independently leads to more problematic 
artifacts in the image. Take, for instance, the well-known 
Lighthouse image from the Kodak database (see Figure 3). 
After mosaicing this image and subsequently applying a 
bicubic interpolant to each color channel, some visible color 
bands become apparent in the reconstructed image. These 
bands, often referred to as color moiŕe, result from incorrect 
and out-of-phase interpolation decisions. An early attempt to 

Fig .  3 .  Reconstruct ion of  a  mosaiced image us ing  
bicubic interpolation. Naive interpolation can lead to color 
artifacts in the reconstructed image (right) that are not  
present in the original image (left).
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address such artifacts is to adaptively alter the interpolation 
direction based on horizontal and vertical gradients of the 
color channels [11]. This allows the interpolation to adapt 
to edges in the underlying image to achieve better results. 
Similar approaches can adapt the weights of neighboring 
pixels to avoid edge discontinuities [13]. 

Another demosaicing paradigm is to exploit the 
relationship between color channels. Since color channels 
in images are naturally correlated with one another, 
many demosaicing techniques utilize this relationship 
to obtain better interpolation results [13], [14], [15], 
[16], [11], [17], [18]. For instance, many approaches 
operate under the assumption that hues in an image are 
relatively slow-changing allowing the differences or 
ratios between color channels to be utilized for prediction 
[13], [14], [15], [11]. Other approaches interpolate the 
green channel independently and use it to guide the red 
and blue interpolation [16], [17], [18]. A state-of-the-art, 
Minimized-Laplacian Residual Interpolation (MLRI), 
tackles the problem using a similar perspective by using 
guided upsampling process with the interpolated green 
channel to generate an initial estimate for the red and 
blue channels [17]. This estimate is then updated using an 
approximate Laplacian minimization criteria to arrive at 
a refined solution.

Aside from relying on color differences, some techniques 
also use adaptive fusion of different estimates of the image. 
A popular algorithm, known as Adaptive Homogeneity-
Directed (AHD) demosaicing [19], performs both horizontal 
and vertical interpolations of the color channels and merges 
the two estimates based on a homogeneity metric designed to 
indicate the presence of color artifacts. Using a very different 
approach, the frequency-domain approach [12] models the 
chroma modulation process (discussed in Section II) in 
the Fourier domain. In this domain, it becomes apparent 
that color artifacts appear from crosstalk between the luma 
channel 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:
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With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.
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region of the grid. While there are variations in
the phase convention for the Bayer array, in this
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and define the masks as:
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.
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of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

 and the second chroma channel 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

. The authors 
of the said work proposed using a non-adaptive least-squares 
(LS) filter to extract the first chroma component 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

 and 
two non-adaptive LS filters to estimate 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

 based on the 
horizontally and vertically modulated contributions to the 
image. This results in two images which, similar to AHD, 
are adaptively merged to form the final image. 

Despite the wide variations in approach of these different 
works, a common feature for many of them is that the 
optimization criteria is often carried out in the 2 domain. 
While this offers a simplistic solution to the problem, many 
properties of natural images are inherently sparse and not 
sufficiently served by the 2 domain. In the succeeding 
section, we highlight some of the said properties and propose 
a potential improvement to this criteria by exploiting such 
sparsity.

IV. Gradient Sparsity

A. Properties of Natural Images

In order to develop our metric, it is first useful to 
characterize certain properties of natural images. However, 
as the term “chroma” is used in an ambiguous manner in 
literature and may refer to different mixtures of the color 
channels, we explicitly present a series of experiments 
carried out using the 24 images of the Kodak color image 
database. This allows us to disambiguate the chroma 
definition and focus on the properties of the specific variant 
of chroma defined in equations (11) and (12). For these 
experiments, each of the 24 images are mapped into their 
respective luma and chroma components, thus generating a 
set of ground truths which are then characterized.

1) Sparsity of Gradients: One of the central features of 
our proposed metric is the use of gradients of components. 
To be specific, we define the gradient in four directions of 
an arbitrary component f as follows:
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allows us to disambiguate the chroma definition and
focus on the properties of the specific variant of
chroma defined in equations (11) and (12). For these
experiments, each of the 24 images are mapped into
their respective luma and chroma components, thus
generating a set of ground truths which are then
characterized.

1) Sparsity of Gradients: One of the central fea-
tures of our proposed metric is the use of gradients of
components. To be specific, we define the gradient
in four directions of an arbitrary component f as
follows:

∇−xf ≡ f(x, y)− f(x− 1, y) (13)

∇+xf ≡ f(x, y)− f(x+ 1, y) (14)

∇−yf ≡ f(x, y)− f(x, y − 1) (15)

∇+yf ≡ f(x, y)− f(x, y + 1) (16)

Using the above definitions, we calculate the gradi-
ents in four directions for all pixels in the Kodak
database. To make these measures more meaningful,
we obtain the histograms of each gradient direction
and each component with a bin size of 1. The
resulting plots, as seen in Figure 4, make it apparent
that the majority of chroma gradients take on a
zero value. The remaining non-zero gradients are
still highly likely to be close to zero. On the other
hand, the luma component does not exhibit the same
behavior. Here, many of the gradients take non-
zero values. This test demonstrates how the chroma
components of natural images are approximately
sparse (i.e. contain few large values).

2) Sparsity of Gradients in Four Directions:
While the assertion that the gradient of chroma
components are sparse, is useful in itself, we delve
further into the properties of this sparsity. The previ-
ous experiment focused primarily on the individual
gradient components without considering how these
interact. Looking back at our definition of the four
gradients (equations (13) – (16)), we find that these
gradients are centered around a given pixel. We make
use of this by counting the number of significant
gradients around that pixel.

In this second experiment, we consider that every
pixel can have between 0 to 4 non-zero gradients as-
sociated with it. Previously, we have established that
the chroma components are approximately sparse
due to factors such as noise. As such, a simple crite-

ria such as dividing gradients between zeros and non-
zeros is not necessarily reliable. Instead of applying
a fixed threshold of 1, we model the probabilistic
occurrence around a certain threshold. For each pixel
center, the number of gradient magnitudes above or
equal to the threshold is recorded. The probabilities
of each number (from 0 to 4) are computed from all
pixels accumulated from the Kodak database. The
stacked bar graph in Figure 5 illustrates the trend at
various threshold levels.

This test demonstrates how likely the gradients
in four directions around a pixel are significant. In
either chroma component, it is again apparent that
most pixels have insignificant (i.e. below a given
threshold) gradients. More importantly, this makes it
clear that for a given pixel, there is a high probability
that only one of the four gradients are of significant
magnitude.

3) Correlating Gradients between Chroma Com-
ponents: Having established a sparsity trend for each
pixel, it is possible to apply the said observation
towards developing our metric. However, there is
one more property of natural images that is of
some interest. An intuitive notion for images is
that an edge occurring inside a given region often
accompanies a change in color. If this were to hold
true, such an edge would present itself in all three
components of an image. To verify this, we consider
the gradient magnitude at each direction. For each
discretized magnitude in the first chroma component,
we find the resulting distribution on the second
chroma component. This can be visualized using the
box plot in Figure 6.

If there exists no correlation between the gradients
in two chroma components, we would expect the
entire plot to remain close to zero (based on the
observations from the previous experiment). The box
plots obtained from the sample data, however, clearly
demonstrate rising median and quartile levels as
the chroma 1 gradient magnitude increases. Such a
trend is consistent regardless of the gradient direction
being studied. This test establishes that there is,
indeed, some form of structural correlation between
the two chroma components.

4) Summary: Given the results of the three exper-
iments conducted on natural images, we have arrived
at several key observations as summarized below:

1) Gradients of the chroma components are ap-

	 (13)
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allows us to disambiguate the chroma definition and
focus on the properties of the specific variant of
chroma defined in equations (11) and (12). For these
experiments, each of the 24 images are mapped into
their respective luma and chroma components, thus
generating a set of ground truths which are then
characterized.

1) Sparsity of Gradients: One of the central fea-
tures of our proposed metric is the use of gradients of
components. To be specific, we define the gradient
in four directions of an arbitrary component f as
follows:

∇−xf ≡ f(x, y)− f(x− 1, y) (13)

∇+xf ≡ f(x, y)− f(x+ 1, y) (14)

∇−yf ≡ f(x, y)− f(x, y − 1) (15)

∇+yf ≡ f(x, y)− f(x, y + 1) (16)

Using the above definitions, we calculate the gradi-
ents in four directions for all pixels in the Kodak
database. To make these measures more meaningful,
we obtain the histograms of each gradient direction
and each component with a bin size of 1. The
resulting plots, as seen in Figure 4, make it apparent
that the majority of chroma gradients take on a
zero value. The remaining non-zero gradients are
still highly likely to be close to zero. On the other
hand, the luma component does not exhibit the same
behavior. Here, many of the gradients take non-
zero values. This test demonstrates how the chroma
components of natural images are approximately
sparse (i.e. contain few large values).

2) Sparsity of Gradients in Four Directions:
While the assertion that the gradient of chroma
components are sparse, is useful in itself, we delve
further into the properties of this sparsity. The previ-
ous experiment focused primarily on the individual
gradient components without considering how these
interact. Looking back at our definition of the four
gradients (equations (13) – (16)), we find that these
gradients are centered around a given pixel. We make
use of this by counting the number of significant
gradients around that pixel.

In this second experiment, we consider that every
pixel can have between 0 to 4 non-zero gradients as-
sociated with it. Previously, we have established that
the chroma components are approximately sparse
due to factors such as noise. As such, a simple crite-

ria such as dividing gradients between zeros and non-
zeros is not necessarily reliable. Instead of applying
a fixed threshold of 1, we model the probabilistic
occurrence around a certain threshold. For each pixel
center, the number of gradient magnitudes above or
equal to the threshold is recorded. The probabilities
of each number (from 0 to 4) are computed from all
pixels accumulated from the Kodak database. The
stacked bar graph in Figure 5 illustrates the trend at
various threshold levels.

This test demonstrates how likely the gradients
in four directions around a pixel are significant. In
either chroma component, it is again apparent that
most pixels have insignificant (i.e. below a given
threshold) gradients. More importantly, this makes it
clear that for a given pixel, there is a high probability
that only one of the four gradients are of significant
magnitude.

3) Correlating Gradients between Chroma Com-
ponents: Having established a sparsity trend for each
pixel, it is possible to apply the said observation
towards developing our metric. However, there is
one more property of natural images that is of
some interest. An intuitive notion for images is
that an edge occurring inside a given region often
accompanies a change in color. If this were to hold
true, such an edge would present itself in all three
components of an image. To verify this, we consider
the gradient magnitude at each direction. For each
discretized magnitude in the first chroma component,
we find the resulting distribution on the second
chroma component. This can be visualized using the
box plot in Figure 6.

If there exists no correlation between the gradients
in two chroma components, we would expect the
entire plot to remain close to zero (based on the
observations from the previous experiment). The box
plots obtained from the sample data, however, clearly
demonstrate rising median and quartile levels as
the chroma 1 gradient magnitude increases. Such a
trend is consistent regardless of the gradient direction
being studied. This test establishes that there is,
indeed, some form of structural correlation between
the two chroma components.

4) Summary: Given the results of the three exper-
iments conducted on natural images, we have arrived
at several key observations as summarized below:

1) Gradients of the chroma components are ap-
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allows us to disambiguate the chroma definition and
focus on the properties of the specific variant of
chroma defined in equations (11) and (12). For these
experiments, each of the 24 images are mapped into
their respective luma and chroma components, thus
generating a set of ground truths which are then
characterized.

1) Sparsity of Gradients: One of the central fea-
tures of our proposed metric is the use of gradients of
components. To be specific, we define the gradient
in four directions of an arbitrary component f as
follows:

∇−xf ≡ f(x, y)− f(x− 1, y) (13)

∇+xf ≡ f(x, y)− f(x+ 1, y) (14)

∇−yf ≡ f(x, y)− f(x, y − 1) (15)

∇+yf ≡ f(x, y)− f(x, y + 1) (16)

Using the above definitions, we calculate the gradi-
ents in four directions for all pixels in the Kodak
database. To make these measures more meaningful,
we obtain the histograms of each gradient direction
and each component with a bin size of 1. The
resulting plots, as seen in Figure 4, make it apparent
that the majority of chroma gradients take on a
zero value. The remaining non-zero gradients are
still highly likely to be close to zero. On the other
hand, the luma component does not exhibit the same
behavior. Here, many of the gradients take non-
zero values. This test demonstrates how the chroma
components of natural images are approximately
sparse (i.e. contain few large values).

2) Sparsity of Gradients in Four Directions:
While the assertion that the gradient of chroma
components are sparse, is useful in itself, we delve
further into the properties of this sparsity. The previ-
ous experiment focused primarily on the individual
gradient components without considering how these
interact. Looking back at our definition of the four
gradients (equations (13) – (16)), we find that these
gradients are centered around a given pixel. We make
use of this by counting the number of significant
gradients around that pixel.

In this second experiment, we consider that every
pixel can have between 0 to 4 non-zero gradients as-
sociated with it. Previously, we have established that
the chroma components are approximately sparse
due to factors such as noise. As such, a simple crite-

ria such as dividing gradients between zeros and non-
zeros is not necessarily reliable. Instead of applying
a fixed threshold of 1, we model the probabilistic
occurrence around a certain threshold. For each pixel
center, the number of gradient magnitudes above or
equal to the threshold is recorded. The probabilities
of each number (from 0 to 4) are computed from all
pixels accumulated from the Kodak database. The
stacked bar graph in Figure 5 illustrates the trend at
various threshold levels.

This test demonstrates how likely the gradients
in four directions around a pixel are significant. In
either chroma component, it is again apparent that
most pixels have insignificant (i.e. below a given
threshold) gradients. More importantly, this makes it
clear that for a given pixel, there is a high probability
that only one of the four gradients are of significant
magnitude.

3) Correlating Gradients between Chroma Com-
ponents: Having established a sparsity trend for each
pixel, it is possible to apply the said observation
towards developing our metric. However, there is
one more property of natural images that is of
some interest. An intuitive notion for images is
that an edge occurring inside a given region often
accompanies a change in color. If this were to hold
true, such an edge would present itself in all three
components of an image. To verify this, we consider
the gradient magnitude at each direction. For each
discretized magnitude in the first chroma component,
we find the resulting distribution on the second
chroma component. This can be visualized using the
box plot in Figure 6.

If there exists no correlation between the gradients
in two chroma components, we would expect the
entire plot to remain close to zero (based on the
observations from the previous experiment). The box
plots obtained from the sample data, however, clearly
demonstrate rising median and quartile levels as
the chroma 1 gradient magnitude increases. Such a
trend is consistent regardless of the gradient direction
being studied. This test establishes that there is,
indeed, some form of structural correlation between
the two chroma components.

4) Summary: Given the results of the three exper-
iments conducted on natural images, we have arrived
at several key observations as summarized below:

1) Gradients of the chroma components are ap-
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allows us to disambiguate the chroma definition and
focus on the properties of the specific variant of
chroma defined in equations (11) and (12). For these
experiments, each of the 24 images are mapped into
their respective luma and chroma components, thus
generating a set of ground truths which are then
characterized.

1) Sparsity of Gradients: One of the central fea-
tures of our proposed metric is the use of gradients of
components. To be specific, we define the gradient
in four directions of an arbitrary component f as
follows:

∇−xf ≡ f(x, y)− f(x− 1, y) (13)

∇+xf ≡ f(x, y)− f(x+ 1, y) (14)

∇−yf ≡ f(x, y)− f(x, y − 1) (15)

∇+yf ≡ f(x, y)− f(x, y + 1) (16)

Using the above definitions, we calculate the gradi-
ents in four directions for all pixels in the Kodak
database. To make these measures more meaningful,
we obtain the histograms of each gradient direction
and each component with a bin size of 1. The
resulting plots, as seen in Figure 4, make it apparent
that the majority of chroma gradients take on a
zero value. The remaining non-zero gradients are
still highly likely to be close to zero. On the other
hand, the luma component does not exhibit the same
behavior. Here, many of the gradients take non-
zero values. This test demonstrates how the chroma
components of natural images are approximately
sparse (i.e. contain few large values).

2) Sparsity of Gradients in Four Directions:
While the assertion that the gradient of chroma
components are sparse, is useful in itself, we delve
further into the properties of this sparsity. The previ-
ous experiment focused primarily on the individual
gradient components without considering how these
interact. Looking back at our definition of the four
gradients (equations (13) – (16)), we find that these
gradients are centered around a given pixel. We make
use of this by counting the number of significant
gradients around that pixel.

In this second experiment, we consider that every
pixel can have between 0 to 4 non-zero gradients as-
sociated with it. Previously, we have established that
the chroma components are approximately sparse
due to factors such as noise. As such, a simple crite-

ria such as dividing gradients between zeros and non-
zeros is not necessarily reliable. Instead of applying
a fixed threshold of 1, we model the probabilistic
occurrence around a certain threshold. For each pixel
center, the number of gradient magnitudes above or
equal to the threshold is recorded. The probabilities
of each number (from 0 to 4) are computed from all
pixels accumulated from the Kodak database. The
stacked bar graph in Figure 5 illustrates the trend at
various threshold levels.

This test demonstrates how likely the gradients
in four directions around a pixel are significant. In
either chroma component, it is again apparent that
most pixels have insignificant (i.e. below a given
threshold) gradients. More importantly, this makes it
clear that for a given pixel, there is a high probability
that only one of the four gradients are of significant
magnitude.

3) Correlating Gradients between Chroma Com-
ponents: Having established a sparsity trend for each
pixel, it is possible to apply the said observation
towards developing our metric. However, there is
one more property of natural images that is of
some interest. An intuitive notion for images is
that an edge occurring inside a given region often
accompanies a change in color. If this were to hold
true, such an edge would present itself in all three
components of an image. To verify this, we consider
the gradient magnitude at each direction. For each
discretized magnitude in the first chroma component,
we find the resulting distribution on the second
chroma component. This can be visualized using the
box plot in Figure 6.

If there exists no correlation between the gradients
in two chroma components, we would expect the
entire plot to remain close to zero (based on the
observations from the previous experiment). The box
plots obtained from the sample data, however, clearly
demonstrate rising median and quartile levels as
the chroma 1 gradient magnitude increases. Such a
trend is consistent regardless of the gradient direction
being studied. This test establishes that there is,
indeed, some form of structural correlation between
the two chroma components.

4) Summary: Given the results of the three exper-
iments conducted on natural images, we have arrived
at several key observations as summarized below:

1) Gradients of the chroma components are ap-

	 (16)

Using the above definitions, we calculate the gradients in 
four directions for all pixels in the Kodak database. To make 
these measures more meaningful, we obtain the histograms 
of each gradient direction and each component with a bin 
size of 1. The resulting plots, as seen in Figure 4, make 
it apparent that the majority of chroma gradients take 
on a zero value. The remaining non-zero gradients are 
still highly likely to be close to zero. On the other hand, 
the luma component does not exhibit the same behavior. 
Here, many of the gradients take nonzero values. This 
test demonstrates how the chroma components of natural 
images are approximately sparse (i.e., contain few large 
values).

2) Sparsity of Gradients in Four Directions: While the 
assertion that the gradient of chroma components are sparse, 
is useful in itself, we delve further into the properties of this 
sparsity. The previous experiment focused primarily on the 
individual gradient components without considering how 
these interact. Looking back at our definition of the four 
gradients (equations (13)–(16)), we find that these gradients 
are centered around a given pixel. We make use of this by 
counting the number of significant gradients around that 
pixel.

In this second experiment, we consider that every pixel 
can have between 0 to 4 non-zero gradients associated 
with it. Previously, we have established that the chroma 
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F i g .  4 .  H i s t o g r a m  o f  i m a g e  g r a d i e n t s  t a k e n  a l o n g  f o u r  d i r e c t i o n s  o f  v a r i o u s  i m a g e  c o m p o n e n t s .  
Generally,  the probabil i t ies  of  a zero gradient  are significantly higher for that  of  the chroma components  
compared to that of the luma component, regardless of the gradient direction.
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components are approximately sparse due to factors such as 
noise. As such, a simple criteria such as dividing gradients 
between zeros and nonzeros is not necessarily reliable. 
Instead of applying a fixed threshold of 1, we model 
the probabilistic occurrence around a certain threshold.  
For each pixel center, the number of gradient magnitudes 
above or equal to the threshold is recorded. The  
probabilities of each number (from 0 to 4) are computed 
from all pixels accumulated from the Kodak database. The 
stacked bar graph in Figure 5 illustrates the trend at various 
threshold levels.

This test demonstrates how likely the gradients in four 
directions around a pixel are significant. In either chroma 
component, it is again apparent that most pixels have 
insignificant (i.e., below a given threshold) gradients. More 
importantly, this makes it clear that for a given pixel, there 
is a high probability that only one of the four gradients are 
of significant magnitude.

3)  Correlating Gradients between Chroma Components: 
Having established a sparsity trend for each pixel, it is 
possible to apply the said observation towards developing 
our metric. However, there is one more property of natural 
images that is of some interest. An intuitive notion for 
images is that an edge occurring inside a given region often 
accompanies a change in color. If this were to hold true, such 
an edge would present itself in all three components of an 
image. To verify this, we consider the gradient magnitude 
at each direction. For each discretized magnitude in the first 
chroma component, we find the resulting distribution on the 
second chroma component. This can be visualized using the 
box plot in Figure 6.

If there exists no correlation between the gradients in 
two chroma components, we would expect the entire plot 
to remain close to zero (based on the observations from 
the previous experiment). The box plots obtained from the 
sample data, however, clearly demonstrate rising median and 
quartile levels as the chroma 1 gradient magnitude increases. 
Such a trend is consistent regardless of the gradient direction 
being studied. This test establishes that there is, indeed, 
some form of structural correlation between the two chroma 
components.

4)  Summary: Given the results of the three experiments 
conducted on natural images, we have arrived at several key 
observations as summarized below:

1)	 Gradients of the chroma components are approximately 
sparse;

2)	 For a given pixel, there is a high probability that, 
at most, one of the four gradient directions are 
significant;

3)	 When a gradient in one of the four directions is 
significant in one chroma component, there is a non-
negligible chance that it is also significant in the other.

B.	 The Proposed Metric

1)  Reconstruct ion Quali ty  of  Luma-Chroma 
Components: For a predictive metric to be useful, it should 
not be dependent on any knowledge of the target image. This 
premise runs contradictory to the properties discussed in the 
previous section as these are dependent on the complete luma 
and chroma components. Furthermore, the use of the Bayer 
array prevents the calculation of any single gradient quantity 
from the mosaiced image. In order to tackle this limitation, 
in this work, we reconstruct one of the components and use 
it as a priori information for measuring the quality of the 
reconstruction. 

As there are several components for a given image, 
a natural question that arises is: which one is suitable 
for use a priori? To answer this we characterize the 
reconstruction quality of each of the three components 
over different demosaicing methods. In particular, 
we use bilinear interpolation, bicubic interpolation, 
adaptive homogeneity directed (AHD) demosaicing [19],  
alternating projections (AP) [16], [20], Contour Stencils 
(CS) [21], [22], Directional Linear Minimum Mean 
Square-Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-Cutler 
(MHC) demosaicing [25], [26], Minimized-Laplacian 
Residual Interpolation (MLRI) [17], and Successive 
Approximation (SA) [27]. Running each of these 
demosaicing algorithms across all the Kodak images, we 
arrive at various PSNR measures for the luma and chroma 
components. The medians of these measures can be seen 
in Figure 7.

An apparent observation from this test is that the 
chroma channels are better preserved in the reconstruction. 
Furthermore, the first chroma channel is typically 
reconstructed with higher fidelity. This is consistent with the 
assertion in [12] that this particular component suffers from 
minimal crosstalk by being modulated at a high frequency 
for both the horizontal and vertical axis. This choice of 
component is also convenient as the first chroma component 
can easily be approximated using the least-squares filters 
developed in [12] which can be applied through simple 
convolution. 

2) Sparsity of Chroma Gradients: Having chosen a 
component to use a priori, we proceed to developing our 
proposed metric, the Sparsity of Chroma Gradients in Four 
Directions (SCG4). In the previous section, we assert that 
there exists a correlation between the occurrence of gradients 
of the two chroma components. This would intuitively lead to 
the notion that we can model the probability of significance 
of one component with respect to the significance of the 
other. However, doing so will enforce a strict measure along 
each gradient direction. We relax this criteria by, instead, 



7Predicting the Quality of Demosaiced Images 	O chotorena et al.

Fig. 6. Probability distribution of the gradients of the second chroma component at different magnitudes of the first  
chroma component. This box plot demonstrates that, regardless of the gradient direction, there exists a notable correlation 
between the gradients of the two chroma components for the medians (red line) and quartiles (blue box). It should also 
be noted that when the first chroma component has a magnitude of 1, the corresponding second chroma component has a  
very high probability of being zero resulting in a box plot with no visible quartiles and limits.
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Fig. 5. Probability distribution of gradient magnitudes for each chroma channel above or equal to a given threshold. 
Since there are four gradient directions, each pixel in a given chroma component can have 0 (shown in blue) to  
4 (shown in yellow) significant gradients occuring at different probabilities.
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measuring the number of significant gradients in each 
component defined as:
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Fig. 7. Median PSNR of the luma and chroma components for
the Kodak color image database.

3) When a gradient in one of the four directions is
significant in one chroma component, there is a
non-negligible chance that it is also significant
in the other.

B. The Proposed Metric

1) Reconstruction Quality of Luma-Chroma Com-
ponents: For a predictive metric to be useful, it
should not be dependent on any knowledge of the
target image. This premise runs contradictory to the
properties discussed in the previous section as these
are dependent on the complete luma and chroma
components. Furthermore, the use of the Bayer array
prevents the calculation of any single gradient quan-
tity from the mosaiced image. In order to tackle this
limitation, in this work, we reconstruct one of the
components and use it as a priori information for
measuring the quality of the reconstruction.

As there are several components for a given im-
age, a natural question that arises is: which one
is suitable for use a priori? To answer this we
characterize the reconstruction quality of each of
the three components over different demosaicing
methods. In particular, we use bilinear interpola-
tion, bicubic interpolation, adaptive homogeneity-
directed (AHD) demosaicing [19], alternating pro-
jections (AP) [16], [20], Contour Stencils (CS) [21],

[22], Directional Linear Minimum Mean Square-
Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-
Cutler (MHC) demosaicing [25], [26], Minimized-
Laplacian Residual Interpolation (MLRI) [17], and
Successive Approximation (SA) [27]. Running each
of these demosaicing algorithms across all the Kodak
images, we arrive at various PSNR measures for the
luma and chroma components. The medians of these
measures can be seen in Figure 7.

An apparent observation from this test is that
the chroma channels are better preserved in the
reconstruction. Furthermore, the first chroma channel
is typically reconstructed with higher fidelity. This
is consistent with the assertion in [12] that this
particular component suffers from minimal crosstalk
by being modulated at a high frequency for both
the horizontal and vertical axis. This choice of
component is also convenient as the first chroma
component can easily be approximated using the
least-squares filters developed in [12] which can be
applied through simple convolution.

2) Sparsity of Chroma Gradients: Having chosen
a component to use a priori, we proceed to devel-
oping our proposed metric, the Sparsity of Chroma
Gradients in Four Directions (SCG4). In the previous
section, we assert that there exists a correlation be-
tween the occurrence of gradients of the two chroma
components. This would intuitively lead to the notion
that we can model the probability of significance of
one component with respect to the significance of
the other. However, doing so will enforce a strict
measure along each gradient direction. We relax
this criteria by, instead, measuring the number of
significant gradients in each component defined as:

Nt(x, y) = Tt (|∇−xf |) + Tt (|∇+xf |) +

Tt (|∇−yf |) + Tt (|∇+yf |)
(17)

where the thresholding function Tt(x) is defined as:

Tt(x) =
{

0, x < t
1, x ≥ t

(18)

for an arbitrary threshold t. Using this measure, we
can probabilistically model the relationship between
two components. Since we use the first chroma
as a priori information, we reconstruct it directly
from the CFA by filtering and count the number
of significant gradients for each pixel. We can then

	 (17)

where the thresholding function 
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Fig. 7. Median PSNR of the luma and chroma components for
the Kodak color image database.

3) When a gradient in one of the four directions is
significant in one chroma component, there is a
non-negligible chance that it is also significant
in the other.

B. The Proposed Metric

1) Reconstruction Quality of Luma-Chroma Com-
ponents: For a predictive metric to be useful, it
should not be dependent on any knowledge of the
target image. This premise runs contradictory to the
properties discussed in the previous section as these
are dependent on the complete luma and chroma
components. Furthermore, the use of the Bayer array
prevents the calculation of any single gradient quan-
tity from the mosaiced image. In order to tackle this
limitation, in this work, we reconstruct one of the
components and use it as a priori information for
measuring the quality of the reconstruction.

As there are several components for a given im-
age, a natural question that arises is: which one
is suitable for use a priori? To answer this we
characterize the reconstruction quality of each of
the three components over different demosaicing
methods. In particular, we use bilinear interpola-
tion, bicubic interpolation, adaptive homogeneity-
directed (AHD) demosaicing [19], alternating pro-
jections (AP) [16], [20], Contour Stencils (CS) [21],

[22], Directional Linear Minimum Mean Square-
Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-
Cutler (MHC) demosaicing [25], [26], Minimized-
Laplacian Residual Interpolation (MLRI) [17], and
Successive Approximation (SA) [27]. Running each
of these demosaicing algorithms across all the Kodak
images, we arrive at various PSNR measures for the
luma and chroma components. The medians of these
measures can be seen in Figure 7.

An apparent observation from this test is that
the chroma channels are better preserved in the
reconstruction. Furthermore, the first chroma channel
is typically reconstructed with higher fidelity. This
is consistent with the assertion in [12] that this
particular component suffers from minimal crosstalk
by being modulated at a high frequency for both
the horizontal and vertical axis. This choice of
component is also convenient as the first chroma
component can easily be approximated using the
least-squares filters developed in [12] which can be
applied through simple convolution.

2) Sparsity of Chroma Gradients: Having chosen
a component to use a priori, we proceed to devel-
oping our proposed metric, the Sparsity of Chroma
Gradients in Four Directions (SCG4). In the previous
section, we assert that there exists a correlation be-
tween the occurrence of gradients of the two chroma
components. This would intuitively lead to the notion
that we can model the probability of significance of
one component with respect to the significance of
the other. However, doing so will enforce a strict
measure along each gradient direction. We relax
this criteria by, instead, measuring the number of
significant gradients in each component defined as:

Nt(x, y) = Tt (|∇−xf |) + Tt (|∇+xf |) +

Tt (|∇−yf |) + Tt (|∇+yf |)
(17)

where the thresholding function Tt(x) is defined as:

Tt(x) =
{

0, x < t
1, x ≥ t

(18)

for an arbitrary threshold t. Using this measure, we
can probabilistically model the relationship between
two components. Since we use the first chroma
as a priori information, we reconstruct it directly
from the CFA by filtering and count the number
of significant gradients for each pixel. We can then

 is defined as:
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Fig. 7. Median PSNR of the luma and chroma components for
the Kodak color image database.

3) When a gradient in one of the four directions is
significant in one chroma component, there is a
non-negligible chance that it is also significant
in the other.

B. The Proposed Metric

1) Reconstruction Quality of Luma-Chroma Com-
ponents: For a predictive metric to be useful, it
should not be dependent on any knowledge of the
target image. This premise runs contradictory to the
properties discussed in the previous section as these
are dependent on the complete luma and chroma
components. Furthermore, the use of the Bayer array
prevents the calculation of any single gradient quan-
tity from the mosaiced image. In order to tackle this
limitation, in this work, we reconstruct one of the
components and use it as a priori information for
measuring the quality of the reconstruction.

As there are several components for a given im-
age, a natural question that arises is: which one
is suitable for use a priori? To answer this we
characterize the reconstruction quality of each of
the three components over different demosaicing
methods. In particular, we use bilinear interpola-
tion, bicubic interpolation, adaptive homogeneity-
directed (AHD) demosaicing [19], alternating pro-
jections (AP) [16], [20], Contour Stencils (CS) [21],

[22], Directional Linear Minimum Mean Square-
Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-
Cutler (MHC) demosaicing [25], [26], Minimized-
Laplacian Residual Interpolation (MLRI) [17], and
Successive Approximation (SA) [27]. Running each
of these demosaicing algorithms across all the Kodak
images, we arrive at various PSNR measures for the
luma and chroma components. The medians of these
measures can be seen in Figure 7.

An apparent observation from this test is that
the chroma channels are better preserved in the
reconstruction. Furthermore, the first chroma channel
is typically reconstructed with higher fidelity. This
is consistent with the assertion in [12] that this
particular component suffers from minimal crosstalk
by being modulated at a high frequency for both
the horizontal and vertical axis. This choice of
component is also convenient as the first chroma
component can easily be approximated using the
least-squares filters developed in [12] which can be
applied through simple convolution.

2) Sparsity of Chroma Gradients: Having chosen
a component to use a priori, we proceed to devel-
oping our proposed metric, the Sparsity of Chroma
Gradients in Four Directions (SCG4). In the previous
section, we assert that there exists a correlation be-
tween the occurrence of gradients of the two chroma
components. This would intuitively lead to the notion
that we can model the probability of significance of
one component with respect to the significance of
the other. However, doing so will enforce a strict
measure along each gradient direction. We relax
this criteria by, instead, measuring the number of
significant gradients in each component defined as:

Nt(x, y) = Tt (|∇−xf |) + Tt (|∇+xf |) +

Tt (|∇−yf |) + Tt (|∇+yf |)
(17)

where the thresholding function Tt(x) is defined as:

Tt(x) =
{

0, x < t
1, x ≥ t

(18)

for an arbitrary threshold t. Using this measure, we
can probabilistically model the relationship between
two components. Since we use the first chroma
as a priori information, we reconstruct it directly
from the CFA by filtering and count the number
of significant gradients for each pixel. We can then
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Fig. 7. Median PSNR of the luma and chroma components for
the Kodak color image database.

3) When a gradient in one of the four directions is
significant in one chroma component, there is a
non-negligible chance that it is also significant
in the other.

B. The Proposed Metric

1) Reconstruction Quality of Luma-Chroma Com-
ponents: For a predictive metric to be useful, it
should not be dependent on any knowledge of the
target image. This premise runs contradictory to the
properties discussed in the previous section as these
are dependent on the complete luma and chroma
components. Furthermore, the use of the Bayer array
prevents the calculation of any single gradient quan-
tity from the mosaiced image. In order to tackle this
limitation, in this work, we reconstruct one of the
components and use it as a priori information for
measuring the quality of the reconstruction.

As there are several components for a given im-
age, a natural question that arises is: which one
is suitable for use a priori? To answer this we
characterize the reconstruction quality of each of
the three components over different demosaicing
methods. In particular, we use bilinear interpola-
tion, bicubic interpolation, adaptive homogeneity-
directed (AHD) demosaicing [19], alternating pro-
jections (AP) [16], [20], Contour Stencils (CS) [21],

[22], Directional Linear Minimum Mean Square-
Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-
Cutler (MHC) demosaicing [25], [26], Minimized-
Laplacian Residual Interpolation (MLRI) [17], and
Successive Approximation (SA) [27]. Running each
of these demosaicing algorithms across all the Kodak
images, we arrive at various PSNR measures for the
luma and chroma components. The medians of these
measures can be seen in Figure 7.

An apparent observation from this test is that
the chroma channels are better preserved in the
reconstruction. Furthermore, the first chroma channel
is typically reconstructed with higher fidelity. This
is consistent with the assertion in [12] that this
particular component suffers from minimal crosstalk
by being modulated at a high frequency for both
the horizontal and vertical axis. This choice of
component is also convenient as the first chroma
component can easily be approximated using the
least-squares filters developed in [12] which can be
applied through simple convolution.

2) Sparsity of Chroma Gradients: Having chosen
a component to use a priori, we proceed to devel-
oping our proposed metric, the Sparsity of Chroma
Gradients in Four Directions (SCG4). In the previous
section, we assert that there exists a correlation be-
tween the occurrence of gradients of the two chroma
components. This would intuitively lead to the notion
that we can model the probability of significance of
one component with respect to the significance of
the other. However, doing so will enforce a strict
measure along each gradient direction. We relax
this criteria by, instead, measuring the number of
significant gradients in each component defined as:

Nt(x, y) = Tt (|∇−xf |) + Tt (|∇+xf |) +

Tt (|∇−yf |) + Tt (|∇+yf |)
(17)

where the thresholding function Tt(x) is defined as:

Tt(x) =
{

0, x < t
1, x ≥ t

(18)

for an arbitrary threshold t. Using this measure, we
can probabilistically model the relationship between
two components. Since we use the first chroma
as a priori information, we reconstruct it directly
from the CFA by filtering and count the number
of significant gradients for each pixel. We can then

. Using this measure, we can 
probabilistically model the relationship between two 
components. Since we use the first chroma as a priori 
information, we reconstruct it directly from the CFA by 
filtering and count the number of significant gradients for 
each pixel. We can then obtain the conditional probability 
of a certain number of significant gradients in the second 
chroma component exceeding that of the first:
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Fig. 8. A cropped region of the Lighthouse image sorted in descending order according to the SCG4 metric. Listed from left to
right are the demosaiced images obtained using LSLCD [12], DLMMSE [23], [24], AP [16], [20], RI [17], AHD [19], SA-Universal
and SA-Adaptive [27], CS [21], [22], MHC [25], [26], Bicubic interpolation, and Bilinear interpolation respectively.

obtain the conditional probability of a certain number
of significant gradients in the second chroma com-
ponent exceeding that of the first:

pC2(n) ≡ p (NC2(x, y) ≥ n | NC1(x, y) = n) (19)

Such a probability is of interest in this work due to
the correlation between the chroma components. If
the second chroma component has more significant
gradients than the first, we hypothesize that these
gradients are more likely to be caused by color
artifacts rather than actual image structures. We
enforce this idea using empirical testing in the next
section.

From a training perspective, these probabilities
can readily be obtained from observations made be-
tween the filter-reconstructed C1 component, and the
ground truth C2 component. Once the probabilities
are obtained from the training set, they can simply
be stored as a lookup-table for use in our metric. The
metric itself is based on observations using a filter-
reconstructed C1 and the C2 component derived
from the demosaiced image. This can be described
using the following steps:

1) Given the CFA, use the filter from [12] to
estimate the C1 component;

2) Given the demosaiced image, compute the C2
component using equation (12);

3) Calculate the four gradients at each pixel in
the C1 and C2 components;

4) Determine the number of significant gradients
around each pixel in each component;

5) Find the probability for each observed C2
count given the observed C1 count using equa-
tion (19);

6) The SCG4 metric is defined as the mean
probability across all pixels in the image.

By using mean probabilities, we ensure that the
final metric stays within the range of 0 to 1. A higher
mean probability indicates a stronger correlation

between the two chroma components and thus a
better estimated quality. Conversely, a metric closer
to zero indicates a C2 component that is inconsistent
with the observations from the C1 component. In
the succeeding section, we describe several tests that
were used to verify the proposed metric.

V. EXPERIMENTS

A. Subjective Quality

The first experiment conducted to verify the use-
fulness of the proposed metric is to evaluate it on a
particularly problematic region within the Lighthouse
image from the Kodak database. To accomplish this,
the probabilities were first obtained using the images
statistics of all the images that are part of the Ko-
dak database except for the Lighthouse image. This
avoids self-training and is intended to strengthen the
validity of the experiment.

Given the image statistics learned during the train-
ing process, we calculate the metric for the different
demosaicing methods discussed in the previous sec-
tion. In particular, the metric is only applied to a
localized region within the Lighthouse image where
a portion of the fence contains high-frequency infor-
mation that is known to result in severe color moiré.
These sub-images, sorted by the SCG4 metric, can
be seen in Figure 8. While there are some deviations
in the perceptual order, this figure shows that there
is a subjective correlation between the visual quality
and the proposed SCG4 metric.

B. Objective Quality with Cross-validation

Expanding on the methodology from the previous
test, we obtained objective results from the Kodak
color image database. Following a cross-validation
procedure, each of the 24 images in the database
are evaluated using statistics obtained from the other
23 images (excluding the image under test). Each of
the demosaiced images are then objectively evaluated

	 (19)

Such a probability is of interest in this work due to the 
correlation between the chroma components. If the second 
chroma component has more significant gradients than the 
first, we hypothesize that these gradients are more likely to be 
caused by color artifacts rather than actual image structures. 
We enforce this idea using empirical testing in the next section.

From a training perspective, these probabilities can 
readily be obtained from observations made between the 
filter-reconstructed C1 component, and the ground truth C2 
component. Once the probabilities are obtained from the 
training set, they can simply be stored as a lookup-table for 
use in our metric. The metric itself is based on observations 
using a filter reconstructed C1 and the C2 component derived 
from the demosaiced image. This can be described using 
the following steps:

1)	 Given the CFA, use the filter from [12] to estimate 
the C1 component;

2)	 Given the demosaiced image, compute the C2 
component using equation (12);

3)	 Calculate the four gradients at each pixel in the C1 
and C2 components;

4)	 Determine the number of significant gradients around 
each pixel in each component;

5)	 Find the probability for each observed C2 count given 
the observed C1 count using equation (19);

6)	 The SCG4 metric is defined as the mean probability 
across all pixels in the image.

By using mean probabilities, we ensure that the final 
metric stays within the range of 0 to 1. A higher mean 
probability indicates a stronger correlation between the 
two chroma components and thus a better estimated 
quality. Conversely, a metric closer to zero indicates a C2 
component that is inconsistent with the observations from 
the C1 component. In the succeeding section, we describe 
several tests that were used to verify the proposed metric.

V.  EXPERIMENTS

A.	 Subjective Quality

The first experiment conducted to verify the usefulness 
of the proposed metric is to evaluate it on a particularly 

Fig. 8. A cropped region of the Lighthouse image sorted in descending order according to the SCG4 metric. Listed from left to right  
are the demosaiced images obtained using LSLCD [12], DLMMSE [23], [24], AP [16], [20], RI [17], AHD [19], SA-Universal  
and SA-Adaptive [27], CS [21], [22], MHC [25], [26], Bicubic interpolation, and Bilinear interpolation, respectively. 

Fig. 7. Median PSNR of the luma and  chroma components  
for the Kodak color image database.
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problematic region within the Lighthouse image from the 
Kodak database. To accomplish this, the probabilities were 
first obtained using the images statistics of all the images 
that are part of the Kodak database except for the Lighthouse 
image. This avoids self-training and is intended to strengthen 
the validity of the experiment.

Given the image statistics learned during the training 
process, we calculate the metric for the different demosaicing 
methods discussed in the previous section. In particular, 
the metric is only applied to a localized region within the 
Lighthouse image where a portion of the fence contains 
high-frequency information that is known to result in severe 
color moiŕe. These sub-images, sorted by the SCG4 metric, 
can be seen in Figure 8. While there are some deviations 

in the perceptual order, this figure shows that there is a 
subjective correlation between the visual quality and the 
proposed SCG4 metric.

B.	 Objective Quality with Cross-validation

Expanding on the methodology from the previous 
test, we obtained objective results from the Kodak color 
image database. Following a cross-validation procedure, 
each of the 24 images in the database are evaluated using 
statistics obtained from the other 23 images (excluding the 
image under test). Each of the demosaiced images are then 
objectively evaluated with respect to their original images 
using the peak signal-to-noise ratio (PSNR), a metric 

TABLE I
Correlation Coefficients of the 24 Kodak Images at Various Thresholds

Kodak Image 
Number

Significance Threshold (t)

1 2 3 4 5 6 7 8 9 10

1 0.468 0.940 0.961 0.971 0.970 0.959 0.945 0.930 0.920 0.920
2 -0.817 0.866 0.888 0.890 0.885 0.879 0.848 0.768 0.735 0.735
3 -0.902 0.915 0.925 0.928 0.923 0.920 0.920 0.920 0.918 0.918
4 -0.829 0.918 0.946 0.962 0.969 0.971 0.974 0.977 0.977 0.977
5 -0.705 0.931 0.953 0.969 0.977 0.981 0.981 0.979 0.975 0.975
6 -0.755 0.948 0.970 0.975 0.972 0.964 0.954 0.945 0.935 0.935
7 -0.920 0.918 0.946 0.953 0.958 0.960 0.955 0.950 0.945 0.945
8 0.002 0.943 0.957 0.966 0.972 0.972 0.967 0.960 0.952 0.952
9 -0.900 0.952 0.965 0.967 0.964 0.960 0.957 0.950 0.940 0.940
10 -0.883 0.961 0.974 0.976 0.976 0.975 0.975 0.975 0.974 0.974
11 -0.866 0.956 0.973 0.977 0.978 0.976 0.973 0.968 0.961 0.961
12 -0.923 0.969 0.970 0.972 0.970 0.961 0.955 0.945 0.931 0.931
13 0.930 0.923 0.947 0.959 0.964 0.966 0.966 0.965 0.963 0.963
14 -0.755 0.889 0.918 0.922 0.918 0.911 0.903 0.897 0.895 0.895
15 -0.890 0.936 0.951 0.957 0.961 0.963 0.964 0.963 0.961 0.961
16 -0.835 0.940 0.943 0.933 0.919 0.908 0.899 0.895 0.884 0.884
17 -0.916 0.969 0.979 0.982 0.980 0.976 0.971 0.968 0.968 0.968
18 -0.782 0.931 0.952 0.964 0.969 0.971 0.972 0.972 0.971 0.971
19 -0.915 0.951 0.973 0.980 0.979 0.975 0.966 0.952 0.940 0.940
20 -0.729 0.870 0.919 0.930 0.937 0.940 0.941 0.940 0.939 0.939
21 -0.903 0.940 0.963 0.975 0.978 0.976 0.970 0.962 0.953 0.953
22 -0.743 0.894 0.922 0.935 0.941 0.942 0.939 0.936 0.932 0.932
23 -0.885 0.923 0.934 0.938 0.945 0.951 0.956 0.958 0.954 0.954
24 -0.882 0.932 0.956 0.963 0.964 0.963 0.963 0.963 0.965 0.965

Median -0.851 0.934 0.952 0.963 0.966 0.963 0.960 0.955 0.949 0.944

Note: Entries in boldface are below the one-tailed critical value of 0.685
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commonly used for objective image quality. Alongside the 
PSNR, the SCG4 metric is also calculated for each of the 
demosaiced images. 

Given these two metrics, the goal is to establish a 
significant correlation between them. To accomplish this, 
the Pearson correlation coefficient is used to analyze the 
degree of correlation between the two variables (PSNR 
and SCG4 metric). The resulting correlation coefficients 
are shown in Table 1. As there are 11 methods used to 
evaluate the correlation, there are 9 degrees of freedom 
(DoF) corresponding to a critical value of 0.685 for a 
p-value of 0.01. Apart from the correlation values when 
the significance threshold is set to 1, the metric is shown 
to be statistically correlated to the PSNR value. Beyond 
simply establishing the correlation, we also show that a 
threshold value of 5 results in the best median correlation 
for the Kodak database.

VI.  CONCLUSION
In this work, we developed the Sparsity of Chroma 

Gradient in Four Directions (SCG4) metric that can be 
used to predict the quality of a demosaiced image obtained 
through a Bayer color filter array. We demonstrated certain 
properties of natural images particularly in relation to the 
chroma components and utilized these properties as a prior 
for our proposed metric. Experimental results show a strong 
correlation between SCG4 and both the subjective and 
objective quality of the resulting demosaiced image. 

An interesting aspect of our proposed metric is its highly 
localized nature. Each probability estimate utilizes only 
10 pixels—the central pixels for C1 and C2, and the four 
neighboring pixels for each of these components. This not 
only allows for efficient calculation but also increases the 
flexibility of the metric. While the smallest feasible area at 
which the metric can operate has yet to be investigated, it 
has been shown to operate with relatively small areas such 
as the cropped region from the Lighthouse image. 

The development of such a metric, in itself, is useful 
in further studies of demosaicing because it can enable 
adaptivity in many aspects. For instance, one may 
develop a compound demosaicing technique that switches 
between various demosaicing algorithms depending on 
the performance on a local region in an image. More 
importantly, it can be used as an optimization criteria for a 
single demosaicing technique. Further work is being done 
into developing such an adaptive algorithm.
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Abstract—The recent adoption by the Philippine 
government of Japan’s Integrated Services Digital 
Broadcasting- Terrestrial (ISDB-T) standard as 
the digital TV standard to be used in the country 
prompts the need for a platform that will facilitate 
understanding of its concept and provide a framework 
for evaluating algorithms that will improve ISDB-T 
receiver’s performance. This research work develops 
and implements an ISDB-T decoder in a Software-
Defined Radio (SDR) platform. First, a recorded 
raw baseband ISDB-T signal in .dat file format 
was simulated through the configuration of signal 
processing blocks in GNU Radio Companion (GRC). 
The successful simulation produced a transport stream 
H264-MPEG-4 AVC file and resulted to the display 
of the signal in a 6MHz bandwidth with a 64QAM 
constellation plot, a 34.22 dB Modulation Error Rate 
(MER), 8.95 dB and 18.00 dB Bit Error Rate (BER) for 
the Viterbi and Reed Solomon decoders, respectively.  
The simulation measurements served as indicators 
for the quality of the decoded signal as the output 
transport stream file was played simultaneously in 
VLC media player.  Second, an actual reception of 
a private Philippine ABS-CBN Digital Television 
Terrestrial (DTT) signal located in UHF Channel 
43 was performed in real-time through the system 
integration of the USRP1 with the GRC Signal flow 
graph. A Log Periodic LP0410 PCB antenna was 
also integrated to the SDR platform to receive the 
digital broadcast. Due to proprietary DTV issues, 
the system was only able to display ABS-CBN’s 

frequency spectrum centered at its assigned frequency 
of 611.143MHz at a 6MHz bandwidth.

Index terms—digital video broadcasting, ISDB-T, 
software radio, GNU Radio, USRP1

I.  Introduction

SINCE the 1940s, the broadcast industry in the 
Philippines has been operating in analog terrestrial 

broadcast. One setback of analog broadcasting, aside 
from being susceptible to noise and of low quality, is its 
excessive use of frequency spectrum. Frequency spectrum 
is a limited resource and has to be conserved.  Over time 
in parallel with current advancements of technology, the 
world is now undergoing a transition from analog terrestrial 
broadcast to digital terrestrial broadcast in order to address 
the problem of perceived spectrum scarcity.  There has been 
a number of existing standards in DTT adopted by different 
countries including Europe’s Digital Video Broadcasting-
Terrestrial (DVB-T), North America’s Advanced Television 
System Committee (ATSC), China’s Digital Terrestrial/
Television Multimedia Broadcasting (DTMB) and Japan’s 
ISDB-T. In 2010, the Philippine government, through the 
National Telecommunications Commission (NTC), has 
officially announced the adoption of Japan’s ISDB-T citing 
as one of its main reasons for adoption its distinct feature of 
having an Early Warning Broadcasting Services (EWBS) 
that could be an effective tool in disasters and calamity 
preparedness and mitigation. Just like DVB-T, ISDB-T 
also adopts Orthogonal Frequency Division Multiplexing 
(OFDM).  

Being a relatively new technology in the Philippine 
setting, a lot of things still are to be learned and 
understood about ISDB-T standard. Digital TV broadcast 
using ISDB-T transmission in the country is still in an 
experimental stage and complete migration from analog 
to digital TV is not expected until year 2020. Hence, an 
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ISDB-T receiver platform that is reconfigurable, flexible, and 
programmable is necessary to facilitate understanding of its 
concept and provide a framework for evaluating algorithms 
that will improve receiver’s performance.

In this paper, an SDR platform was used to implement 
an ISDB-T decoder. The GRC software combined with the 
Universal Software Radio Peripheral (USRP) hardware 
forms the platform. The implementation was initially done 
by the simulation of the created grc flow graph in GNU Radio 
that is installed in a PC running on Ubuntu OS. To receive an 
over-the-air ISDB-T signal, the PC is USB-interfaced with 
the USRP1 hardware connected to a log periodic antenna. 
The output was then displayed in the host PC through the 
use of the VLC media player.

The rest of this paper is organized as follows. In 
section II, the basics of the ISDB-T standard and SDR are 
discussed. This is followed by section III that describes the 
implementation of an ISDB-T decoder in an SDR platform. 
Section IV presents and discusses the results of the study. 
The paper is concluded in section V while section VI 
expresses the authors’ acknowledgement. 

II.  Basics of ISDB-T System and  
Software-defined Radio

A.	 ISDB-T Standard

ISDB-T system is a Japanese standard that is intended 
to deliver high quality data, video and sound for Digital 
Terrestrial Television Broadcasting (DTTB). The standard, 
which was developed in Japan, utilizes Band Segmented 
Transmission - Orthogonal Frequency Division Multiplexing 
(BSTOFDM). This method of multiplexing is flexible since 
a set of OFDM segments having different parameters for 
transmission is being used. Also hierarchical modulation is 
permissible in ISDB-T. The system has an Early Warning 
System (EWS) that helps in the information dissemination 
in the event of natural disasters such as that of a typhoon, 
tsunami or earthquake.

Fig. 1. Overview of the digital terrestrial television  
broadcast system [5]

Figure 1 presents the overview for one channel of the 
ISDB-T system. One channel is split into 13 segments. 
12 of 13 segments are used for Digital TV transmission 
which uses MPEG-2 Video coding and MPEG-2 Audio 
AAC coding. Broadcast Markup Language (BML), which 
is a multimedia coding scheme based on XML (Extensible 
Markup Language), is used for Data coding. ISDB-T adopts 
MULTI-2 Conditional Access which is used to scramble 
digital multimedia content. While receiving noise and 
interference, ISDB-T signals go through error correction. 
There are two types of error  correcting codes being used 
namely Reed-Solomon code (Outer code) and Convolutional 
Coding (Inner code). ISDB-T also has different modulation 
schemes: DQPSK, QPSK, 16QAM and 64QAM. In one 
channel, ISDB-T signals have a bandwidth of 5.7 MHz, 
close to 6MHz, and if 64QAM is being used as a modulation 
scheme, ISDB-T signal will have a maximum information 
rate of about 23.234 Mbps (Megabits per second). 1 out of 
13 signals is transmitted for mobile reception

a)	 ISDB-T Transmission System Configuration 

Fig. 2. Configurations for ISDB-T System [7]

As shown in Figure 2, video, audio, and some other 
service data signals that are being encoded are multiplexed 
to form elementary streams. These elementary streams 
are  multiplexed again with other additional programs to 
form the MPEG-2 compression Transport Stream (TS). 
This transport stream goes through hierarchical processing 
like error correction, modulation, and interleaving. 
ISDB-T signals also make use of TMCC (Transmission 
Multiplexing Configuration Control) where transmission 
control information such as channel segment configuration, 
transmission parameters, etc. are sent to the receiver. Then 
Inverse Fast Fourier Transform (IFFT) is performed to 
produce an OFDM signal.  

Table 1 shows the parameters for transmission of the 
ISDB-T system. It utilizes 13 segments with a transmission 
bandwidth of 5.575MHz, 5.573MHz, and 5.572MHz for the 
different modes. The guard-interval ratio, inner and outer 
coding rate and information bit rate have different values 
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depending on the modulation scheme selected. Out of these 
three modes, Mode 3 is being adopted here in the Philippines. 

TABLE I
ISDB-T Transmission Parameters [7] 

Transmission Parameter Mode 1 Mode 2 Mode 3

No. of OFDM segments 13

Bandwidth
Carrier interval
No. of carriers

5.575MHz
3.968kHz

1405

5.573MHz
1.984kHz

2809

5.572MHz
0.992kHz

5617

Carrier modulation QPSK,16QAM,64QAM,DQPSK
Effective symbol length (Tu) 252µs 504µs 1.008ms
Guard interval length (Tg) 1/4, 1/8, 1/16, 1/32 of effective symbol length

No. of symbols per frame w 204

Time interleave Maximum 4 values: 0,0.1,0.2,0.4 sec
Frequency interleave Intra-segment and inter-segment interleaving

Inner code Convolutional coding (1/2, 2/3,3/4,5/6, 7/8)
Outer code RS (204, 188)

Information bit rate 3.65Mbps – 23.23Mbps

Heirarchial transmission Maximum 3 levels (Layer A, B and C)

Among the technical advantages of the ISDB-T standard 
are [8]: 

•	 High quality and service flexibility 
•	 Robustness and reception flexibility 
•	 Effective utilization of frequency resource
•	 One-seg service
•	 Commonality 
•	 Utilization for disaster prevention 

b)  ISDB-T Decoder Error Rates

•	 Modulation Error Rate (MER)
		  MER is computed when there is error present 

in the receiver that would degrade the system.  
It indicates if the signal is indeed decoded 
correctly by the receiver. MER is calculated using 
Equation (1):
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		  Where I j and Qj are vector points of 

the constellation diagram and δI j and δQ j 
are the error vectors. We can determine 
the actual received vector points I j and  
Qj by getting the sum of the ideal vector points 

and the error vectors. Therefore:
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•	 Bit Error Rate (BER)
		  BER is computed as the number of error bits 

that are present out of the total number of bits in 
percentage. Ideally, having a very low BER will 
result to a better reception of the signal since 
with lower percentage, there are fewer errors 
indicating that the signal can easily be corrected 
and properly decoded. BER is determined by the 
general equation:

E

T

B
= 100%

B
×BER 	 (3)

	 where BE is the number of error bits that have 
been received and BT is the number of total bits 
that have been received. Reed Solomon codes are 
usually in the form RS(n,k) with s-bit symbols. 
We denote n to be the code word length of the 
Reed Solomon codes and k to be the data symbols 
of s bits and P denotes the parity bits. Therefore, 
in equation form:

                              n = 2s – 1   and   n = k + P	 (4)

	 Taking into account that a Reed Solomon decoder 
can correct up to t symbols that contains errors, 
equation (4) can also be rewritten as:

	        n = 2s – 1   and   n = k + 2t	 (5)

B.	 Software-Defined Radio

SDR has been the trend in wireless communications. 
SDR has a unique function where radios are implemented 
in software instead of being implemented completely 
in hardware. It means that hardware functionalities and 
processes can be implemented in software domain. 

SDR is highly favored in wireless systems since it is 
known for its flexibility. Modifications in systems such 
as protocols and algorithms can be done easily since 
they are reprogrammable, reconfigurable and capable of 
supporting different and diverse radio and networking 
systems [9]. Against Analog radio, SDR has relatively low 
maintenance and operation costs, has a wide variety of 
alternate inexpensive solutions and capable of operating 
in different signal bands. Elements like filters, mixers and 
modulators which are in practice are analog elements, can 
be implemented digital form trough software. 

C.	 GNU Radio

GNU Radio is a free, open source software that is  
used to develop software radios through their signal 



Integrated Services Digitial Broadcasting-Terrestrial 	 Bañacia et al. 15

processing blocks. GNU Radio applications are normally 
coded in Phyton language and supported by C++ language. 

Among the elements or blocks contained in the GNU 
Radio are filter blocks, channel code, synchronization 
element blocks, equalizer, demodulator, decoder, and other 
components which are normally found in a real-world radio 
systems but traditionally implemented in hardware. 

Once these blocks are properly connected, these can  
be used to simulate real-world radio communication 
systems to allow performance analysis even prior to actual 
implementations so that appropriate modifications could be 
performed on certain algorithms or functionalities[9].

III.  SDR Implementation of an  
ISDB-T Decoder

 

Fig. 3. System Architecture in Software-Defined Radio Platform

Shown in Figure 3 is the ISDB-T decoder in an SDR 
Platform. The ISDB-T signal to be decoded was received by 
a LP0410 Antenna which operates in the frequency range of 
400 MHz to 1GHz with a 5 to 6dBi gain. The antenna was 
connected to the receiver port of a WBX daughterboard.  
The WBX daughterboard which operates in the 50–2200 
MHz frequency range was used for this project and was 
connected to one of the four slots of the motherboard 
as an RF receiver interface or tuner. The WBX offers a 
bandwidth capacity of 40MHz and is more than enough to 
satisfy the 6 – MHz band requirement of the ISDB-T signal. 
The daughterboard was connected to the USRP1 hardware 
motherboard. The host PC is installed with an Ubuntu Linux-
based operating system.

A.	 Software Simulation

GNU Radio applications are primarily written using the 
Python programming language (the GNU Radio Companion 
is actually a front-end that automatically generates Python 
code). However, most blocks are written internally in C++: in 
this sense, Python may be regarded as the scripting language 
used by GNU Radio. Thus, real-time, high-throughput radio 
systems can be developed using GNU Radio.

A1. Raw Baseband ISDB-T Signal Simulation

Fig. 4. Raw Baseband ISDB-T signal GRC flowgraph

Shown in Figure 4 is the flowgraph of the ISDB-T 
decoder capable of simulating the raw baseband signal. 
In this flowgraph, it can display both the decoded ISDB-T 
video and the measurement for the MER, BER Viterbi and 
BER Reed Solomon codes.  Highlighted in blue are the 
Variable blocks, Option block and Import block in utility 
to the configuration of the main blocks.  The main blocks 
(highlighted in pink) are responsible in demodulating the 
“569MHz_recording.dat” file which consists of the File 
Source block, Throttle block, Low Pass Filter block, ISDBT-
RF Channel Decoding block, Frequency Deinterleaver 
block, Time Deinterleaver block, Symbol Demapper, Null 
Sink, ISDB-T Channel Decoding block and File Sink 
block. The purpose of the blocks highlighted in orange 
is to compute the MER and to determine the modulation 
scheme. The Log10 block (highlighted in yellow) converts 
the BER ratio to decibels. Highlighted in green are the blocks 
responsible for the display of the following: the QT GUI 
Frequency Sink block for the frequency spectrum, the QT 
GUI Constellation Sink block for the the constellation plot 
and the QT GUI Number Sink block for the measurements 
of the MER, BER-Viterbi, and BER-Reed Solomon. 

The first stage of the decoding process is selecting the 
569MHz_recording.dat file as an input for the File Source 
block. A throttle is used to limit the CPU usage while the 
flowgraph is being generated. It is sampled at a frequency 
of 512/63 ≈ 8.12698MHz which is the frequency used to 
receive an OFDM signal. A Low Pass Filter block with a 
cut-off frequency fc = 2.9MHz is used to filter neighboring 
channels to avoid noise interference in the system. What 
follows is the ISDB-T RF Channel Decoding which performs 
the decoding depending on the mode of the hierarchical layer 
being used, its guard interval, and SNR value. In this case: 
The transmission mode being used is MODE3(8K) and the 
guard interval is 1/16 of the active symbol duration. In 8K 
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mode, the active symbol duration is 1.008ms. The SNR value 
is set to 10. Finally, the ISDB-T RF Channel Decoding block 
will detect the end of every OFDM frame (the grouping of 
204 OFDM symbols that transmit a complete TMCC) and 
perform the TMCC decoding. 

For those received data carriers, frequency and time 
de-interleaving are performed and then symbol de-mapping 
followed by bit de-interleaving. 64QAM and 16QAM are 
the modulation schemes usually used for full-segment 
receivers while QPSK is used for handheld one-segment 
receivers. The Symbol De-mapper is used to determine 
the different modulation schemes of each hierarchical 
layer. Layer A uses one out of 13 segments of the 6MHz 
bandwidth with a modulation scheme of QPSK. Layer B 
uses 12 out of 13 segments of the 6MHz bandwidth with 
a modulation scheme of 64QAM. Layer C is unused. The 
ISDB-T Channel Decoding decodes the channel from 
the 12 segments of the 6MHz bandwidth. The channel is 
decoded depending on the transmission mode (MODE1 2K, 
MODE2 4K, MODE3 8K), modulation scheme (QPSK, 
16QAM, 64QAM), and convolutional rate (1/2, 2/3, ¾, 
5/6, 7/8). In this case: The 12 layer segments are being 
decoded by using MODE3 as the transmission mode with 
a modulation scheme of 64QAM, and a convolutional rate 
of  ¾. The ISDB-T Channel Decoding decodes the channel 
from the 12 segments of the 6MHz bandwidth. The channel 
is decoded depending on the transmission mode (MODE1 
2K, MODE2 4K, MODE3 8K), modulation scheme (QPSK, 
16QAM, 64QAM), and convolutional rate (1/2, 2/3, ¾, 
5/6, 7/8). In this case, the 12 layer segments are being 
decoded by using MODE3 as the transmission mode with 
a modulation scheme of 64QAM and a convolutional rate 
of ¾.

The basic idea of having Reed Solomon code is that it 
checks each byte for each link in the transmission chain. 
RS codes correct all errors and produce an error-free TS 
packet. Under normal operational circumstances, the RS 
decoder will correct all errors and produce an error-free 
TS packet.

The Viterbi decoder reconstructs the original streams 
of data that entered a convolutional encoder. This would be 
possible with the maximum likelihood decoding which bases 
its error rate from a correct statistical model and checking if 
the Viterbi decoder reconstructed the streams of data. 

Lastly, the File Sink block is used to create a TS file 
format which contains the decoded signal from the File 
Source block. The TS file will then be played in VLC Media 
Player to test whether the signal was properly received or 
not. A successful reception depends on the quality of the 
signal being received that includes noise, inter-modulation, 
and other corruptions of the signal. 

A2. Real-Time Reception of Local ISDB-T Signal

Fig. 5. Reception of Local ISDB-T signal GRC flowgraph

Figure 5 shows the GRC flowgraph for the reception 
of ABS-CBN ISDB-T signal. Highlighted in blue is the 
center_freq variable block set to a value of 611.143MHz 
which is the center frequency of ABS-CBN. The flowgraph 
process is similar to Figure 4 but this time the initial stage, 
which is highlighted in pink, is composed of the UHD: USRP 
Source block, Rational Resampler block, Streams to Vector 
block, and Vector to Streams block. The broadcasted signals 
from the ABS-CBN transmitter was received by the LP0410 
antenna then fed to the USRP1. The WBX daughterboard in 
the USRP hardware performs RF to IF signal conversion and 
the motherboard converts the IF signal to baseband signal 
and sends the signal into the PC via USB 2.0 connectivity, 
which is to be simulated by the GRC blocks. The UHD: 
USRP Source block reads the received signal and samples 
them with a frequency of 8MHz. As these devices usually 
cannot sample at any arbitrary rate, a rational re-sampler is 
used to obtain a sampling rate of 512/63 ≈ 8.12698MHz. 
To obtain the ratio of 512/63 MHz, the sampling rate of 
the USRP1, which is 8MHz, is then multiplied by the 
interpolation value of 64 and divided by the decimation 
value of 63. The Streams to Vector block connected to Vector 
to Streams block acts as a sort of buffer for the signal to 
minimize dropping samples of the decoded signal. Then, 
the rest of the blocks in the flowgraph is generated in the 
same way as the previous figure.  

B.	 Decoder Implementation with GRC and USRP 

USRP1, the original hardware of the USRP™, was 
interfaced with GNU radio. The hardware motherboard is 
composed of a 64 MS/s dual ADC, 128 MS/s dual DAC and 
an Altera Cyclone FPGA with high-speed USB 2.0 that was 
connected to the host PC. The FPGA is responsible for high 



Integrated Services Digitial Broadcasting-Terrestrial 	 Bañacia et al. 17

bandwidth computations and the decrease of data rate for 
USB 2.0 transmission while two Analog Device (AD9826) 
chips handles the conversion of analog and digital signals. 
The AD9826 chip has a 16-bit A/D converter that converts 
the analog signal being received by the USRP into a digital 
signal.

An ISDB-T signal was decoded through the use of 
Signal Processing blocks in the GNU Radio Companion 
software tool. The UHD: USRP Source block processes the 
ISDB-T signals from the TV Broadcasting station which 
is received by the antenna. Also, a simulation of a raw 
baseband ISDB-T signal was done by using the File source 
block. The file source block allows a recorded video .dat 
file (a raw baseband samples) as the file to be processed. 
Once the receiver acquired an ISDB-T signals from the 
transmitter, it underwent several processing including 
its conversion from RF to IF, Analog to Digital, filtering, 
Channel decoding, Time and Frequency interleave, RS 
coding, Viterbi. After the digital signal processing has been 
done, the data will become a transport stream. By using 
File Sink block, the .ts file output is compiled, thus bytes 
of data are stored. The .ts file can be viewed using VLC 
media player. A successful reception will result to a clear 
decoded ISDB-T signals. 

IV.  Results and Discussions

A.	 Simulation of raw baseband ISDB-T Signals

Fig. 6. Simulation using recorded .dat file

Figure 6 shows the constellation diagram and 
measurements of BER and MER. On the rightmost side 
is the .ts file output which is played simultaneously while 
running the ISDB-T receiver system. The .ts file is stored 
and can be viewed in VLC media player to display a high-
quality video with clear audio while the system is decoding 
the raw baseband signal. 

(1) ISDB-T signal spectrum

Fig. 7. Raw Baseband ISDB-T Signal Spectrum

The signal spectrum is used to determine if the signal 
is received by the hardware. An ISDB-T signal with a 
bandwidth of 6MHz is shown in Figure 7, it is the displayed 
signal spectrum in the QT GUI Frequency Sink block of 
GRC. It is shown that the bandwidth displayed is within 
range of values 566.000MHz to 572.000MHz which would 
give a 6MHz value. This displayed bandwidth shows that 
an OFDM signal is present and that an ISDB-T signal is 
received properly.

(2)  TMCC
It is shown in the TMCC analysis (Figure 8) of the raw 

baseband samples that the signal was properly decoded and 
corrected. Layer A was used for the 1-seg receiver since there 
is only one segment length of the OFDM bandwidth. The 
convolutional rate of Layer A is shown to have a value of 
2/3 and a time interleaving length of 16 in MODE1(2K), 8 
in MODE2(4K), and 4 in MODE3(8K). In this case, it has 
a length of 4 since MODE3(8K) was used. Layer B used 
12 out of the 13 segments of the OFDM bandwidth. It used 
64QAM as the modulation scheme, had a convolutional rate 
of 3/4, and a time interleaving length of 8 in MODE1(2K), 
4 in MODE2(4K), and 2 in MODE3(8K).

Fig. 8. TMCC Analysis of the Raw Baseband ISDB-T signal
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In this case, it has a length of 2 since MODE3(8K) was 
used. Layer C is not used since it can be used as an alternative 
option for the 12 segments. In this case, it is unused since 
all OFDM segments have been used up.

(3)  Constellation diagram and MER

Fig. 9. Constellation Diagram of the Raw Baseband ISDB-T signal

Figure 9 shows the result of the 569MHz_recording.
dat file with a modulation scheme of 64QAM. Notice that 
the constellation points were properly placed with minimal 
errors. This means that the raw baseband samples have been 
correctly demodulated.

Fig. 10. Modulation Error Rate of the Raw Baseband ISDB-T signal

Figure 10 shows that MER of the decoded video is 
around a value of 34.22dB which is greater than that of 20 
dB in [3]. This is an implication that the signal is properly 
modulated with a 64QAM modulation scheme.

4)  Bit error rate

Fig. 11. BER of the Raw Baseband ISDB-T Signal (Convolutional 
Rate = 3/4)

The data in figure 11 is shown to have a value of 18.00dB 
in the BER-Reed Solomon measurement and around 8.95dB 
in the BER-Viterbi measurement. In the ISDB-T full-seg 
receiver GRC file, the ISDB-T Channel Decoding block had 
a convolutional rate of 3/4. This is somewhat ideal since to 
properly decode a signal, the BER of the signal must be of 
a smaller value. These results show that the raw baseband 
samples were properly decoded without much errors since 
the BER value is smaller.

Fig. 12. BER of the Raw Baseband ISDB-T Signal 
(Convolutional Rate ≠ 3/4)

When the convolutional rate was changed, it is shown 
in Figure 12 that the BER-Viterbi decoder measurement 
obtained a smaller value of 1.143dB and the BER-Reed 
Solomon decoder obtained a value of 0dB. This indicates 
that the signal received is not decodeded properly.

(5)  Transport stream (TS) Analysis

Fig. 13. Simulated Raw Baseband Samples 
(No Repeat)

The output transport stream file set in the File Sink block 
was produced upon simulation of the decoder. Shown in 
Figure 13 is a .ts file named feb.ts which had an increase in 
file size as the decoder is being simulated. Without enabling 
the repeat option in the File Source block, the decoded raw 
baseband samples had a maximum value of 49.1MB which 
only display a video with a 21-second duration. After the .ts 
file reaches this value, the raw baseband signal is no longer 
simulated and the decoding process stops.
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Figure 14. Simulated Raw Baseband Samples
 (With Repeat)

Shown in Figure 14 is the same .ts file named feb.ts, 
but this time, the repeat option in the File Source block was 
enabled. Given this, the GRC blocks continue to decode 
the raw baseband samples until it reaches its maximum 
file size, which is 1.5GB, and after the .ts file reaches this 
value, the raw baseband signal is no longer decoded and 
the process stops.

Fig. 15. CODEC Information of the TS File

Figure 15 displays the different streams that were being 
de-multiplexed after it was decoded by the system. There 
were a total of 6 streams composed of 3 video streams and 
3 audio streams. The video streams that were decoded had 
a format of H264 or MPEG-4 AVC, while the audio streams 
had a format of MPEG AAC Audio (MP4A) which validates 
the specified standards of the ISDB-T transmission.

Fig. 16. Current Media / Stream Statistics of TS

The figure above displayed the statistical values of the 
decoded signal. The input bit rate of the transport stream 
file was 17.852 MB/s. For the Audio steam: 2614 Audio 
blocks were decoded, 2614 audio buffers were played and 
a value of 0 lost buffers. For the Video stream 2754 Video 
blocks were decoded, 2641 video frames were displayed 
and 9 frames were lost. The .ts file displayed a high-quality 
video and a clear audio. Given such data, the raw baseband 
samples were properly decoded by the system. 

B.	 Reception of Free-to-air ISDB-T signal

Shown in Figure 17 is the frequency spectrum display 
of the 6MHz bandwidth of the received ISDB-T signal of 
ABS-CBN Channel 37 UHF. Centered at 611.143MHz, the 
bandwidth attains a peak power of an estimated -40dBm. 
The obtained peak power value of around -40dBm validates 
that the system is successful in the reception of a real time 
ABS-CBN ISDB-T signal since it is determined that a power 
value of at least -62.66dBm indicates that the primary user 
(ABS-CBN) is transmitting ISDB-T signals [10]. As of 
present, ABS-CBN is the only station with free-to-air digital 
ISDB-T signal reception in Cebu.

Fig. 17. Signal Spectrum of Received Signal



Journal of Computational Innovations and Engineering Applications 	 Vol. 1 No. 2 (2017)20

  V.  Conclusion 
The ISDB-T decoder system was successfully 

implemented through simulation in GRC and through partial 
reception of a locally transmitted ISDB-T signal in software 
defined radio platform using URSP1 interfaced with the 
GNU Radio Companion installed in a host Linux PC. A raw 
baseband ISDB-T signal was tested and simulated through 
the configuration of the different signal processing blocks in 
GRC. With the file sink block as the final stage of the GRC 
flowgraph, a transport stream .ts file stored all decoded data 
and by the use of VLC media player, a simultaneous video 
display of the decoded signal was displayed. The simulation 
output also presents the frequency spectrum of the ISDB-T 
signal having a bandwidth of 6MHz which had a center 
frequency of 569MHz and a clearly presented constellation 
diagram with 64QAM as the modulation scheme. The guard 
interval configuration of the decoder was set at 1/16. A 
measured Modulation Error Rate (MER) of 34.22dB was 
obtained and this implies that the reception of the modulated 
signal is excellent. The measured Bit Error Rate (BER) of 
8.95 for Viterbi decoder and 18.0 for Reed Solomon decoder 
implies that very minimal error was obtained by using the 
convolutional rate of 3/4. Setting the guard interval to that 
of 1/4, 1/8, or 1/32 and a convolutional coding rate of 1/2, 
2/3, 5/6, or 7/8 resulted to a noisy reception, thus a negative 
result. To completely decode an ISDB-T signal, it is vital 
to determine the transmission parameters being configured 
beforehand. 

For the partial reception of the local ISDB-T signal 
transmission in software defined radio platform, the 
system was able to display the 6MHz bandwidth of the 
ABS-CBN ISDB-T signal centered at 611.143MHz. A 
peak power value of around -40dBm was obtained and 
this implies that the system is able to receive a real-time 
ISDB-T signal. However, the decoding process was only 
partially implemented due to the proprietary Digital 
Television Scheme of the ABS-CBN channel restricting full 
disclosure of its transmission parameters thereby resulting 
to incomplete or partial decoding.  

The host PC plays a critical role in the process of 
conducting this study and the researchers have realized that 
it is important that the computing machine should have a 
core processor of at least intel core i5 clock @ 2.7GHz for 
it would greatly affect the decoding process. A deficiency 
in processor performance caused underruns in the execution 
of the GRC flowgraph.
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Efficient Load Balancing Technique for  
Parallel Ray Tracing Using a Reservoir

Joy Alinda Madamba and Francis Joseph Seriña

Abstract—Imitating the real world in emulations, 
such as the effect of light, is an important research 
area in software applications. However, a computing 
machine cannot precisely imitate all the aspects of light 
in short processing periods. Ray tracing is a technique 
that renders and accurately depicts light with a high 
time delay. Parallelizing the computers that run the 
rendering is not enough to reduce its running time. 
To further increase computing efficiency and improve 
ray tracing’s applicability for mainstream purposes, 
load balancing must be performed. In this study, a 
proposed alternative load balancing technique that 
uses a reservoir was implemented to tackle the issue 
of using heterogeneous computers in the network and 
to minimize the communication overhead introduced 
by parallel applications. Results show that when using 
a reservoir, high speed-up is achieved at 80% initial 
task distribution while high efficiency is achieved 
between 20–75% initial task distribution. With speed-
up as the priority, reservoir achieves at most 87% 
better speed-up than the scatter decomposition and 
36% than the hybrid technique. It also has at most 
28% better efficiency than the scatter decomposition. 
Finally, the reservoir algorithm achieved at most 
25% better achieved speed-up (ASU) than the scatter 
decomposition and 10% than the hybrid.

Index Terms—Computer Graphics, Load Balancing, 
Parallel Programming, Ray Tracing, Rendering

I.  Introduction

THE recent trend in computer development has 
been towards shorter execution times for complex 

applications. However, these applications have 
developed faster than the advances done in computer 
architectures. Single-core processors have thus given 
way to multi-processors, paving the way for parallel 

solutions to these complex problems. An example of 
this complex application is ray tracing. Many people 
consider ray tracing to be the best image synthesizing 
technique to date [1]. Ray tracing naturally shows 
precise reflections, shadows, and transmissions by 
following the path of light and applying the laws of 
geometric optics. Unfortunately, high quality images can 
only be produced at a large amount of time. Ray tracing 
has not been used in mainstream graphics yet, aside from 
the film industry, because no computing machine can 
single-handedly render large images in a relatively small 
useful amount of time [2]. Thus, ray tracing is a good 
candidate for implementation in a network of computers 
that would execute that application in parallel.

The use of parallelization has its own set of areas 
that need improvement when it comes to efficiency. One 
such issue is load balancing. The workloads assigned to 
different computers are not always equal and a balancing 
scheme must be applied in such a way that the computers 
complete their task at the same time [3]. Load balancing 
techniques are classified as static and dynamic. Static 
load balancing distributes tasks before processing, taking 
into account certain assumptions such as tasks with equal 
workload unless otherwise stated.  Static load balancing 
techniques are based on the partitioning of the image plane 
(screen). One static technique found to be effective for 
network systems with less than 128 computers is Scatter 
Decomposition [4], [5].  In this algorithm, the tasks are 
alternately distributed to increase the probability that 
machines get equal workload amounts. It distributes the 
pixels in an alternating sequence (i mod p) where the p is 
the number of computers and i is the pixel to be rendered. 
The result of the alternating sequence formula is the 
computer, which renders that pixel. For example, Figure 1 
shows how scatter decomposition is applied unto a picture 
with 100 pixels per row. Given that there are 3 computers 
within the network, the 1st, 4th, 103rd, 106th, etc. pixel 
is assigned to the first computer while the 2nd, 5th, 101st, 
104th, etc pixel is given to the second computer and finally, 
the 3rd, 6th, 102nd, 105th, etc. pixel is given to the third 
computer.
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Dynamic load balancing redistributes the tasks during 
processing. Techniques that use this type of load balancing 
can be further subdivided into two approaches: centralized 
and decentralized [6]. The centralized approach uses one 
machine as the controller (or master) of the system. It 
is responsible for task allocation and assignment. The 
decentralized approach uses all the machines in deciding 
where the next tasks will be given, with or without 
cooperation between machines. We focused on the 
centralized techniques as these would be more suitable 
for ray tracing. Some centralized techniques include the 
algorithm by Wang, et al. [7] that assigns tasks based on 
whether it is an I/O consuming task or a CPU compute 
task and the algorithm by Sidhu et al. [8] that uses particle 
swarm optimization. However, the first algorithm mentioned 
was not used as the assignment of tasks would introduce 
more variables in a heterogeneous system and the second 
is more suitable to a large-scale network. A third highly 
scalable centralized dynamic technique is Diffusion, which 
redistributes the tasks evenly when one of the slaves have 
completed earlier than the others [4]. Diffusion is started 
when a slave completes its task queue by sending a request 
signal to its neighboring machines. The neighbors reply  
with the number of tasks left in their queue. The average 
number of the remaining tasks is determined and the 
machines with a higher average give their excess tasks to 
the machines with a smaller queue. It has been shown that 
a hybrid technique (scatter decomposition with diffusion) 
resulted in greater efficiencies and speed up compared to 
them working alone [4]. However, scatter decomposition 
and diffusion only used homogenous computer architectures 
in their networks.

In order to normalize the performance of networks 
that use computers with heterogeneous architectures, an 
additional parameter is taken into consideration: speed index 
[5]. This determines the relative speed of one machine over 
another within the system.  It is measured by determining 
the execution time of running a recursive function.  Thus, 
distribution of tasks took advantage of which computer is 
faster by possibly assigning more tasks to these computers.

The goal of the study was to implement a new load 
balancing technique that uses a reservoir and compare its 
performance against existing load balancing algorithms. 
The study was implemented on a fully connected network 
with different computer hardware architectures. Figure 2 
shows the hardware environment and the communications 
involved in the system. The hardware environment used 
heterogeneous commercial desktop computers with 1 
designated as the master and the rest as slaves. It used the 
distributed memory architecture and communicated over a 
fully connected network.

Fig 2. Implementation environment

The master was responsible for initializing the scene and 
distributing the tasks. It shall accept a ‘request for more’ 
signal from any slave and give it more tasks to do unless 
there’s none left. The master accepts all the partial images 
from the slaves and compiles them as a single image. The 
slaves performed the ray tracing and requested for more 
tasks once its queue is empty.

II.  Methodology

A.	 Reservoir Algorithm

The diffusion algorithm has a high communication 
overhead especially when the computers are in a fully 
connected network. When a slave requests for more rays, 
the master will ask each slave to send their task queue. The 
master averages the number of tasks and calls the slaves with 
task queue higher than the average to distribute their tasks to 
those who have less. Meaning, it redistributes tasks that were 
initially assigned already. This overhead is neglected since 
the amount of time it takes to send and receive data is much 
smaller than the rendering process. The reservoir algorithm 
will reduce the communication overhead by preventing any 
redistribution needed in the middle of the process. It does 
this by making the initial task distribution biased in such a 
way that faster computers receive more. Also, it does not 
distribute all the tasks during initial assignment. It keeps a 
certain number of tasks in a reservoir which will only be 
assigned when a slave requests for more.

Fig 1. Scatter decomposition
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There are three (3) major blocks in the Reservoir 
algorithm, as shown in Figure 3. The Reservoir Preparation 
uses the speed index of each slave to calculate the division 
of labor when biasing the task distribution. The steps for 
this procedure are shown next.

Fig. 3. Reservoir block diagram

Input:	 speed indices (speed1, speed2, …, speedc) and the 
number (c) of slaves

Output:	 sequence of percentage division of labor per slave 
(div1, div2, …, divc)

1.		 procedure reservoir_preparation (speed, c)
2.			  slowest : = speed1
3.			  for i : = 2 to c do
4.				   if speedi > slowest then
5.					    slowest : = speedi
6.			  ratio_total : = 0
7.			  for i : = 1 to c do
8.				   begin
9.				   ratioi : = slowest / speedi

10.				   ratio_total : = ratio_total + ratioi
11.				   end
12.			  for i : = 1 to c do
13.				   divi : = ratioi / ratio_total
14.			  return (div)
15.		 end reservoir_preparation

The variable slowest is the speed index of the slowest 
computer within the network.  This is searched for linearly in 
lines 2–5.  In the sequence, ratioi is the theoretical equivalent 
amount of work that can be completed by slavei in the same 
time that the slowest slave completes 1 task—assuming 
that all tasks are equal.  The sum of all ratio’s are stored in 
ratio_total (lines 6–11) to be used as divisor in lines 12–13 
to determine the division of labor.

The Initial Distribution block initially allocates specific 
amounts of the total tasks to the slaves. This initial number 

of tasks is determined by a quantity specified by the user 
called the initial task distribution percentage or initial 
percentage.  Subsequently, a sequence of pixels is computed 
by multiplying the division of labor, initial percentage, 
and total number of tasks. These pixels are then given in 
a sequential manner. The first sequence of pixels is given 
to the first slave, the second sequence to the second slave, 
etc.  The remaining unassigned tasks will be placed in the 
last block as reserved tasks. The steps for this procedure 
are shown next.

Input:	 initial task distribution percentage (p)  
sequence (ray1, ray2, …, rayn) and number (n) of 
tasks 
sequence (slave1, slave2, …, slavec) and number 
(c) of slaves 
division of labor (div1, div2, ..., divc) per slave

Output:	 undistributed tasks (reserve)

1.		 procedure initial_distribution (p, ray, n, slave, c, div)
2.		 limit : = p * n
3.		 prev_limit : = 0
4.		 for s : = 1 to c do
5.			  begin
6.			  next_limit : = prev_limit + (limit * divs)
7.			  for i : = prev_limit to next_limit do
8.				   begin
9.		 AssignTask (rayi, slaves)

10.				   end
11.			  prev_limit : = next_limit + 1;
12.			  end
13.		 reserve : = raylimit+1, raylimit+2, … rayn
14.			  return (reserve)
end initial_distribution

When a slave finishes its assigned tasks, it will ask for 
more from the reservoir.  In the final block of the algorithm, 
a fraction of the reserved tasks is given to the requesting 
slave based on the division of labor. The algorithm ends 
when there are no more reserved tasks, as shown below.

Input:	 requesting slave (slave)  
division of labor of requesting slave (div)  
sequence (ray1, ray2, …, rayn) and number (n) of 
undistributed tasks

Output:	 remaining undistributed tasks (reserve)

1.		  procedure Reservoir (slave, div, ray, n)
2.			   limit : = div * n
3.			   for i : = 1 to limit do
4.				    AssignTask (rayi, slave)
5.			   reserve : = raylimit+1, raylimit+2, …, rayn
6.			   return (reserve)
end Reservoir
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All arithmetic operations are rounded up for the 
algorithm to converge. A test simulation is shown in  
Table 1. Slave 3 is determined to be the slowest with speed 
index 12.  Ratio is the slowest speed index divided by the 
speed index of the slave under consideration. It represents 
how many tasks that computer can accomplish compared to 
the slowest assuming that all tasks are equal. For example, 
since slave 1 is 12 times faster compared to the slave 3, 
it could theoretically complete 12 tasks when slave 3 
completes 1. The sum of these ratios will be used as a divisor 
to acquire the percent division of labor. The division of labor 
must be rounded up for the algorithm to converge.

On the last column, we assume slave 1 finished its tasks 
and there are 100 tasks in the reserve. Since the percent 
division of labor of slave 1 is 65%, 65 tasks will be given 
to it and the rest will remain as reserve until another slave 
completes its queue.

B.	 Phase I – Serial Ray Tracer (SRT)

In the first phase of the study, a functional serial ray tracer 
was built, which was used as the basis for the succeeding 
tracers. Ray tracing is a pixel by pixel type of rendering. 
Each pixel in the final image is calculated independently 
from those beside it. Looking at Figure 4, E refers to the 
viewer’s eye which is looking at object 6. Objects 6 and 
4 are opaque spheres. Objects 3 and 9 are translucent 
planes and LA and LB are light sources. The different rays 
will be described later. A primary ray (from E to 3) from 
the viewport travels in a straight line towards a pixel on 
the screen. This ray continues to the scene until it hits a 
surface. The algorithm that finds any intersection is called 
visible surface determination or intersection tests. Different 
algorithms were developed to find the most efficient visible 
surface determination algorithm. This is often a bottleneck 
in ray tracing algorithms as well as trying to parallelize it. 
Characteristics of the surface are taken into consideration 
to determine the reflection and refraction properties as well 
as its color at the point of intersection.

Shown in Figure 5 is the serial ray trace flowchart. The 
shading model used in the flowchart is a simplified hall 
shading model which consists of 4 terms. The first term is 

the low-level ambient light. The second term is a modified 
Phong Shading model which combines diffuse and specular 
term. The ambient term is neglected because the simplified 
hall shading model already considers it. The third term 
is the perfect specular reflection and the fourth is perfect 
specular transmission. The third and fourth terms are subject 
to recursion.

Fig. 4. Ray tracing paths

Fig. 5. Serial ray tracer

TABLE I
Sample Simulation

Slave Speed Index Slowest Ratio Sum of 
Ratios

Percent division of 
labor Ex 100 Tasks

1 1
Slave 3 with 
speed index 

12

12

18.714

64.12% (65%) 65
2 3 4 21.37% (22%)
3 12 1 9.16% (10%)
4 7 1.714 5.34% (6%)
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To make ray tracing faster, effort was given to the 
intersection test algorithm. The bulk of the running time of 
any ray tracer is devoted in finding the intersection between 
each ray and scene objects. To reduce the calculations, each 
object is assigned a bounding box—it is a box that tightly 
covers the space occupied by each object. The minimum and 
maximum x, y, and z coordinates of the object will be used 
as the dimensions of the bounding box. The 6 coordinates 
will correspond to the 6 faces of the box. When testing for 
the intersection between a ray and an object, the ray is tested 
against one face at a time.

The ray tracer could read the scene details from an 
external text file. The details include camera information, 
output image information, light sources, object (with 
surface) properties and environment variables. The output 
image information includes the width and height in pixels 
and the output file name, which has the extension of the 
output image type. The light sources are defined using 
its location and color. The object properties are defined 
differently. Surface properties have the same syntax for 
all types of primitives and are defined together with the 
object. The environment variables include the background 
color, ambient color and the maximum levels of reflection/
transmission rays. 

The serial ray tracer, using the minimum set of features, 
was able to render images with a single machine. It was 
able to render three (3) different types of primitive objects, 
namely spheres, boxes and one-sided planes, shown in 
Figure 6. Its resulting images have shown reflections, 
transmissions and shadows, similar to Figure 7.

Additional features such as super sampling and 
distributed ray tracing were also implemented to improve 
the quality of the pictures and increase the weight of the 
tasks. Super sampling is an anti-aliasing technique by 
shooting more rays per pixel. Distributed ray tracing slightly 
changes the angle of produced reflection, refraction and 

shadow rays to apply blurry phenomena such as gloss, blurry 
transparency, and penumbras. Shown in Figure 8 is a sample 
scene that shows all the basic features. A transparent sphere 
with properties similar to glass is included in the figure. 
Below it is a plane that reflects everything on top of it. There 
are multiple opaque left objects, 3 smaller blue spheres and 
a yellow box behind the transparent sphere.  Two point-light 
sources are used, one behind the camera and another to the 
left of the box.  Super sampling and distributed ray tracing 
were also implemented. The functionality of the SRT was 
then tested and verified.

Fig. 8. Image created by SRT with basic features  

C.	 Phase II – Parallel Ray Tracer 

The next phase involved implementing the first of the 
three (3) parallel ray tracers (PRT). This PRT implemented 
only the scatter decomposition as a load balancing technique.  

Fig. 7. Shiny sphere over a mirror  

Fig. 6.  Basic primitives  
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A master and slave side was created to distribute the tasks 
of the PRT. Additional modules were created for the master 
to pass the scene details to the slaves and for the slaves to 
compile the partial images for the master. The flowchart 
and points of communication are shown in Figure 9.  
Initialization is executed by the master while the slave 
executes ray tracing. The distribution of rays amongst 
the slaves, third block in the master side, is the static load 
balancing.

Different computers were used to test the parallelized ray 
tracer. The execution and idle time of each slave are noted 
in order to calculate efficiency and speed up. The results are 
tested against the results of phase III. The overall efficiency 
of the program is the sum of the execution times of each 
slave over the total elapsed time (execution and idle time) 
of all the slaves.

D.	 Phase III – Parallel Ray Tracer with Dynamic  
	 Load Balancing

The last two PRTs were implemented in this phase. The 
first PRT used the hybrid load balancing technique which 
combines scatter decomposition and diffusion. The second 
PRT implemented used the reservoir algorithm. Additional 
modules were also created, such as the module that computes 
the speed index and the module that commands slaves to 
receive/send tasks from/to other slaves. Figure 10 shows 
the block diagram of the PRT with dynamic load balancing.

E.	 Testing and Benchmarking

For the testing of the SRT, a series of test scenes were 
created that focused on the specific features of the ray tracer.  
This set of scenes was also rendered using an older version 

of a commercial ray tracer originally developed by Mental 
Images, the Mental Ray tracer. The resulting images were 
compared against those created by the SRT.

The test scenes created focused on the following features: 
shading, reflections, shadows, transmissions, and their 
combinations. Figure 11 shows one image that combines 
all of the features. 

Fig. 11. Test scene that combined features

To compare the three (3) PRTs with the SRT, a complex 
scene (Figure 12) was rendered with varying parameters by 
all four ray tracers. This test scene approximated practical 
scenes since it has varying workloads throughout the image. 
The SRT was modified to calculate its speed index even if it 
was not used during its image processing. It was used later as 
a reference for comparison.  For the PRTs, the total program 
execution times and slave speed index were recorded. The 
speed-up was computed by dividing the execution time of 

Fig. 9. Parallel ray tracer Fig. 10. Parallel ray tracer that uses dynamic load balancing 
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the PRT over the execution time of the SRT that rendered 
the image with the same parameters. It was assumed that 
since the hardware environment used was exactly the same 
for all the tests, the speed indices of the machines within 
the network would be the same for all tracers. 

The efficiency is computed as follows:

	 S T( ET ) /(ET n)η = ∑ × 	 (1)

where ETT is total elapsed time of the program, n is the 
number of slaves, and ΣETS is a summation of the execution 
times of all slaves.

Fig. 12.  Complex scene used as a benchmark.  

Since the computers within the network do not have 
equal speeds, a new unit of measurement was used.  This is 
the achieved speed-up (ASU) which relies on the validity 

of the speed index.  The ASU is the ratio of the computed 
speed up compared to the maximum achievable speed up 
(MASU).  Table 2 shows an example on how to compute 
the MASU and ASU. The theoretical speed-up is computed 
by dividing the speed index of the SRT over the speed 
index of the machine under consideration.  The sum of all 
these theoretical speed ups would account for the MASU.  
If all the machines are homogenous, including the SRT, 
then the MASU is equal to the number of the slaves (ex. 4 
homogenous slaves have 400% MASU).  For the example 
below, the MASU is 341.79%.  The ASU is then computed 
by dividing the speed up over the MASU.

TABLE 2
Sample Computation of ASU

Machine Speed Index 
(seconds)

Theoretical 
Speed Up (%)

Achievable 
Speed Up (%)

SRT 0.3 100 –

Slave 1 0.30525 98.28 28.75

Slave 2 0.644833 46.52 13.61

Slave 3 0.301333 99.56 29.13

Slave 4 0.307917 97.43 28.51

III.  Results and Analysis

A.	 Validity of Features

The SRT built from phase I was compared with another 
ray tracer using special scenes that were customized in order 
to exclude other features that the serial ray tracers could not 
perform.  The following are a series of images of the different 
scenes rendered in both the SRT and Mental Ray Renderer. 

As can be seen, Figure 13 has a significant difference— 
mainly, the hue of green visible in the whole scene. This is 

Fig. 13. Shading equation and reflections

a. Mental Ray Render b.  Serial Ray Tracer
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due to the set ambient light and the shading equation used.  
The Mental Ray Renderer applies a bigger weight to the 
ambient color compared to the serial ray tracer. Looking 
at the reflection and the color of the objects in the scene, it 
can be shown that other elements of the shading equation 
between the Mental Ray Renderer and the serial ray tracer 
is the same for the surface properties present.

In Figures 14 and 15, we can clearly see that the images 
produced are identical, showing the accuracy of the serial 
ray tracer in depicting shadows and transmissions.

Figure 16 shows that when the scene gets more 
complicated, the difference between the serial ray 
tracer and that of the Mental Ray Renderer becomes 
unnoticeable.

Fig. 14. Shadows

b.  Serial Ray Tracera. Mental Ray Render

Fig. 15. Transmissions

a. Mental Ray Render b.  Serial Ray Tracer
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Fig. 16. Lights, reflections and shadows

a. Mental Ray Render

b.  Serial Ray Tracer

B.	 Serial Ray Tracer Execution Times

One objective of this study was to build a PRT and 
compare the performance of the proposed algorithm with 
the existing load balancing techniques. Using the complex 
scene at Figure 12, Table 3 shows the execution time of the 
serial ray tracer, with an average speed index of 0.3, with 
different parameters. DRT refers to distributed ray tracing 
rate, SS is the super sampling rate, ET is the execution 
time in seconds.  Since these four test cases were used all 
throughout the testing, they will be referenced as shown. 
The execution time is shown in HH:MM:SS. The four test 
cases do not have a constant increase in complexity of 
rendering with these parameters but as the execution time 
shows, test case C and D are much more difficult compared 
to A and B. This table will also serve as a reference for the 
speed up later on.

TABLE III
Serial Ray Tracer Results

Test Case DRT SS ET
A 1 8 4:14.51
B 1 16 8:34.16
C 2 8 5:22:5
D 2 16 10:46:12

C.	 Validity of Computing Speed Index

To measure the speed indices of the machines used in the 
network, a recursive function, the classic Towers of Hanoi, 
was executed.  This function was chosen due to its size. It is 
small enough to minimize the overhead for its computation 
and reliable enough to imitate the execution of ray tracing 
while measuring the speed index. To verify this assumption, 
the two algorithms were executed and compared using the 
speed up, MASU, and ASU.  Reservoir was used as the load 
balancing technique with an initial percentage set to 80%.

It can be seen in Figure 17 that the difference of values 
in the MASU and ASU is at 23.81% and 3.14% respectively. 
This means that these speed index-based values for the two 
functions differ by less than 10% of the higher value (42.38 
for the MASU and 5.31 for the ASU). Therefore, the method 
used to approximate the speed index is relatively accurate.

Fig. 17. Speed Indices of Algorithms

D.	 Maximum Speed Up for Reservoir

One difference of the reservoir algorithm over other load 
balancing techniques is the use of an additional parameter 
—initial task distribution percentage.  In this test, the most 
effective initial percentage is determined for later use.  The 
complex scene is rendered using test case C from Table 
3 while varying the initial percentage.  The speed up and 
efficiency of the PRT are shown in Figure 18.



Efficient Load Balancing Technique	 Madamba and Seriña 31

Fig. 18.  Comparison of Efficiency and Speed Up of PRT Using 
Reservoir

Since the objective of parallelizing applications is to 
increase speed up, it can be shown that the best initial task 
distribution percentage for this environment is at 80%.  
Beyond 80%, the speed up decreases and it performs more 
similar to scatter decomposition both in efficiency and speed 
up.  Below 80%, fewer tasks are initially distributed. These 
will make the slaves ask for more tasks earlier during the 
execution of the program. It is possible that the slaves tend 
to wait in line when requesting for additional tasks.

The efficiency, on the other hand, is consistently at 
99% until the initial percentage is at 75%. Beyond that, it 
decreases. This is because the algorithm approaches the 
performance of the scatter decomposition implementation 
when using higher initial percentages. In these cases, a 
large number of tasks remain on the slaves and do not get 
redistributed even when the reservoir is empty and other 
slaves have completed their task queues.

The objective of parallelizing ray tracing is to shorten 
the execution time. It does not necessarily mean achieving 
the maximum efficiency. Thus, all PRT using reservoir used 
80% as the initial task distribution percentage.

E.	 Comparison of Parallel Ray Tracers

Figure 19 shows the comparison of speed ups of the 
3 PRT implementations. It can be seen in the results that 
the PRT with reservoir is better in most cases. The hybrid 
implementation is similarly high for the more difficult 
cases, approximately at 292% speed up. As expected, the 
PRT with scatter decomposition alone is the slowest of all 
implementations.

The speed up test is valid since the hardware environment 
is the same for all the different PRTs.

 Fig. 19. Speed Up Comparison

Figure 20 shows the comparison of efficiencies. It 
can be seen in the figure that the hybrid implementation 
is consistently performing at around 99.9%, better 
compared to all three PRTs. However, the difference 
with the reservoir implementation is small, at less than 
10%. This difference can be attributed to the initial task 
distribution percentage, which was not chosen for its 
maximum efficiency.

Fig. 20. Efficiency Comparison

Figure 21 shows the ASU of each PRT implementation. 
As seen in Figure 14, the reservoir implementation is better 
in most cases.  This means that the algorithm was more able 
to maximize the hardware environment compared to the 
other implementations.
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Fig. 21. Achieved Speed Up Comparison

IV.  Conclusion and Recommendations

The results have shown that when using a reservoir, high 
speed-up is achieved at 80% initial task distribution while 
high efficiency is achieved between 20–75% initial task 
distribution. With speed-up as the priority, reservoir achieves 
at most 87% better speed-up than the scatter decomposition 
and 36% than the hybrid technique. It also has at most 
28% better efficiency than the scatter decomposition. The 
reservoir algorithm achieved at most 25% better achieved 
speed-up (ASU) than the scatter decomposition and 10% 
than the hybrid. Thus, in conclusion, under the scenarios 
tested and the methodologies used, the load balancing 
technique that uses a reservoir is a good alternative technique 
for load balancing in parallel ray tracing. This technique has 
a simpler implementation than diffusion since assignment 
of tasks is only done once and no tasks are moved between 
slaves.

Even if complex scenes were used in testing, we 
recommend that real practical scenes be used as benchmarks. 
Personal evaluation of these scenes can be used as an 
additional test to determine the realism of the images. The 
concept of applying a bias to the distribution using the 
speed index can also be applied for other load balancing 
techniques that use heterogeneous computers. With this type 
of implementation, a possible increase to the speed up, ASU 
and the efficiency may be seen. Also, the current hardware 
environment is limited to a single master and four slaves.  
It is possible that the algorithm may perform differently 
with varying number of slaves. In this case, the ASU can 
be used as the primary measurement of comparison as the 
heterogeneity of the system will be more prominent.
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Analog Realization of a Low-Voltage Sixteen 
Selectable Fractional-Order Differentiator  

in a 0.35um CMOS Technology
Geoffrey L. Abulencia and Alexander C. Abad

Abstract—This paper presents the design and 
implementation of an analog fractional-order 
differentiator (FOD) in a microelectronics scale. It 
focused on the design and implementation of sixteen 
selectable fractional-order (0.10, 0.20, 0.25, 0.30, 0.35, 
0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85 
and 0.90) differentiators in a 0.35um CMOS technology 
operated at 1.5-V supply. In comparison with the 
previous work that uses generic microcontroller for 
switching an FOD from one order to the next, this 
design of a 16 selectable FOD was realized in an analog 
microelectronic scale, thus, the physical implementation 
is relatively smaller. The authors employed reusability 
of resistors and capacitors when switching from 
one order to the other. The RC ladder in the design 
was implanted using NMOS capacitor and NWELL 
resistors while the IC design was implemented using 
TANNER software. The whole chip layout of the design 
has a dimension of 11.55mm x 8.32mm or equivalent 
to a final area of 96.10mm2. Each fractional order 
was characterized in terms of its frequency response 
—magnitude and phase response—in the bandwidth 
from 10Hz to 1kHz. 

Index Terms—constant phase element, resistor-
capacitor ladder, selectable fractional-order 
differentiator, CMOS

I. Introduction

THE concept of fractional calculus dates back to the 
time of Leibniz and L’Hospital in 1695 [1]. It is 

based on calculus with derivatives and integrals having 
non-integer orders. The concept fractional order calculus 

has not been easily adapted due to the complexity of its 
realization. Some definitions have been used for the general 
fractional calculus such as the Grunwald-Letnikov (GL) 
and the Riemann-Liouville (RL) [2]. Recently, it became 
a powerful and widely used tool for dynamical systems 
modeling [3], [4], [5], processes control [6], [7], [8], 
signal processing [9], [10], [11], and in many other fields 
of science and engineering.

Fractional-order differentiator (FOD) is a differentiator 
that performs non-integer-order differentiation, e.g. 
½-order differentiation which is half derivative of a 
function. FOD can be realized through one of the following 
ways: a) Poly-Methyl-Methacrylate (PMMA) [12]; b) 
LiN2H5SO4 or commonly known as the Lithium Salt [13]; 
c) Field Programmable Gate Arrays (FPGA) [14]; or d) 
electric component in the form of a Resistor-Capacitor 
(RC) ladder network [15], [16]. 

This paper focuses on the analog realization of a 
fractional-order differentiator implemented on a single 
integrated circuit (IC) design layout similar to the one 
presented in [17], [18].

II. Theory of Fractional-order Differentiator

A.  Fractional Order Differentiator 

A fractional-order differentiator is the generalization of 
a basic differentiator. An FOD can also be realized using 
operational amplifier (op-amp) circuit as shown in Figure 
1. Instead of using a simple capacitor at its input side, an 
FOD uses a constant phase element (CPE).

Fig. 1. Fractional-order differentiator circuit implementation
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According to [15], a fractional-order differentiator has a 
continuous-time transfer function of

	 G(s) = sα	 (1)

wherein the magnitude of impedance depends on frequency 
according to the order of differentiation (α). Its value 
in decibels varies with the expression (20*α) dB/dec. 
Furthermore, the phase of the impedance is constant at the 
expression (90*α)o. 

B.  Constant Phase Element

An ideal constant phase element is composed of infinite 
number of lumped-sum parallel resistor-capacitor (RC) 
networks according to the concept of continued fraction 
expansions (CFE) representing an ideal transmission line 
[19]. Practically, the CPE in Figure 1 can be electronically 
realized using an RC ladder that approximates a fractional-
order element with the schematic shown in Figure 2. This 
RC ladder was presented in [15] and was used successfully 
in the practical realization of fractional-order system. 

Fig. 2. CPE realization using RC ladder based on [15]

The following discussions of CPE was lifted from [15] 
and [18]. Generally, the higher the number of branches, the 
better the approximation of a CPE [15]. But for practical 
purposes, [15] and [18] only used five (5) branches in 
their CPE realization using RC-ladder network which is fit 
enough to meet the desired frequency band of interest. The 
method of RC ladder computation in this study are based 
primarily on [18] which is an improved and more general 
way compared to RC ladder network design presented in 
[16]. Table 1, which is based from [18], shows a summary 
comparing the original method of computation [16] and the 
optimized RC ladder branch values computation developed 
by the authors of this paper. The established optimization 

procedures developed by the authors are more general, 
straightforward and flexible since the recalibration step 
from the old method is eliminated. In effect, infinite sets of 
RC ladder can be obtained using the new approach which 
allows common values of resistor and capacitor for different 
fractional orders.

In the new CPE design procedure, four initial values 
are needed: 1) the maximum allowable phase ripple (Δφ); 
2) the number of RC ladder branches (m); 3) the order of 
differentiation (α); and 4) the initial value of R1 (same for 
all orders). The remaining nine values of resistors (R2 to 
R5) and capacitors (C1 to C5) for the ladder branch can be 
computed using equations (2) to (7) as follows:

TABLE I
Comparison of the Original and Optimized RC Ladder 

Branch Values Computation
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The following discussions of CPE was lifted from [15] and 
[18]. Generally, the higher the number of branches, the better 
the approximation of a CPE [15]. But for practical purposes, 
[15] and [18] only used five (5) branches in their CPE 
realization using RC-ladder network which is fit enough to 
meet the desired frequency band of interest. The method of RC 
ladder computation in this study are based primarily on [18] 
which is an improved and more general way compared to RC
ladder network design presented in [16]. Table 1, which is
based from [18], shows a summary comparing the original 
method of computation [16] and the optimized RC ladder 
branch values computation developed by the authors of this 
paper. The established optimization procedures developed by 
the authors are more general, straightforward and flexible since 
the recalibration step from the old method is eliminated. In 
effect, infinite sets of RC ladder can be obtained using the new 
approach which allows common values of resistor and 
capacitor for different fractional orders.

In the new CPE design procedure, four initial values are 
needed: 1) the maximum allowable phase ripple (Δφ); 2) the 
number of RC ladder branches (m); 3) the order of 
differentiation (α); and 4) the initial value of R1 (same for all 
orders). The remaining nine values of resistors (R2 to R5) and 
capacitors (C1 to C5) for the ladder branch can be computed 
using equations (2) to (7) as follows:

TABLE I. COMPARISON OF THE ORIGINAL AND OPTIMIZED RC LADDER 
BRANCH VALUES COMPUTATION

STEPS ORIGINAL  
COMPUTATION [15] 

OPTIMIZED 
COMPUTATION 

Initial values 
needed 

Phase Ripple (Δϕ) 
Desired Gain (Dr) 

Order (α) 
No. of branch (m) 
Initial R1 and C1 

Phase Ripple (Δϕ) 
Order (α) 

No. of branch (m) 
Initial R1 

Determination 
of parameters 

‘a’ and ‘b’ 

ab ≈
0.24

1 + Δφ
 

loga = αlog (ab) 

ab =
0.24

1 + Δφ
 

loga = αlog (ab) 

Determination 
of RC ladder 

branch values 

Rk = R1ak−1 
Ck = C1bk−1 

Rk = R1ak−1 

Ck =
bk−1

100R1
 

Determination 
of ‘Rp’ and ‘Cp’ 

Rp = R1
1 − a

a
 

Cp = C1
bm

1 − b
 

Rp = R1
1 − a

a
 

Cp = C1
bm

100R1(1− b)
 

Approximation 
of the 

minimum and 
maximum 

frequencies of 
operation 

ωmax ≈
ωmin

(ab)m
 

ωav = �ωmaxωmin 

ωmax ≈
ωmin

(ab)m
 

ωav = �ωmaxωmin 

Recalibration 
of the resistor 
and capacitor 

values 

Y(jω) =
1

Rp
+ jωCp … 

… +�
jωCk

1 + jωRkCk

m

k=1

 

D =
1

|Y(jωav)|ωav
α  

Resistors multiplied by Dr/D 
Capacitors divided by Dr/D 

NO RECALIBRATION 
NEEDED 

Rk = R1ak−1                               (2)

and

Ck = bk−1

100R1
                                (3)

According to [15], the parameters ‘a’ and ‘b’ ranges between 0 
and 1 which can be computed using their relationships with the 
order of differentiation (α) and the maximum allowable phase 
ripple (Δφ) as

                               ∆𝜑𝜑 = 0.24
𝑎𝑎𝑎𝑎

− 1                                     (4)

and

α = loga
log (ab)

                                     (5)

	 k 1
k 1R R a −= 	  (2)

and

	
k 1

k
1

bC
100R

−

= 	 (3)
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According to [15], the parameters ‘a’ and ‘b’ ranges 
between 0 and 1 which can be computed using their 
relationships with the order of differentiation (α) and the 
maximum allowable phase ripple (Δφ) as

                                                                    
	 0.24 1ϕ∆ = −

ab
	 (4)

and

	
log a

log (ab)
α = 	 (5)

To replace the truncated sections by a simple network for 
the CPE, the resistive side of the ladder (upper portion) can 
be represented by a single resistor Rp while the capacitive 

(lower portion) can be represented by a single capacitor Cp 
with values computed using 

	 p 1
1 aR R

a
−

= 	 (6)

and

	
m

p
1

bC
100R (1 b)

=
−

	 (7)

For this study, the authors used phase ripple Δφ = 0.2,  
m = 5, R1 = 200kΩ. The values for the sixteen fractional 
orders are α = 0.10, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, and 0.90. Table 2 
shows the list of all the computed resistor and capacitor 
values for the sixteen fractional orders. 

TABLE II
List of All Resistor and Capacitor Values for 16FOD RC Ladder Network

ORDER 0.10 0.20 0.25 0.30 0.35 0.40 0.45 0.50

R1(Ω) 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00

R2(Ω) 170267.98 144955.93 133748.06 123406.77 113865.06 105061.11 96937.87 89442.72

R3(Ω) 144955.93 105061.11 89442.72 76146.16 64826.26 55189.19 46984.76 40000.00

R4(Ω) 123406.77 76146.16 59813.95 46984.76 36907.23 28991.19 22773.01 17888.54

R5(Ω) 105061.11 55189.19 40000.00 28991.19 21012.22 15229.23 11037.84 8000.00

Rp(Ω) 34923.79 75945.93 99069.76 124131.32 151293.00 180730.79 212635.41 247213.60

ORDER 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

R1(Ω) 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00

R2(Ω) 82527.08 76146.16 70258.60 64826.26 59813.95 55189.19 50922.00 46984.76

R3(Ω) 34053.60 28991.19 24681.35 21012.22 17888.54 15229.23 12965.25 11037.84

R4(Ω) 14051.72 11037.84 8670.39 6810.72 5349.92 4202.44 3301.08 2593.05

R5(Ω) 5798.24 4202.44 3045.85 2207.57 1600.00 1159.65 840.49 609.17

Rp(Ω) 284689.37 325305.56 369325.32 417033.86 468740.30 524779.66 585515.03 651339.92

ORDER 0.10 0.20 0.25 0.30 0.35 0.40 0.45 0.50

C1(F) 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08

C2(F) 1.1746E-08 1.3797E-08 1.4953E-08 1.6207E-08 1.7565E-08 1.9037E-08 2.0632E-08 2.2361E-08

C3(F) 2.7595E-09 3.8073E-09 4.4721E-09 5.2531E-09 6.1703E-09 7.2478E-09 8.5134E-09 1.0000E-08

C4(F) 6.4826E-10 1.0506E-09 1.3375E-09 1.7027E-09 2.1676E-09 2.7595E-09 3.5129E-09 4.4721E-09

C5(F) 1.5229E-10 2.8991E-10 4.0000E-10 5.5189E-10 7.6146E-10 1.0506E-09 1.4496E-09 2.0000E-09

Cp(F) 4.6763E-11 1.1049E-10 1.7067E-10 2.6467E-10 4.1235E-10 6.4592E-10 1.0183E-09 1.6180E-09

ORDER 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

C1(F) 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08

C2(F) 2.4234E-08 2.6265E-08 2.8466E-08 3.0852E-08 3.3437E-08 3.6239E-08 3.9276E-08 4.2567E-08

C3(F) 1.1746E-08 1.3797E-08 1.6207E-08 1.9037E-08 2.2361E-08 2.6265E-08 3.0852E-08 3.6239E-08

C4(F) 5.6933E-09 7.2478E-09 9.2268E-09 1.1746E-08 1.4953E-08 1.9037E-08 2.4234E-08 3.0852E-08

C5(F) 2.7595E-09 3.8073E-09 5.2531E-09 7.2478E-09 1.0000E-08 1.3797E-08 1.9037E-08 2.6265E-08

Cp(F) 2.5955E-09 4.2132E-09 6.9442E-09 1.1678E-08 2.0188E-08 3.6335E-08 6.9718E-08 1.5041E-07
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III. Conceptual Design of a Selectable FOD
A conceptual selectable fractional-order differentiator 

was shown in [16] using discrete components. The 
conceptual design’s order of differentiation can be chosen 
from 0 to 1 with an increment of 0.05. 

The design utilizes cascaded operational amplifiers 
and resistor-capacitor ladders as its main components, 
while a generic microcontroller is introduced for switching 
purposes. Initial simulation results through Matlab and 
LTSpiceIV show that the designed resistor-capacitor ladders 
can perform as an analog FOD [16]. 

For the sole purpose of switching circuitry, utilization 
of microcontroller apparently results to much lower 
component density in the hardware implementation. While 
the trend in electronics physical realization is to go smaller 
and lightweight, the authors were inspired to design and 
implement a sixteen selectable FOD in microelectronic 
scale using 0.35um CMOS technology. The whole design 
was implemented in a relatively much simpler architecture 
wherein the switching circuitry is already an integrated part 
of the whole circuit eliminating the use of microcontroller.

F i g .  3 .  S c h e m a t i c  l a y o u t  o f  a  s e l e c t a b l e  F O D  
utilizing selector module circuitry

Figure 3 shows the basic schematic overview of a 
selectable FOD. Basically, change of α would require a 
change of ladder values (see Table 2) as well as the value 
of feedback resistor (see Table 3). There will be two sets of 
selector module circuit: one for CPE module (pins A and B) 
and the other for feedback (pins X and Y). Table 3 also shows 
the magnitude gain of the FOD at different frequencies.

Reuse of resistors and capacitors was adopted in the 
design to further scale down the physical dimension of the 
implementation. This simply means that some of the RC 
components in one fractional order to another are being 
utilized as switching occurs. As can be observed in Table 2, 
all fractional orders have 200-kΩ R1 and 50-nF C1. Instead 
of having sixteen 200-kΩ R1 and sixteen 50-nF C1 in the 
circuit design, it is possible to have just one 200-kΩ R1 
and one 50-nF C1 for all FODs. The concept of reusability 
was initially employed by the authors in two-order FOD 

(2FOD) design [18]. Generally, 16FOD is just an expansion 
of 2FOD. 

TABLE III
Magnitude Gain and Corresponding RF for 16FOD

ORDER
Magnitude Gain of the FOD (in dB) Feedback 

Resistor (RF) 
in Ω 10Hz 100Hz 1kHz

0.10 3.60 5.60 7.60 17k

0.20 7.19 11.19 15.19 51k

0.25 8.99 13.99 18.99 77k

0.30 10.79 16.79 22.79 110k

0.35 12.59 19.59 26.59 155k

0.40 14.39 22.39 30.39 206k

0.45 16.18 25.18 34.18 271k

0.50 17.98 27.98 37.98 351k

0.55 19.78 30.78 41.78 436k

0.60 21.58 33.58 45.58 531k

0.65 23.38 36.38 49.38 646k

0.70 25.17 39.17 53.17 716k

0.75 26.97 41.97 56.97 766k

0.80 28.77 44.77 60.77 804k

0.85 30.57 47.57 64.57 814k

0.90 32.37 50.37 68.37 816k

Fig. 4. Top-level schematic of a 2FOD [18]

An understanding of reusability can be simply deduced 
from Figure 4 which shows the top-level schematic of a 
two-order selectable FOD. The control bit A determines 
which order of differentiation to actuate: A=“0” for 
FOD(0.25) and A=“1” for FOD(0.50). The design utilizes 
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several transmission gates to switch from one order to the 
next. An OR gate is used for actuating set of capacitors. 
For both orders of differentiation, all capacitor D0’s have 
to be activated. Capacitors D1’s connected in parallel to 
capacitor D0’s supplement the necessary capacitance values. 
The switch-activated RC ladder circuit serves as the input 
impedance to the two-stage CMOS operational amplifier 
that is then post-cascaded to another inverting amplifier 
[18].

Ideally, the magnitude of an FOD is 0dB at ω=1 rad/s. 
According to [16], the average frequency ωav can be computed 
using the equation shown in Table 2. For instance, if the order 
of differentiation is 0.25, then the average frequency is around 
5590.2 rad/s or equivalent to 890Hz. Using the closest decade 
point, which is at 1kHz, the magnitude of the gain should be 
at  |G(jω)|ω=2π(1000) = ω0.25| ω=2π(1000) = 8.9032 which is around 
18.99dB. Table 3 summarizes the magnitude gain for every 
decade from 10Hz to 1kHz, as well as the corresponding 
feedback resistor values empirically chosen for sixteen 
fractional orders of differentiation.

According to [18], the concept of reusability can be 
applied for other RC ladder branches. The magnitude of R2 
for FOD(0.50) from Table 2 can be reused and add up with 
44305.34Ω to complete the 133748.06-Ω R2 needed for 
FOD(0.25). Likewise, with the capacitor, the magnitude of 
C2 for FOD(0.25) can be reused and add up with 7.4072nF 
to accummulate a total of 22.361-nF C2 needed for 
FOD(0.50). This scheme significantly reduces the overall 
dimension of the analog realization since duplication of 
resistor and capacitor values is averted. Strategic placing 
of the transmission gates must be thoroughly taken into 
consideration to optimize reusability. 

Figure 5 shows the top-level schematic of 16FOD which 
consists of a 4-bit parallel-in parallel-out (PIPO) register, 
a 4x16 line decoder, arrays of CPE elements, arrays of 
feedback resistor and cascaded inverting amplifiers. The 
design of 16FOD is very similar to anexpanded Figure 4. 
Resistor array and capacitor array magnification of CPE 
elements are shown in  Figures 6 and 7 respectively after 
employing reusability for the sixteen fractional orders.

Fig. 5. Top-level schematic of a sixteen selectable FOD
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The 4-bit PIPO register catches the input order of 
differentiation. If for instance all bits (A, B, C, D) are “low,” 
FOD(0.10) is activated and if all bits are “high,” FOD(0.90) 
is activated. Transmission gates in the RC arrays are all 
normally open. The 4x16 line decoder that signals which 
set of transmission gates to trigger, in essence, dictate which 

series-connected resistors and parallel-connected capacitors 
to add up. This scheme also applies for the array of 
feedback resistors. The output of each resistor array branch 
is cascaded to its corresponding capacitor array to generate 
the necessary input impedance for the inverting operational 
amplifier. 	

Fig. 6. Resistor array of CPE employing reusability for selectable 16FOD

Fig. 7. Capacitor array of CPE employing reusability for selectable 16FOD
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IV. Integrated Circuit (IC) Layout 
Implementation

Like the layout designs in [17] and [18], Tanner Software 
was also used to produce a single-chip layout of the whole 
circuit in this study. L-edit tanner tool was used as the 
layout editor.

A.  Operational Amplifier CMOS Module

The op-amp used in [18], [20], [21] shown in Figure 5 
was adopted for this study. The design works at low voltage 
supply of around 1.5 volts instead of the typical 3.3V for 
0.35um CMOS technology. The adopted op-amp can be 
operated either by using unipolar or bipolar supply. It was 
designed to operate at +/-0.75V or 1.5V to GND. Either way, 
the op-amp exhibits same parametric response.

Fig. 8. Op-amp low voltage design [40]

Ideally, the voltage gain phase of the op-amp at 0dB 
should be at 45o and at least a gain of 60dB should be 
achieved. It is likewise important to ensure that all transistors 
are operating in saturation region. Step by step computation 
for the transistor sizes were guided by [20], [21], [22]. 
Table 4 shows the summary of the computed width size of 
transistors M1 to M11 alongside with its adjusted width size 
(actual size). A bias voltage of 0.65V is needed to operate the 
op-amp with its desired functionality. This can be achieved 
through the use of bias transistors M12 and M13 having 
values equal to 6um and 1um, respectively. All transistors 
have the length of 1um.  

B.  Experimental Validation Setup 

The actual layout underwent physical verification 
processes through Design Rule Check (DRC), ensuring that 
the created mask layout conform to the complex set of design 
rules and Layout Verification Schematic (LVS) assuring it 
represents the circuit desired to be fabricated.

TABLE IV
Op-Amp Transistor Sizes Used for the Selectable FOD

Transistor
Computed Width 

Size (um)
Actual Width Size 

(um)
M1 12.15 17

M2 12.15 17

M3 24.30 16

M4 22.73 22

M5 22.73 22

M6 22.73 18

M7 22.73 18

M8 11.54 20

M9 11.54 20

M10 27.27 28

M11 11.5385 37

Parasitic capacitances were considered in the design to 
create an accurate analog model of the circuit. However, 
only nodal parasitic capacitance effects were counted in 
the simulation as this was the only option possible in the 
simulation software. Parasitic resistances and inductances 
were not included in the extraction. All nodal parasitic 
capacitances were considered since all capacitance less than 
0 femtofarad were set to be ignored.

The ideal magnitude and phase response of an FOD 
for different orders are listed in Table 5, which was used 
to validate the frequency response. In reference to [16] and 
[18], ideal responses, specifically the phase response, are 
not attainable for the whole frequency band due to the gain-
bandwidth limitation of the op-amp.              

C.  CMOS Layout View of a Selectable FOD

Shown in Figure 9 is the physical layout implementation 
of the 16FOD. It has an overall IC dimension of 11.55mm x 
8.32mm. The total area of 16FOD is equivalent to just three 
times the layout of semi-differentiator presented in [17]. 

As shown in Figure 10, the microelectronic-scaled 
selectable FOD exhibits magnitude response that is almost 
equal to the ideal gain. On the other hand, the phase response 
significantly deviates from the ideal as the frequency 
increases. Table 5 presents the post-layout results of gain 
and phase response for the sixteen fractional orders. Not all 
FODs are working for this whole frequency band of interest. 
Theoretically, the RC ladder can perform the desired constant 
phase element. However, when incorporated in an op-amp 
circuit, the range of frequencies diminishes. This is mainly 
due to the characteristics and gain-bandwidth-product (GBP) 
limitation of the op-amp. For higher bandwidth applications, 
a design of op-amp with higher GBP is necessary.
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Fig. 9. Top-level layout of a selectable 16FOD

Fig. 10. Frequency response of the designed 16FOD for: a) phase response and b) magnitude response
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TABLE V

6FOD Gain and Phase Response

ORDER FREQ IDEAL GAIN (dB) Post-Layout Results (dB) IDEAL PHASE (degrees) Post-layout Result (degrees)

FOD(0.10)
10Hz 3.60 3.83

9.0
6.02

100Hz 5.60 5.66 8.77
1kHz 7.60 7.58 8.45

FOD(0.20)
10Hz 7.19 7.33

18.0
13.02

100Hz 11.19 11.52 19.30
1kHz 15.19 15.21 17.06

FOD(0.25)
10Hz 8.99 9.08

22.5
17.01

100Hz 13.99 14.26 23.80
1kHz 18.99 19.01 20.13

FOD(0.30)
10Hz 10.79 10.73

27.0
20.75

100Hz 16.79 16.95 28.21
1kHz 22.79 22.63 24.27

FOD(0.35)
10Hz 12.59 12.42

31.5
25.10

100Hz 19.59 20.01 32.56
1kHz 26.59 26.46 28.84

FOD(0.40)
10Hz 14.39 14.18

36.0
29.85

100Hz 22.39 22.60 36.55
1kHz 30.39 30.13 33.18

FOD(0.45)
10Hz 16.18 15.91

40.5
34.40

100Hz 25.18 25.54 41.04
1kHz 34.18 33.83 37.70

FOD(0.50)
10Hz 17.98 17.99

45.0
39.29

100Hz 27.98 28.13 45.45
1kHz 37.98 37.68 41.28

FOD(0.55)
10Hz 19.78 19.64

49.5
44.48

100Hz 30.78 31.10 49.65
1kHz 41.78 41.31 44.87

FOD(0.60)
10Hz 21.58 21.35

54.0
49.36

100Hz 33.58 33.58 52.60
1kHz 45.58 45.09 48.41

FOD(0.65)
10Hz 23.38 23.40

58.5
54.36

100Hz 36.38 36.69 56.61
1kHz 49.38 49.14 50.74

FOD(0.70)
10Hz 25.17 24.84

63.0
59.50

100Hz 39.17 39.09 60.63
1kHz 53.17 52.51 52.01

FOD(0.75)
10Hz 26.97 26.58

67.5
65.02

100Hz 41.97 41.55 64.64
1kHz 56.97 55.62 51.69

FOD(0.80)
10Hz 28.77 28.31

72.0
70.19

100Hz 44.77 44.51 67.91
1kHz 60.77 59.22 48.64

FOD(0.85)
10Hz 30.57 30.76

76.5
74.95

100Hz 47.57 47.23 70.51
1kHz 64.57 62.10 41.63

FOD(0.90)
10Hz 32.37 33.95

81.0
79.31

100Hz 50.37 51.50 71.42
1kHz 68.37 64.69 29.52
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Transient response of the design was also tested and 
analyzed. Sinusoidal input signal was used to clearly show 
the delay or the phase shift between the input and output 
signal. Transient response of FOD(0.25) is shown in Figure 
11 for an input signal, where the frequency was set to 
60Hz. At 60-Hz frequency, the magnitude gain of the FOD 
should be at |G(jω)|ω=2πf = ω0.25| ω=2π(60) = 4.41. Using the 
computed gain, with an input signal amplitude of 5mV, the 
output signal amplitude should then be equal to 22.03mV. 
This is close to the graph showing an output peak voltage 
of 22.16mV. Meanwhile, the time delay between two sine 
waves is equal to 1.03ms. The phase shift of the output signal 
with respect to the input signal is equal to 22.25o, which is 
close to the ideal phase angle for FOD(0.25) of 22.5o.

Fig. 11. FOD(0.25) transient response

V. Other Design Considerations

Initial value of R1 was carefully assessed. Using the 
computations in Table 1, R1 value must be high to have 
capacitor values relatively smaller. Figure 8 shows that 
almost 95% of the total chip area is consumed by capacitors. 
However, it was also taken into consideration that other 
capacitance in the RC ladder must not fall down to tens of 
picofarad range, which is foreseen to be highly sensitive to 
parasitic capacitances.

The type of the capacitor implemented in this design was 
carefully chosen. NMOS-type of capacitor was considered in 
the study since it has higher capacitance value compared to 
poly-to-poly capacitor. Shown in Figure 12 is the comparison 
between the two types of capacitor. With regards to resistor, 
a poly type resistor was chosen for this study. 

Fig. 12. Comparison of capacitance value of MOS and  
poly-to-poly capacitor having same physical dimension

T-gates characterization was done to examine the 
parasitic effects of the switches to the overall design. The 
number of t-gates in parallel has a significant effect to the 
phase response of an FOD. As a result, a 4-TG switch was 
used in the design to give a better phase response with the 
least physical dimension layout of the switch as possible. 
Shown in Figure 13 is the result of t-gate characterization.

Fig. 13. Phase and gain response of an FOD for a switch with 
increasing number of transmission gate (TG)

VI. Conclusions

In this study, a design of a low-voltage selectable  sixteen 
fractional-order differentiator (0.10, 0.20, 0.25, 0.30, 0.35, 
0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, and 0.90) 
has been designed and implemented in a microelectronic 
scale using 0.35um technology. Unlike in [16] which uses 
microcontroller for switching purposes, this design is 
successfully realized in an analog microelectronic scale, and 
thus, relatively smaller. The design employed reusability of 
capacitors and resistors when switching from one order to 
another. The final physical layout of the design using L-Edit 
has a dimension of 11.55mm x 8.32mm or equivalent to 
96.10mm2, which is just about three times the area of a semi-
differentiator in [17]. The whole chip was powered using 
1.5 Volt supply. Several design considerations such as the 
type of capacitor and resistor to implement, transmission 
gate design, and the initial value of R1 were evaluated. The 
overall design was characterized in its frequency response 
—the magnitude and phase response for every order. The 
gain-bandwidth limitation of the op-amp actually bounds 
the frequency response of the 16FOD which opens up for 
possible research study in the future.
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Comparison of Logit and Neural Network 
Models in Inter-Island Discrete Choice Analysis 

Krister Ian Daniel Roquel and Alexis Fillone

Abstract—Logit-based models have often been used 
for discrete choice analysis. However, conventional 
logit models preserve a linear relationship that 
requires variables that are independent of each other, 
which is generally not the proper assumption. In 
this paper, the researcher addresses the non-linear 
behavior and inter-dependence of variables using 
neural networks in modeling inter-island travel 
choice. Neural network analysis was employed to 
a previous work to test the applicability of neural 
network in discrete choice models for inter-island 
travel. It was found that the neural network model 
is statistically acceptable in describing travel choice 
behavior, while the logit model is more inclined 
to model the decision making process. Also, it was 
found that the neural network model is capable of 
accurately predicting the minority, which has long 
been a problem when using logit models as these are 
usually treated as errors.

Index Terms—discrete choice, multinomial logit, 
neural network, inter-island travel

I.  Introduction

LOGIT-BASED models have often been used for 
discrete choice analysis. These are based on the 

random utility theory, which employs an abstract 
measurement of the degree of satisfaction for any 
choice an individual makes, with the assumption that 
rational people act to maximize their utility. However, 
conventional logit models preserve a linear relationship 
that requires variables that are independent of each other, 
which is generally not the proper assumption. In this 
paper, the non-linear behavior and inter-dependence of 
variables are addressed using neural networks in modeling 
inter-island travel choice. 

Previous works on the application of neural networks 
on discrete choice behavior have shown potentials and 
advantages of employing neural networks over the 
traditional logit models. As early as the late 1990s, 
Nijkamp, et al. [1] conducted a study on the comparison 
of neural network and logit analysis in modeling inter-
urban transport flows. Bentz and Merunka [2], Hensher 
and Ton [3], Cantarella and Luca [4], Vythoulkas and 
Koutsopoulos [5], Norets [6], Nakayama, et al. [7], 
and Dia [8] all have contributions on the field with 
their respective researches on using artificial neural 
networks on discrete choice applications. Even until 
recently, Pulugurta, et al. [9] still conducts studies on 
the comparison of the models developed using various 
approaches.

As choice decisions usually involve approximations 
that are not precisely captured by logit models, neural 
network models would always have a place in discrete 
choice analysis due to their capability of function 
inference based on observations. The latter does not 
need any prior knowledge of the characteristics of the 
variables and can account for wnon-linearity, which makes 
for an easier and more convenient model development 
process. In this paper, neural network analysis is  
employed to a previous work [10], to test the applicability 
of neural network in discrete choice models for inter-
island travel.

II.  Study Area

The data used in the study were gathered from 
terminals serving the inter-island network in the heart of 
the Visayan region in the Philippines. Major contributors 
to inter-island traffic in the region are the provinces of 
Iloilo and Negros Occidental, which are two highly 
urbanized provinces with populations of over 2.2 M and 
2.9 M, respectively (NSO, 2009). Fig. 1 shows the inter-
island travel options currently available to the public.  
As shown, inter-island travel can be done in four ways 
(A, B, C, and D) in this travel network.
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Fig. 1. Major Iloilo-Negros Occidental Travel Routes  
(Main mode: A - RORO; B - Fastcraft Ferry; C/D - Pumpboat)

Fig. 2. Characteristics of Iloilo-Negros Occidental Inter-Island 
Travel Options (Main mode: A - RORO; B - Fastcraft Ferry; C/D 
- Pumpboat)

Fig. 3. Daily Travel Volume Using Iloilo-Negros Occidental 
Travel Options (Main mode: A - RORO; B - Fastcraft Ferry; C/D 
- Pumpboat)

With an average of 140 trips per week, the Fastcraft ferry 
(Route B) caters to most of the demand. RORO (roll-on, 

roll-off) ferry travel, on the other hand, which offers around 
100 trips per week on the average, serves as an effective 
alternative (Route A). This travel can also be made through 
inter-modal travel through the island of Guimaras. Iloilo–
Guimaras passenger travel can be done using pumpboats, 
embarking from Iloilo City and alighting at either Buenavista 
(Route C) or Jordan (Route D). Port-to-port transportation 
across Guimaras island can be made through jeepneys, 
multicabs, and vans. Guimaras–Negros Occidental travel 
can then be performed using pumpboats from San Lorenzo 
to Pulupandan, completing the Iloilo–Negros travel.

The characteristics of the basic travel options for the 
Iloilo City to Negros Occidental travel are shown in Fig. 2. 
Fig 3 shows that a great deal of the inter-island travelling 
population, 70.56%, uses the fastcraft ferry option (Route 
B). This option has the shortest total travel time and does 
not involve intermodal transfers. However, this option is the 
most expensive, costing around more than twice the total 
travel costs incurred using the nearest alternative. This can 
mean that the travelling population prioritizes travel time 
and comfort, in terms of the number of transfers, greatly 
over travel cost.

III.  Model Data

The variables were categorized into a total of 11 
categories to simplify the descriptions of the variables, as 
shown in the Appendix. Also shown, the travel choices were 
reduced to A, B, and, C, where options C and D were merged 
into one as almost no data was gathered for the latter.

IV.  Logit Modeling

In the development of models, all modeling variables 
were used in different combinations to come up with the best 
models possible. In evaluating which models are suitable in 
describing the travel mode choice of the travelling population, 
many criteria were considered. First, the coefficients of the 
variables were checked if the sign (positive or negative) 
agrees with prior knowledge, considering what quantity the 
variable is representing (utility or disutility). Furthermore, 
the coefficients’ statistical significance are checked through 
its respective P-values, log likelihood functions, and Rho-
squared measures. Lastly, accuracy of models in predicting 
the travel choice was considered.

The following multinomial logit (ML) models were 
developed using NLOGIT, with a logit structure shown 
in Fig. 4, having only three Alternatives, A, B and C, with 
Alternative C as the base alternative. Using the logit models, 
the probability of an individual to choose a particular 
alternative can be computed using equation (1).
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Fig. 4. Multinomial Logit Structure
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Where:	 Uj	 :	 utility of alternative j
	 UA	 :	 utility of alternative A
	 UB	 :	 utility of alternative B
	 UC	 :	 utility of alternative C

 
TABLE I. 

Multinomial Models Developed with its Variables

Variables
ML1 ML2 ML3

Coefficient Coefficient Coefficient
A_A .47441 -1.05824** 3.73793**
A_B -.87900* 1.76049** 5.23193**
TOTCOST -.00559**

TOTTIME -.48424**
COMFORT 3.9924** 1.20335**
LNDTIME -.01342**

C_TVEH -.01238** -.01043**
T_ORPR -.03467**

WAITTME .00956**
T_PRDE -.01168**
AxINC1 .00011** .00011** .00011**
AxAGE1 -.05496** -.05293** -.05304**
BxINC2 .00013** .00013** .00013**
BxAGE2 -.05735** -.05377** -.05584**

Goodness of Fit Measures

L(β) -788.70 -782.86 -634.87
L(0) -1377.66 -1377.66 -1377.66
-2[L(0)-L(β)] 1177.92 1189.60 1479.58
-2[L(C)-L(β)] 558.69 570.38 860.35
ρ2 0.428 0.432 0.537
-ρ2 0.262 0.267 0.403

* - passed the 0.1 level of significance 	
** - passed the 0.05 level of significance

As seen in Table 1, for the ML1 model, TOTTIME, 
TOTTIME and COMFORT were used as alternative-specific 

deterministic variables, while LNDTIME and C_TVEH 
were used in model ML2, and T_ORPR, WAITTME, 
T_PRDE, C_TVEH and COMFORT for model ML3. For 
all three models ML1, ML2 and ML3, AGE and INCOME 
were used as generic deterministic variables. Going over 
the coefficients, it can be seen that TOTCOST, TOTTIME, 
LNDTIME, C_TVEH, T_ORPR, and T_PRDE have 
negative signs, meaning the items are considered disutilities, 
which follows priori knowledge since these consider values 
spent by the individual. For the variables COMFORT and 
WAITTME, the coefficients are positive. As for INCOME 
and AGE, the coefficients have consistent positive and 
negative signs, respectively.

Quantities involving cost and time being significant were 
expected with the common understanding of travel mode 
choice scenario. These variables involve quantities that 
are most directly connected to the choice situation as these 
are directly spent by the individual as a choice decision is 
made. Comfort being significant with a positive coefficient 
was also expected. Income was also found to be statistically 
significant with a positive coefficient. This can be explained 
simply as the enabling effect of income. People with higher 
income are less sensitive to higher costs and are capable to 
pay more, in exchange for other benefits like shorter travel 
time and/or higher comfort, among others. 

Age, in general, was found to be significant, with 
negative coefficients. This indicates that older people are 
more likely to use the intermodal option passing through 
Guimaras province, even though it has significantly higher 
travel time as compared with the other two alternatives. 
This can be interpreted to mean that sensitivity to travel 
time decreases as an individual gets older. This may also be 
connected to older people being less in a hurry and being less 
constrained by their schedules. Another possible explanation 
is the automation of choice decision through practice, where 
people would prefer using the alternative they had been 
using long before, for example, in a time where the other 
two relatively newer options were still unavailable.

V.  Neural Network Modeling

In the development of neural network models, the 
variables were included in sets to simplify the possible 
combinations of variables. MATLAB was used to generate 
the neural network models. Table 2 shows the variable 
categories included in each input data set used, where “1” 
corresponds to the set being included, and “0,” otherwise. 
As shown, set A has the least number of input variables 
at a total of only 6 (comprised of 3 travel experience 
variables and 3 passenger personal information variables), 
while set P has the most at 74 variables including all the 
variables available.
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As for the target data, three (3) output nodes were set, 
corresponding to the choice among the three travel choices 
available (A, B, and C), where a value of “1” corresponds 
to the passenger’s choice, and “0” for the other options that 
were not chosen. The Levenberg-Marquardt algorithm was 
used as the training function, as it enables the network to 
find the solution even if it starts very far off the minimum. 
The gradient descent method was used for the adaption 
learning function. The performance function used was the 
mean square error (MSE). The number of hidden layers was 
set to only one to come up with just a simple neural network. 
The input data were disaggregated to training, validation, 
and testing, with shares of 70%, 15%, and 15%, respectively.

The activation function used in the input-hidden 
connection was hyperbolic tangent, while sigmoidal logistic 
was employed in the hidden-output connection. This was 
done to account for the negative contributions of some 
variables within the network, but end with a strictly positive 
output, as the target output is only “1” or “0.” In testing 
to find the best combination of input data and number of 
hidden neurons, neural network models were developed 
while varying the number of hidden neurons for each input 
data set. Fig 5 shows its graphical representation of the R2 
values of the neural networks developed, while Table 3 
shows the details.

TABLE II 
Variables for Input Data Set

Va
ri

ab
le

 C
at

eg
or

y

Tr
ip

 P
ur

po
se

Pa
ss

en
ge

r T
ra

ve
l 

In
fo

rm
at

io
n

Tr
av

el
 E

xp
er

ie
nc

e

Tr
av

el
 C

ho
ic

e 
In

fo
rm

at
io

n

A
cc

es
s I

nf
or

m
at

io
n

E
gr

es
s I

nf
or

m
at

io
n

O
th

er
s

Pa
ss

en
ge

r 
Pe

rs
on

al
 

In
fo

rm
at

io
n

O
th

er
 P

as
se

ng
er

 
Pe

rs
on

al
 In

fo
rm

at
io

n

O
th

er
 P

as
se

ng
er

 
Fi

na
nc

ia
l I

nf
or

m
at

io
n

G
en

er
al

 In
fo

rm
at

io
n

To
ta

l N
um

be
r 

of
 V

ar
ia

bl
es

No. of Var 5 5 3 9 9 9 4 3 3 6 18

In
pu

t D
at

a 
Se

t

A 0 0 1 0 0 0 0 1 0 0 0 6

B 0 1 0 0 0 0 0 1 0 0 0 8

C 0 0 0 1 0 0 0 0 0 0 0 9

D 0 1 1 0 0 0 0 1 0 0 0 11

E 0 0 0 1 0 0 0 1 0 0 0 12

F 1 1 1 0 0 0 0 1 0 0 0 16

G 0 1 0 1 0 0 0 1 0 0 0 17

H 1 1 0 1 0 0 0 1 0 0 0 22

I 1 1 1 1 0 0 0 1 0 0 0 25

J 1 1 1 0 0 0 0 1 0 0 1 34

K 1 1 1 1 1 0 0 1 0 0 0 34

L 1 1 1 1 0 1 0 1 0 0 0 34

M 1 1 1 1 0 0 0 1 0 0 1 43

N 1 1 1 1 1 1 0 1 0 0 0 43

O 1 1 1 1 1 1 1 1 1 0 1 68

P 1 1 1 1 1 1 1 1 1 1 1 74
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TABLE III 
R2 Performance of Neural Networks

Input Data 
Set

Number of Hidden Neurons

5 15 25 35 45

A 0.738551 0.714211 0.438655 0.725819 0.722636

B 0.267713 0.203022 0.248054 0.261878 0.241258

C 0.234643 0.31351 0.388565 0.383347 0.377549

D 0.744217 0.817523 0.779248 0.770621 0.795272

E 0.342775 0.409037 0.346026 0.279312 0.277824

F 0.724133 0.716291 0.782765 0.822667 0.8281

G 0.296546 0.397316 0.453899 0.454155 0.291665

H 0.395918 0.390238 0.449892 0.464592 0.480915

I 0.747533 0.77171 0.874973 0.886309 0.877257

J 0.823992 0.831197 0.858384 0.803013 0.831598

K 0.758833 0.883487 0.864175 0.89842 0.897453

L 0.822032 0.851634 0.836201 0.861945 0.829247

M 0.453414 0.876358 0.860238 0.883356 0.861407

N 0.503972 0.863896 0.827627 0.877145 0.907847

O 0.856476 0.88298 0.761989 0.887402 0.85855

P 0.846639 0.835762 0.761658 0.8904 0.90117

Fig. 5. R2 Performance of Neural Networks
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As shown, sets A, D, F, and I onwards have considerably 
reliable R2 values. Going back to Table 2, it can be seen that 
the similarity of these input data sets is the inclusion of travel 
experience variables. In set A, where only travel experience 
and passenger personal information were used, the R2 values 
only reached a little over 0.7. If variables on passenger travel 
information were added as shown in set D, the R2 values 
reached 0.8 when the number of hidden neurons was set at 
15. When variables dealing with trip purpose were added, 
the R2 also attained values over 0.8, but needed more hidden 
neurons and iterations. Furthermore, when variables are 
added, the R2 values tend to show a slight increase, but 
require significantly longer time for network development. 
Thus, to have a simple, yet still statistically reliable model, 
the choices were cut down to sets A, D, and F. Table 4 shows 
a summary of the variables included in these sets, as well as 
the R2 values for the training, validation, and testing of the 
best neural networks using sets A, D, and F, respectively.

Following the guidelines in the appropriate number of 
hidden neurons, the three networks were evaluated. The first 
condition sets the maximum number of hidden neurons to 
be twice the number of input nodes plus one. The 16-45-3 

model does not satisfy this condition (2(16) + 1 = 33 < 45), 
and is thus, removed. The second guideline states that the 
number of hidden neurons should be between the average 
number of input and output nodes and their sum. Both 
the 6-5-3 and 11-15-3 models satisfy the first part of this 
condition, but only the 11-15-3 model fails the next (11 + 
3 = 14 < 15). However, as the R2 value of the 6-5-3 model 
is relatively low, and since the 11-15-3 model only slightly 
failed to satisfy the guidelines, the latter was chosen as the 
better model.

To determine the optimum number of hidden neurons, 
neural network models were developed while varying 
the number of hidden neurons from 5 to 25. Figure 6 and  
Figure 7 show the R2 and mean square error performances 
of the models, respectively. As shown, the highest R2 values 
for training, validation, and testing were attained when the 
number of hidden neurons was at 15. Also shown, the lowest 
mean square error was reached with 15 hidden neurons. 
Thus, this paper recognizes the 11-15-3 neural network (i.e., 
11 input variables; 15 hidden neurons; 3 output nodes) as the 
best model to describe the discrete choice behavior being 
studied. Figure 8 shows the structure of the best model.

TABLE IV
 Best Neural Networks Developed

Variables

6-5-3 NN 11-15-3 16-45-3

Travel 
Experience

USED_A 
USED_B 
USED_C 

Travel 
Experience

USED_A 
USED_B 
USED_C 

Travel 
Experience

USED_A 
USED_B 
USED_C 

Passenger 
Personal 
Information

AGE
GENDER
INCOME 

Passenger 
Personal 
Information

AGE
GENDER
INCOME 

Passenger 
Personal 
Information

AGE
GENDER
INCOME 

Passenger 
Travel 
Information

NUM_GRP 
CHL_GRP 
FREQNCY
BEFLNCH 
WKDAY 

Passenger 
Travel 
Information

NUM_GRP 
CHL_GRP 
FREQNCY
BEFLNCH 
WKDAY 

Trip Purpose PURWORK 
PURVACA 
PURSCHL 
PURBUSI 
PURHOME 

Input Nodes 6 11 w 16 
Hidden Neurons 5 15 45 

R2

Training 0.73630I1 0.810594 0.848867 
Validation 0.751793 0.828082 0.819496 

Testing 0.735975 0.85705 0.742958 
All 0.738551 0.820129 0.828100 
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The variables used in the final neural network model 
include passenger travel information (number of people 
in travel group, number of children in travel group, 
frequency of travel, time of day, day of week), travel 
experience information (experience of using options A, 
B, or C in the past), and passenger personal information 
(age, gender, income). This does not follow the common 

idea that travel time and travel cost are the most significant 
factors contributing to a travel mode choice. As previously 
mentioned, the statistically acceptable models are those 
which primarily included travel experience information. 
This can be interpreted as the neural network’s effort to 
model the behavior and not necessarily the choice decision 
process.

Fig. 8. 11-15-3 Neural Network Structure

Fig. 7. Mean Square Error of Set D Neural Networks

Fig. 6. R2 Performance of Set D Neural Networks
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VI.  Summary

Out of all of the variables found to be significant, only 
AGE and INCOME were found to be significant in both 
logit and neural network models. All other variables in the 
neural network were not found to be significant in the logit 
models, just as those other variables found to be significant 
in the logit models were insignificant in the neural network 
models. This shows that the models developed captured 
different facets of the same discrete choice situation. The 
logit models can be understood to be more focused on 
modeling the decision making process of the passenger, 
while the neural network concentrated on modeling the 
overall historical behavior.

TABLE V 
Performance of Logit and Neural Network Models

Measure ML3 11-15-3 NN

Pseudo R2 0.40277
(From Table 2) –

R2 0.80332
(Interpolated)

0.82013
(From Table 5)

Prediction 
Accuracy [%] 70.33493 92.98246

Choice
A 65.94724 96.16307
B 77.58621 102.122
C 26.50602 100.00

Table 5 shows a comparison of the R2 and prediction 
accuracy of the best models developed. R2 values for the logit 
models were estimated from the established relationship 
between linear R2 and logit pseudo-R2 values, shown in 
Figure 9. As shown in the table, the best neural network 
has a higher R2 value compared with the best ML models. 
Also, the 11-15-3 NN has the highest prediction accuracy 
at almost 93%. This shows that the neural network model 
is a better fit in describing the travel choice behavior of the 
transport network studied as compared with the multinomial 
logit model. 

Also shown is the disaggregated prediction accuracy 
of the models, where a 65.95% prediction accuracy means 
that 65.95% of those who chose option A were predicted to 
choose option A. As shown, the neural network model is also 
capable of accurately predicting the minority (Choice C), 
having a prediction accuracy of 100%, as compared with the 
26.51% of both ML3 and NL3. Logit models usually treat the 
minority as errors. In the neural network, on the other hand, 
the minority is the one having the perfect prediction rate. 
This shows that the neural network takes every observation 
as a true and perfectly valid observation, and thus, tries to 
model it along with all other observations. The prediction 

accuracy, computed to be at 102.12% for Choice B, can be 
explained as the model predicting more individuals choosing 
option B than the actual number, corresponding to some 
prediction errors.

Fig. 9. Relationship of Logit pseudo-R2 and linear R2

VII. Conclusions & Recommendations

These findings do not mean that neural networks are 
always better than logit models. If anything, this paper only 
shows that neural networks can also be used in modeling 
intra-regional travel, aside from urban trips that have been 
the focus of most other researches. Furthermore, the power 
of logit models to predict travel choices is still valid as it 
requires less input but yet produces comparable fitness and 
prediction accuracy.

Also, while the neural network can statistically better 
model the travel choice being studied, logit models 
explicitly show the numerical contributions of the variables 
that ultimately add up to a decision. This allows for 
the computation of external quantities like the value of 
time of the population, which can be used in many other 
applications, unlike the black-box characteristic of neural 
networks that does not provide any insight on the structure 
of the function being approximated. 

This paper also recognizes the applicability of using 
data sets in determining the best combinations of input 
data. As the total number of input variables amount to 74, 
there would be much difficulty in accounting for all possible 
combinations. Thus, the researcher found it best to keep 
the neural network as simple and uncrowded as possible 
by looking at the small improvements of R2 values as more 
input variables and hidden neurons are added. Furthermore, 
as the research was performed with the aim of finding a more 
efficient approach in developing discrete choice models, 
grinding through strenuous modeling using all possible 
combinations of variables, while finding the optimum 
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number of hidden neurons at the same time, would not have 
been the way to go.

As for the computation of relative importance of 
variables, in testing its significance in the discrete choice 
model, conducting connection weight analysis on the neural 
network is recommended. As the previous work already has 
discussions on marginal effects and elasticities for the logit 
models developed, determining the relative importance of 
the variables found to be significant in the neural network 
can be used to further evaluate the applicability of neural 
networks in predicting travel choices. Being able to get 
the same findings would only strengthen the idea of the 
applicability of neural networks in discrete choice analysis. 
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Appendix

Category Variable Description

Trip Purpose purwork 1 – trip purpose is work; 0 – if not

purvaca 1 – trip purpose is vacation; 0 – if not

purschl 1 – trip purpose is school; 0 – if not

purbusi 1 – trip purpose is business; 0 – if not

purhome 1 – trip purpose is home; 0 – if not

Passenger Travel 
Information

num_grp Number of people in travel group

chl_grp Number of children in travel group

freqncy Frequency of travel

beflunch 1 – time of travel is before 12:00 P.M.; 0 – if not

wkday 1 – day of travel is a weekday; 0 – if not

Travel Experience usedrta 1 – have experience using route A; 0 – if none

usedrtb 1 – have experience using route B; 0 – if none

usedrtc 1 – have experience using route C; 0 – if none

Travel Choice 
Information

a_time Travel time when using option A

b_time Travel time when using option B

c_time Travel cost when using option C

a_tcost Travel cost when using option A

b_tcost Travel cost when using option B

c_tcost Travel time when using option C

a_wttme Waiting time when using option A

b_wttme Waiting time when using option B

c_wttme Waiting time when using option C

Access Information a_comorpr Comfort of accessing option A

b_comorpr Comfort of accessing option B

c_comorpr Comfort of accessing option C

a_torpr Time of accessing option A

b_torpr Time of accessing option B

c_torpr Time of accessing option C

a_corpr Cost of accessing option A

b_corpr Cost of accessing option B

c_corpr Cost of accessing option C

Egress Information a_comprde Comfort of egressing option A

b_comprde Comfort of egressing option B

c_comprde Comfort of egressing option C

a_tprde Time of egressing option A

b_tprde Time of egressing option B

c_tprde Time of egressing option C

a_cprde Cost of egressing option A

b_cprde Cost of egressing option B

c_cprde Cost of egressing option C
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Others a_cbag Additional cost for baggage when using option A

b_cbag Additional cost for baggage when using option B

c_cbag Additional cost for baggage when using option C

b_rdtrp 1 – option B user bought roundtrip tickets; 0 – if not

Passenger Personal 
Information

age Age of passenger

gender 1 – passenger is male; 0 – if female

income Personal monthly income of passenger

Other Passenger 
Personal Information

single 1 – passenger is single; 0 – if not

married 1 – passenger is married; 0 – if not

num_chl Number of children of passenger

Other Passenger 
Financial Information

num_mot Number of motorcycles owned by passenger

num_car Number of cars owned by passenger

num_van Number of vans owned by passenger

num_suv Number of SUVs owned by passenger

num_jpn Number of jeepneys owned by passenger

vacatn Number of vacations passenger takes yearly

General Travel Choice 
Information

a_totcom Total comfort when using option A

b_totcom Total comfort when using option B

c_totcom Total comfort when using option C

a_lndtime Total time travelling on land when using option A

b_lndtime Total time travelling on land when using option B

c_lndtime Total time travelling on land when using option C

a_seatime Total time travelling at sea when using option A

b_seatime Total time travelling at sea when using option B

c_seatime Total time travelling at sea when using option C

a_freqncy Operation frequency of option A

b_freqncy Operation frequency of option B

c_freqncy Operation frequency of option C

a_tottime Total time when using option A

b_tottime Total time when using option B

c_tottime Total time when using option C

a_aircon Time spent in air-conditioned facility when using option A

b_aircon Time spent in air-conditioned facility when using option B

c_aircon Time spent in air-conditioned facility when using option C
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Abstract—The human brain can be stimulated by 
internal and external factors with which the effect of 
these can be traced from brainwaves or EEG signals. 
The natural complexity of EEG signals calls for 
methods by which information can be extracted and 
used for a particular purpose. In this study, musical 
tones were used to stimulate the brain and an attempt 
was made to detect and classify these stimulations 
from the EEG signals. An Artificial Neural Network 
(ANN)-based classifier was employed to do this task. 
Wavelet based de-noising was used to smoothen the 
musical tone stimulated EEG signals and among the 
110 known mother wavelets, the reverse biorthogonal 
‘rbio3.1’ and ‘rbio3.3’ using the ‘rigrsure’ thresholding 
method satisfied the selection criteria for better de-
noising effects.

Detection and classification were performed using 
ANNs implementing four different training algorithms. 
Results show that trainbr or trainlm is good for detection 
while the trainlm was found to be better than the other 
training algorithms used when it comes to classification. 
The metrics for selecting the training algorithm were 
based on the F-score and the rejection rate having the 
condition that F-score should be high while the rejection 
rate should be low.

Keywords—Electroencephalogram, musical tone 
stimulation, wavelet de-noising, training algorithms, 
Artificial Neural Networks

I.  Introduction

THE relaxed state of the mind can be disturbed by 
different stimulation causing a response that can be 

mapped and viewed through electroencephalography 
(EEG). The stimulation can be assessed and characterized 
[1] using different signal processing techniques. Not just 
stimulations, inherent motions [2],[3] and other regular 
activities of the human body [4]–[6] are deeply registered 
and appear in different patterns in the brain. Different 
attempts were made to understand brainwave patterns 
according to a specific task or stimulation [6]–[8] and this 
brought about a variety of approaches that addresses the 
nature of the task and stimulation.    

In this study, an attempt was made to detect and 
classify the disturbance caused by musical tone stimulation 
by utilizing different algorithms in an artificial neural 
network. Musical tones are the building components of a 
melody when they are arranged in a specific timing pattern 
guided by a time signature. Lyrics were added to give 
meaning to these arrangement, thus, producing a song. 
The uniqueness of this study is that it focuses on the music 
itself, specifically the pitch, and not on the song which is a 
short piece of music with lyrics that comes with different 
genres. Stimulated EEG signals were used to investigate 
the relative effect of the musical tones [1] through the 
different features which can be extracted from it. EEG 
signals in its raw form requires a number of processing 
techniques in order reduce its complexity and utilize it into 
something useful and informative. 

Processing EEG signals poses challenges in developing 
algorithms by which they can be utilized for a specific 
purpose. EEG signal patterns can be used as a basis for 
diagnoses [5], [7], [9]–[12] and a control signal for actuators 
and motors [13], [14]. Before doing so, preprocessing has 
to take place to remove unwanted details in the EEG 
stream. Hence, filtering techniques have to be performed. 

 

Journal of Computational Innovations and Engineering Applications 1(2) 2017: 55–64

Copyright © 2017 by De La Salle University



Journal of Computational Innovations and Engineering Applications 	V ol 1 No. 2 (2017)56

One of the best de-noising methods is wavelet-based filtering 
due to its capability to deal with both time and frequency 
maps of the given signal simultaneously as compared to 
Fourier-based filters which suffer from substantial loss of 
EEG data [15]. It is an important matter how mother wavelet 
(MW) and thresholding method is selected. 

Detection and classification are always paired with 
feature extraction. Features are the characteristics of the 
signal of interest which discriminate it from the others. 
Features can be extracted using different algorithms which 
includes both time-domain, frequency-domain and statistical 
characteristics [4], [16]–[19]. For as long as these features 
and characteristics can possibly differentiate one segment 
from another, they are good inputs to the classifier engine. 
Power and energy features [1], [2],[20] are useful features 
since stimulation is basically a transfer of energy from the 
stimuli to the receptors (or human sensory organs) which 
generate impulses that travel through the nerves to the brain. 

Features are fed into classifiers that come in a variety 
of types and algorithms used. Some of the well-known 
classifiers include Artificial Neural Networks (ANN), Naïve 
Bayes (NB) classifiers, k-nearest neighbor (k-NN) classifiers 
and Support Vector Machines (SVM). In [21],  EEG signals 
from epileptic patients were used. The features are based on 
Discrete Fourier Transform (DFT) coefficients and results 
show that NB classifiers is better than k-NN when it comes to 
classification accuracy and computation time. In [22], single 
EEG channel was used to classify levels of drowsiness. 
Features used are based on Fast Fourier Transform (FFT) 
coefficients and results show that ANN is better than SVM 
in terms of accuracy and receiver operating characteristic 
(ROC) curve. Each classifier may perform better than the 
other depending on the application and type of signal used 
[21]–[23].

This study focuses on the implementation gradient 
descent, quasi newton, conjugate gradient and Bayesian 
regularization ANN algorithms using the training functions 
(TF), trainrp, trainlm, trainscg, and trainbr. 

I.  Methods

A.	 Audio Stimulus and Data Gathering Procedures

The audio stimulus is composed musical tones in the key 
of C. The tones are C, F, and G are located at the 4th octave 
of a standard piano keyboard. The tones are arranged in a 
musical piece [1],[20] as shown in Figure 1. Rests (whole, 
half and quarter rests) are periods of silence while the notes 
(half notes) are the tones. The long series of rests before 
the first tone establishes the baseline (baseline1) while the 
rests that come immediately after a note is the secondary 
baseline (s-baseline). 

Fig. 1. Audio Stimulus Piece

A timing table [1],[20], as shown in Table I, was 
used to easily determine where in time a tone was played  
and stimulated the brain. No delays were assumed. The 
timing table is the summary of the audio stimulus in terms 
of the stimuli, time stamp, period, number of samples 
and sample series. The stimuli were named baseline1,  
s-baseline, C, F, and G. The audio was played for 3 minutes 
and 48 seconds. Baseline1 has the longest period with  
180 seconds. S-baseline and the notes have a period of  
2 seconds for each occurrence. The EEG signal was sampled 
at 128 samples per second. Baseline 1 has the largest  
number of samples with 23040. S-baseline and the  
notes have 256 samples each. There are 29184 samples 
corresponding to the total period of the audio stimulus. Each 
stimulus was mapped in the sample series for segmentation 
purposes.

The data used were taken from 15 undergraduate  
students with ages typically ranging from 18 to 21. As in 
[20], the data gathering was performed in a dim-lighted 
acoustically prepared room. The respondents were seated 
one at a time and were asked to close their eyes to minimize 
eye-related artefacts. An ear phone was used for optimal 
audio reception. A 14-channel Emotiv EPOC neuroheadset 
was used and its signal quality and data transmission 
functionality was carefully monitored through its graphical 
user interface.  

B.	 Detection and Classification Procedures

The general detection and classification process follows 
the flowchart in Figure 2. The raw EEG signals obtained 
from the neuroheadset were loaded in Matlab®. 

The signals were bandpass filtered within the alpha 
(8Hz–13Hz) and beta (13Hz–30Hz) bands, and smoothened 
using wavelet de-noising techniques. Two classifiers were 
used. The first one (ANN1) was for detecting the tone-
stimulated EEG signal and the second one (ANN2) is to 
classify it according to C, F or G tone. The display process 
is an indicator of what has been detected or classified. There 
is a possibility that a certain signal might not be classified 
[24] and to address this, rejection ratios were indicated in 
the results.



Selection of Artificial Neural Network Training 	N avea and Dadios 57

TABLE I
Audio Stimulus Timing Table

Stimuli baseline 1 s-baselline C s-baseline F s-baseline G
Time Stamp 0-3:00 3:01-3:02 3:03-3:04 3:05-3:06 3:07-3:08 3:09-3:10 3:11-3:12
Period 180 sec 2 sec 2 sec 2 sec 2 sec 2 sec 2 sec
No. of Samples 23040 256 256 256 256 256 256
Sample Series 1-23040 23041-23296 23297-23552 23553-23808 23809-24064 24065-24320 23421-24576

Stimuli s-baseline 1 C s-baseline C s-baseline F s-baseline
Time Stamp 3:13-3:14 3:15-3:16 3:17-3:18 3:19-3:20 3:21-3:22 3:23-3:24 3:25-3:26
Period 2 sec 2 sec 2 sec 2 sec 2 sec 2 sec 2 sec
No. of Samples 256 256 256 256 256 256 256
Sample Series 24577-24832 24833-25088 25089-25344 25345-25600 25601-25856 25857-26112 26113-26368

Stimuli G s-baseline C s-baseline C s-baseline F
Time Stamp 3:27-3:28 3:29-3:30 3:31-3:32 3:33-3:34 3:35-3:36 3:37-3:38 3:39-3:40
Period 2 sec 2 sec 2 sec 2 sec 2 sec 2 sec 2 sec
No. of Samples 23040 256 256 256 256 256 256
Sample Series 26369-26624 26625-26880 26881-27136 27137-27392 27393-27648 27649-27904 27905-28160

Stimuli s-baseline G s-baseline C
Time Stamp 3:41-3:42 3:43-3:44 3:45-3:46 3:47-3:48
Period 2 sec 2 sec 2 sec 2 sec
No. of Samples 256 256 256 256
Sample Series 28161-28416 28417-28672 28673-28928 28929-29184

Fig. 2. Detection and Classification General Flowchart

C.	 Wavelet-based De-noising 

This filtering technique is a three-step process that 
includes signal decomposition using DWT by selecting a 
mother wavelet and the number of decomposition levels, 
perform thresholding in the wavelet domain and shrink the 
coefficients by thresholding, and then reconstruct the signal 
from the thresholded DWT coefficients. 

TABLE II
Wavelet Families

Wavelet Family Wavelet Tag Count

Daubechies db1 - db45 45

Coiflet coif1 - coif5 5

Biorthogonal bior1.1 - bio6.8 15

Reverse-
Biorthorthogonal rbio1.1 - rbio6.8 15

Discrete Meyer dmey 1

Symlets sym2 - sym30 29

Total 110
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There are 110 known mother wavelets, as shown in 
Table II, and these were all tested using a soft thresholding 
algorithm implementing four thresholding methods 
namely: “rigrsure,” “heursure,” sqtwolog,” and “minimaxi” 
[25],[26]. A 2-level decomposition was implemented since 
the baseband signal ranges from 8 Hz–30 Hz covering the 
alpha and the beta bands. This results to alpha waves ranging 
from 8Hz–13.5 Hz and beta waves ranging from 13.5 Hz to 
19 Hz and 19 Hz to 30 Hz.

Mother wavelet and thresholding method selection was 
based on the following: signal-to-noise ratio (SNR), peak 
signal-to-noise ratio (PSNR), mean square error (MSE) 
and the correlation coefficient (R). These parameters were 
calculated using (1)–(4), respectively. The original EEG 
signal is x(n) while the de-noised EEG signal is xd(n). As 
a selection requirement, SNR, PSNR and R should be at 
maximum while MSE should be at minimum [25].
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D.	 Feature Extraction

Feature extraction is the process of determining a unique 
characteristic, a special feature or a distinct feature vector 
from a pattern vector. Features are usually divided into the 
statistical characteristics and the syntactic descriptions. Not 
all features are good discriminants and all features need not 
to be used for classification. Large feature vectors require 
more processing time and are computationally expensive. 
Best features can be identified according to various criteria 
and optimization techniques [27]. In classification tasks 
like using ANN, feature extraction and selection plays an 
important role.

In this study, four features were considered. The features 
were based on the statistical characteristics of the power 
spectrum vectors of the EEG signal and the signals’ energy 
obtained from autocorrelation.  

	 Kurtosis: This is a statistical measure of the flatness 
or peaks of a signal distribution. The kurtosis of the 
power spectrum vector of the EEG signal was used 
as a feature [1].

	Skewness: This is another statistical measure that 
deals with the asymmetry of a signal distribution. As 
with kurtosis, the skewness of the power spectrum 
vector of the EEG signal was used [1].

	Power Spectrum Vectors: These are derived from the 
Hamming-windowed Fourier transform coefficients 
of the EEG signal. The power spectrum vectors were 
decomposed using Singular Value Decomposition 
(SVD) to represent a single feature [20]. 

	Signal Energy: This is obtained by taking the element 
at the origin of the autocorrelation sequence of the 
signal. The autocorrelation of the signal x(n) is 
defined by 

	 ( ) ( ) ( ), 0, 1, 2,...
∞

∞

= = ± +∑xx
n=-

r l x n+l x n l   	  (5)

	 where the signal energy is rxx(0).

E.	 Artificial Neural Networks (ANN)

An artificial neural network is composed of ‘neurons’ or 
‘cells’ which are linked together by weighted connections. 
[28]. These units receive input signals from other units or 
sources and use it to compute for an output signal which is 
transmitted to other units.

ANNs have three useful layers: the input layer (which 
receives data from external sources), the hidden layer (which 
contains internal network input and output data) and the 
output layer (which sends the output/resulting data). A three-
layer feed-forward neural network was used in this study 
[19]. Feed forward networks are straight forward networks 
in which data flow from the input side to the output side of 
the ANN. 

The architecture of the network is shown in Figure 3. 
There are two networks used, one for detection and one for 
classification. For detection, the input layer is composed of 
4 neurons which correspond to the 4 features of the EEG 
signals. Each input neuron is linked to the 50 sigmoid 
neurons that forms the hidden layer. The hidden neurons 
are linked to the output layer which is composed of  
2 linear output neurons that correspond to Not Tone 
(Baseline) or Tone. Same hidden layers were used for 
classification except that the input layer has 2 neurons 
corresponding to the energy and power of the signal, and 
the output layer with three neurons, corresponding to the 
tones C, F, and G. 
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  a.   b.

Fig. 3. Neural Network Architecture, a) detection; b) classification

The network was trained using gradient descent, quasi- 
newton, conjugate gradient and Bayesian regularization 
by implementing the training functions trainrp, trainlm, 
trainscg and trainbr, respectively [29]. These training 
functions has the property to deal with the non-linear 
nature of the EEG signals using non-linear activation or 
kernel functions. In resilient backpropagation (trainrp), the 
weight and bias values were updated by using the sign of 
the partial derivatives leaving its magnitude of no significant 
effect. This performs faster than a standard steepest 
descent algorithm.  For scaled conjugate gradient Bayesian 
regulation backpropagation, the weight and bias values 
are updated according to the Levenberg-Marquardt (LM) 
optimization method [30] which minimizes squared errors 
and weights combinations [31]. In Bayesian regulation, weights 
are introduced into the training objective function denoted by

                    F(w) = αSw + βSD                                 (5)

where Sw is the sum of the squared network weights 
and SD is the sum of the network errors. The objective 
function parameters are defined by the variables α and β. 
The weights of the network are randomly selected and a 
Gaussian distribution of the network weights and training 
set is assumed.

The objective function parameters, α and β, are defined 
using the Baye’s theorem which basically shows the 
relationship between two variables, say A and B, according 
to their prior and posterior probabilities [32]. The posterior 
probability of A with respect to B is defined by

	 ( ) ( ) ( )
( )

=
P B A P A

P A B
P B  	 (6)

where P(B│A) is the prior of B conditional to A, P(A) 
and P(B) are the prior probabilities of A and B not equal 

to zero, respectively. The optimal weight space can be 
obtained by minimizing the objective function in (5) which 
means maximizing the posterior probability function which 
is given by

            ( ) ( ) ( )
( )

,
α β α β

α β =
P D , ,M P , M

P D,M
P D M

	 (7)

where α and β are the variables to be optimized, D refers 
to the weight distribution, M is the specific neural network 
architecture, P(D|M) is the factor of normalization,  
P(α, β |M) is the regularization parameters’ constant prior 
density and P(D |α, β, M) is the similarity function of D  
given α, β, and M. This process results to optimum values of 
α and β for a given weight space. The LM phase calculates 
the squared second-order partial derivatives of the objective 
function (the Hessian) and minimizes the objective function 
by updating the weights. For non-convergence, the algorithm 
makes an estimation for new values of α and β. This process 
repeats itself until convergence is reached [33].  

F.	 Confusion Matrices

	 Confusion matrices are used to assess the performance 
of different classifiers [34],[35]. These matrices provide 
information that leads to determining the sensitivity, 
specificity, precision, accuracy and F-score of the classifier. 
Precision tells how many of the positively classified were 
relevant, sensitivity / recall tells how good a test is in 
detecting the positives, and specificity is an indicator of how 
good a test is in avoiding false detections. The harmonic 
mean of precision and sensitivity is known as the F-score. 
This is commonly used as a discriminating factor to describe 
a good classifier. There were instances in which not all of 
the samples were classified. Hence, the rejection rate of the 
classifier has to be considered [24]. 

III.  Results and Discussion

As a requirement, higher SNR, PSNR and correlation 
coefficient, and lower MSE indicates better de-noising 
effect. Table III shows the maximum values for the SNR, 
PSNR and R, the minimum values for the MSE, and the 
mother wavelet where they were obtained with respect to 
the five segments. Among the four thresholding methods, 
the “rigrsure” outperformed the other methods. Results show 
that the mother wavelet that mostly satisfied the conditions 
were ‘rbio3.1’ and ’rbio3.3.’

The two identified mother wavelets were then used to 
de-noise the EEG signals using the ‘rigrsure’ thresholding 
method. A sample of an original signal and de-noised signal 
is shown in Figure 4.
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Fig. 4. Original (light) and de-noised (dark) signal

Four features were used to detect whether the EEG is 

tone stimulated or not, and two features (power and energy) 
were used to classify the tones whether C, F, or G. Two 
ANNs (ANN1 and ANN2) were used to perform detection 
and classification, respectively, implementing the training 
functions trainrp, trainlm, trainscg and trainbr one at a 
time. Ten training repetitions were performed and the trained 
network with the highest F-score and lowest rejection rate 
was selected. Results are shown in Table IV and Table V for 
detection and classification, respectively.

For detection, the trainbr function has the lowest 
rejection rate and has 0.8571 (85.71%) F-score for both 
mother wavelets. However, this training algorithm took more 
time (more or less 120 sec) to converge during simulation. 

TABLE III
Segment Parameter Values and Significant wavelets

Thresholding Parameters
Segments

BL sBL C F G

SNR(dB) 22.0950 rbio3.3 23.0178 rbio3.1 25.2446 rbio3.1 23.5344 rbio3.1 25.8607 rbio3.1

PSNR (dB) 51.4410 bior3.9 47.4349 rbio3.1 48.8130 rbio3.1 49.1932 rbio3.1 51.7892 rbio3.1

MSE 0.2455 rbio3.3 0.3368 rbio3.1 0.2729 rbio3.9 0.3043 rbio3.1 0.2421 rbio3.1

R 0.9956 rbio3.3 0.9945 rbio3.1 0.9959 rbio3.1 0.9934 rbio3.1 0.9966 rbio3.1

SNR(dB) 20.6370 db39 18.8722 db43 19.4585 db1 17.6053 db1 18.8816 db1

PSNR (dB) 50.6617 db37 45.6015 db43 42.8141 db31 44.1963 db20 45.7596 db43

MSE 0.3091 db39 0.4860 db43 0.4481 db1 0.5558 db23 0.5942 db1

R 0.9944 db39 0.9926 db43 0.9886 coif4 0.9884 db38 0.9903 db41

SNR(dB) 22.3970 rbio3.3 23.9690 rbio3.1 25.8157 rbio3.1 24.5010 rbio3.1 26.1473 rbio3.1

PSNR (dB) 51.5537 bior3.9 48.6092 rbio3.7 49.1534 rbio3.1 50.4841 rbio3.3 53.4510 rbio3.1

MSE 0.2251 rbio3.3 0.2299 rbio3.9 0.1756 rbio3.1 0.1750 rbio3.3 0.1459 rbio3.3

R 0.9958 rbio3.3 0.9961 rbio3.1 0.9957 rbio3.1 0.9963 rbio3.1 0.9978 rbio3.3

SNR(dB) 15.6564 bior3.9 14.2099 bior3.7 12.7085 bior3.7 12.4987 bior3.7 12.6978 bior3.9

PSNR (dB) 45.0140 bior3.9 40.2942 bior3.9 36.7208 bior3.7 38.6902 bior3.7 38.5500 bior3.9

MSE 1.2286 bior3.9 1.5163 bior3.7 1.7650 bior3.7 1.8006 bior3.9 1.9498 bior3.9

R 0.9753 bior3.9 0.9755 bior3.7 0.9606 bior3.7 0.9669 bior3.7 0.9690 bior3.9

Heur
sur

e

Mini
maxi

Rigs
ure

sqt
wolo

g

MW TF Precision Sensitivity Specificity Accuracy F-score Rej. Rate

rbio3.1

train1m 76.27% 100.00% 51.72% 81.08% 86.54% 1.33%
trainscg 75.00% 100.00% 50.00% 80.00% 85.71% 0.00%
trainbr 75.00% 100.00% 50.00% 80.00% 85.71% 0.00%
tainrp 76.79% 100.00% 53.57% 81.69% 86.87% 5.33%

rbio3.3

train1m 79.63% 95.56% 63.33% 82.67% 85.86% 0.00%
trainscg 75.86% 100.00% 51.72% 80.82% 86.27% 2.67%
trainbr 75.00% 100.00% 50.00% 80.00% 85.71% 0.00%
tainrp 76.27% 100.00% 48.15% 80.56% 86.54% 4.00%

TABLE IV
Precision, Sensitivity, Specificity, Accuracy,  F-score, and Rejection rate Table for Detection
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An alternative training function, trainlm, can be considered 
because this is faster and has an F-score and rejection ratio 
not significantly far from trainbr. The mother wavelet 
‘rbio3.3’ is a better choice because of minimal rejection rate.

For classification, the trainlm function has the lowest 
rejection rate and has highest F-score among all the other 
training algorithms for both mother wavelets. Hence, 
‘rbio3.3’ is a better choice since it has higher F-score and 
lower rejection ratio when classified using the trainlm 
function.

The detection and classification of the disturbance caused 
by the musical tones was successfully performed using the 
ANN trainlm function with de-noised EEG signals using 
the ‘rbio 3.3’ mother wavelet. The response of the brain as 
shown in the EEG signals were characterized in terms of 
the features extracted from them. These features describing 
the response were found to be useful enough to differentiate 
each stimulation whether there is a tone or none and if there 
is a tone stimulation, whether C, F, or G.

MW TF Segments Precision Sensitivity Specificity Accuracy F-score Rej. Rate

rbio3.1

train1m

C 100.00% 60.00% 100.00% 85.19% 75.00%

9.71%F 55.56% 76.92% 61.90% 67.65% 64.52%

G 63.64% 58.33% 80.00% 71.88% 60.87%

trainscg

C 60.00% 30.00% 81.82% 57.14% 40.00%

9.71%F 30.00% 75.00% 30.00% 42.86% 42.86%

G 75.00% 27.27% 90.00% 57.14% 40.00%

trainbr

C 100.00% 13.33% 100.00% 60.61% 23.29%

0.00%F 38.46% 100.00% 17.24% 45.45% 55.56%

G 75.00% 20.00% 94.44% 60.61% 31.58%

trainrp

C 100.00% 36.36% 100.00% 73.08% 53.33%

12.37%F 48.15% 100.00% 30.00% 57.58% 65.00%

G 100.00% 22.22% 100.00% 73.08% 36.36%

rbio3.3

train1m

C 83.33% 76.92% 91.67% 86.49% 80.00%

5.17%F 73.33% 91.67% 84.00% 86.49% 81.48%

G 96.67% 78.57% 95.45% 88.89% 84.62%

trainscg C 87.50% 58.33% 94.12% 79.13% 70.00%

8.65%F 50.00% 91.67% 52.17% 65.71% 64.71%

G 83.33% 41.67% 94.74% 74.19% 55.56%

trainbr C * 0.00% 100.00% 50.00% 0.00%

0.00%F 33.33% 100.00% 0.00% 33.33% 50.00%

G * 0.00% 100.00% 50.00% 0.00%

trainrp C 100.00% 45.45% 100.00% 76.00% 62.50%

15.96%F 54.55% 92.31% 41.18% 63.33% 68.57%

G 66.67% 33.33% 94.44% 79.17% 44.44%

TABLE V
Precision, Sensitivity, Specificity, Accuracy,  F-score, and Rejection rate Table for Classification
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The confusion matrices for detection and classification 
using the training algorithms trainbr and trainlm are shown 
in Table VI and Table VII. The inputs here served as the 
bases for the computation of the parameters in the previous 
tables. One noticeable information is the total summation of 
the horizontal data. Not tone (NT) has a total of 30 hits while 
tone (T) has 45 hits. The tones C, F and G has a total of 15 
hits each. In the event that the sum of the horizontal hits are 
less than as mentioned, then, the difference was accounted 
and was used to determine the rejection rate of the classifier.

IV.  Conclusion and Future Directives

Wavelet based de-noising was implemented to smoothen 
the musical tone stimulated EEG signals. It was found out 
that the mother wavelets ‘rbio3.1’ and ‘rbio3.3’ using the 

‘rigrsure’ thresholding method satisfied the selection criteria 
in order to provide a better de-noising effect.

Detection and classification were performed using ANNs 
implementing four different training algorithms. Results 
show that trainbr is good for detection but converges slower. 
Hence, the trainlm is recommended to be an alternative 
training algorithm. For classification, the trainlm was found 
to be better than the other training algorithms used. The 
metrics used for selecting the training algorithm were the 
F-score and the rejection rate which accounts the missed hits 
of the classifier. F-score should be high while the rejection 
rate should be low.

Future works may consider other training algorithms 
for ANN and other classifiers such as SVM, NB and k-NN 
for detection and classification of musical tone stimulated 
EEG signals.

Target Class
NT T

Output Class
NT 15 15
T 0 45

a.  Detection using rbio 3.1 (trainbr)	

Target Class
NT T

Output Class
NT 15 15
T 0 45

b.  Detection using rbio 3.3 (trainbr)	

Target Class
NT T

Output Class
NT 15 14
T 0 45

c.  Detection using rbio 3.1 (train1m)	

Target Class
NT T

Output Class
NT 13 16
T 0 45

d.  Detection using rbio 3.3 (train1m)	

TABLE VI
Confusion Matrices for Detection

Target Class
C F G

Output Class C 10 3 0
F 0 11 1
G 2 1 11

a.  Classification using rbio 3.1 (train1m)	

Target Class
C F G

Output Class C 10 3 0
F 0 11 1
G 2 1 11

b.  Classification using rbio 3.1 (train1m)	

TABLE VII
Confusion Matrices for Classification



Selection of Artificial Neural Network Training 	N avea and Dadios 63

References

[1]	 R. F. Navea and E. Dadios, “Beta/Alpha power ratio and 
alpha asymmetry characterization of EEG signals due to 
musical tone stimulation,” in Project Einstein 2015, 2015.

[2]	 P. Manoilov, “EEG eye-blinking artefacts power spectrum 
analysis,” … Int. Conf. Comput. Syst. …, pp. 1–5, 2006.

[3]	 M. a. Sovierzoski, F. I. M. Argoud, and F. M. De Azevedo, 
“Identifying eye blinks in EEG signal analysis,” 5th Int. Conf. 
Inf. Technol. Appl. Biomed. ITAB 2008 conjunction with 2nd 
Int. Symp. Summer Sch. Biomed. Heal. Eng. IS3BHE 2008, 
no. 2, pp. 406–409, 2008.

[4]	 P. Kumari and A. Vaish, “Feature-level fusion of mental task’s 
brain signal for an efficient identification system,” Neural 
Comput. Appl., vol. 27, no. 3, pp. 659–669, 2016.

[5]	 E. Estrada, H. Nazeran, G. Sierra, F. Ebrahimi, and S. K. 
Setarehdan, “Wavelet-based EEG denoising for automatic 
sleep stage classification,” CONIELECOMP 2011 - 21st Int. 
Conf. Electron. Commun. Comput. Proc., pp. 295–298, 2011.

[6]	 N. Robinson,  A. P. Vinod, K. K. Ang, K. P. Tee, and C. 
T. Guan, “EEG-based classification of fast and slow hand 
movements using wavelet-CSP algorithm,” IEEE Trans. 
Biomed. Eng., vol. 60, no. 8, pp. 2123–2132, 2013.

[7]	 R. F. Navea and E. Dadios, “Design and Implementation 
of a Cascaded Adaptive Neuro-Fuzzy Inference System for 
Cognitive and Emotional Stress Level Assessment based 
on Electroencephalograms and Self-Reports,” in HNICEM 
2014, 2014, no. November.

[8]	 F. R. On, R. Jailani, H. Norhazman, and N. M. Zaini, 
“Binaural beat effect on brainwaves based on EEG,” Proc. 
- 2013 IEEE 9th Int. Colloq. Signal Process. its Appl. CSPA 
2013, pp. 339–343, 2013.

[9]	 P. Anderer, S. J. Roberts, A. Schlgl, G. Gruber, G. Klosch, 
P. Herrmann, W. Rappelsberger, O. Filz, M. J. Barbanoj, G. 
Dorffner, and B. Saletu, “Artifact Processing in Computerized 
Analysis of Sleep EEG - A Review,” Neuropsychobiology, 
vol. 40, no. 3, pp. 150–157, 1990.

[10]	 J. Kim, B. Şen, and et al, “Sleep stage classification based 
on EEG hilbert-huang transform,” Conf. Proc.  ... Annu. Int. 
Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. 
Annu. Conf., vol. 2014, no. 3, pp. 1–6, 2014.

[11]	 H. T. Ocbagabir, K. a I. Aboalayon, and M. Faezipour, 
“Efficient EEG analysis for seizure monitoring in epileptic 
patients,” 9th Annu. Conf. Long Isl. Syst. Appl. Technol. 
LISAT 2013, 2013.

[12]	 A. Subasi and E. Erçelebi, “Classification of EEG signals 
using neural network and logistic regression,” Comput. 
Methods Programs Biomed., vol. 78, no. 2, pp. 87–99, 2005.

[13]	 L. Bi, M. Wang, Y. L. Genetu, and F. Aberham, “A shared 
controller for brain-controlled assistive vehicles,” in 
IEEE International Conference on Advanced Intelligent 
Mechatronics (AIM), 2016.

[14]	 N. Shinde and K. George, “Brain-controlled driving aid for 
electric wheelchairs,” in IEEE 13th International Conference 
on Wearable and Implantable Body Sensor Networks (BSN), 
2016.

[15]	 M. Mamun, M. Al-Kadi, and M. Marufuzzaman, 
“Effectiveness of wavelet denoising on electroencephalogram 
signals,” J. Appl. Res. Technol., vol. 11, no. 1, pp. 156–160, 
2013.

[16]	 P. Kumari and A. Vaish, “Brainwave based user identification 
system: A pilot study in robotics environment,” Rob. Auton. 
Syst., vol. 65, pp. 15–23, 2015.

[17]	 P. Kumari and A. Vaish, “Information-Theoretic Measures 
on Intrinsic Mode Function for the Individual Identification 
Using EEG Sensors,” IEEE Sens. J., vol. 15, no. 9, pp. 
4950–4960, 2015.

[18]	 V. B. Semwal, M. Raj, and G. C. Nandi, “Biometric gait 
identification based on a multilayer perceptron,” Robot. 
Auton. Syst., vol. 65, pp. 65–75, 2015.

[19]	 V. B. Semwal, K. Mondal, and G. C. Nandi, “Robust and 
accurate feature selection for humanoid push recovery and 
classification: deep learning approach,” Neural Comput. 
Appl., pp. 1–10, 2015.

[20]	 R. F. Navea and E. Dadios, “Classification of tone 
stimulated EEG signals using independent components 
and power spectrum vectors,” in 2015 International 
Conference on Humanoid, Nanotechnology, Information 
Technology,Communication and Control, Environment and 
Management (HNICEM), 2015, no. December, pp. 1–5.

[21]	 S. Ashok and G. Purushotaman, “DWT based Epileptic 
Seizure Detection from EEG Signals using Naïve Bayes/k-
NN Classifiers,” IEEE Access, vol. 3536, no. c, pp. 1–1, 
2016.

[22]	 I. Belakhdar, W. Kaaniche, R. Djmel, and B. Ouni,  
“A Comparison Between ANN and SVM Classifier for 
Drowsiness Detection Based on Single EEG Channel,”  
pp. 443–446, 2016.

[23]	 A. Turnip, A. I. Simbolon, M. F. Amri, and M. A. Suhendra, 
“Utilization of EEG-SSVEP method and ANFIS classifier 
for controlling electronic wheelchair,” Proc. 2015 Int. Conf. 
Technol. Informatics, Manag. Eng. Environ. TIME-E 2015, 
pp. 143–146, 2016.

[24]	 V. Balasubramaninan, S. Ho, and V. Vovk, “Metaconformal 
Predictors: Cleassifier Performance Metrics,” in Conformal 
Prediction for Reliable Machine Learning: Theory, 
Adaptations and Applications, 2014, pp. 168–169.

[25]	 N. K. Al-Qazzaz, S. Ali, S. A. Ahmad, M. S. Islam, and M. 
I. Ariff, “Selection of mother wavelets thresholding methods 
in denoising multi-channel EEG signals during working 
memory task,” IECBES 2014, Conf. Proc. - 2014 IEEE Conf. 
Biomed. Eng. Sci. “Miri, Where Eng. Med. Biol. Humanit. 
Meet,” no. December, pp. 214–219, 2015.

[26]	 M. I. Al-Kadi, M. B. I. Reaz, and M. A. Mohd Ali, 
“Compatibility of mother wavelet functions with the 
electroencephalographic signal,” in 2012 IEEE-EMBS 
Conference on Biomedical Engineering and Sciences, 
IECBES 2012, 2012, no. December, pp. 113–117.

[27]	 E. D. Übeyli, “Implementing eigenvector methods/
probabilistic neural networks for analysis of EEG signals,” 
Neural Networks, vol. 21, no. 9, pp. 1410–1417, 2008.

[28]	 B. Krose and P. van der Smagt, An Introduction to Neural 
Networks, no. November. The University of Amsterdam, 
1996.

[29]	 V. K. Garg and R. K. Bansal, “Comparison of neural network 
back propagation algorithms for early detection of sleep 
disorders,” in International Conference on Advances in 
Computer Engineering and Applications (ICACEA), 2015, 
pp. 71–75.



Journal of Computational Innovations and Engineering Applications 	V ol 1 No. 2 (2017)64

[30]	 L. B. Nguyen, A. V. Nguyen, S. H. Ling, and H. T. 
Nguyen, “Combining genetic algorithm and Levenberg- 
Marquardt algorithm in training neural network for 
hypoglycemia detection using EEG signals,” Proc. Annu. 
Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 5386–5389, 
2013.

[31]	 X. Pan, B. Lee, and C. Zhang, “A comparison of neural 
network backpropagation algorithms for electricity load 
forecasting,” in Intelligent Energy Systems (IWIES), 2013 
IEEE International Workshop on, 2013, pp. 22–27.

[32]	 G. Li and J. Shi, “Applications of Bayesian methods in wind 
energy conversion systems,” Renew. Energy, vol. 43, pp. 1–8, 
2012.

[33]	 Z. Yue, Z. Songzheng, and L. Tianshi, “Bayesian 
regularization BP Neural Network model for predicting oil-
gas drilling cost,” in International Conference onBusiness 
Management and Electronic Information (BMEI), 2011.

[34]	 M. Pal and S. Bandyopadhyay, “Many-objective feature 
selection for motor imagery EEG signals using differential 
evolution and support vector machine,” in International 
Conference on Microelectronics, Computing and 
Communications, 2016.

[35]	 S. A. M. Aris, A. H. Jahidin, and M. N. Taib, “Performance 
measure of the multi-class classification for the EEG 
calmness categorization study,” in International Conference 
on BioSignal Analysis, Processing and Systems, 2015.



Abstract—Motor speed controller is essential to 
utilize and maximize the available power. In this paper, 
the researchers present a self-learning controller for 
motor speed to be utilize on Three Phase Motor using 
Variable Frequency Driver (VFD) for irrigation system 
of Smart Farming using fuzzy logic algorithm developed 
inside a Micro-Control Unit (MCU) environment or 
MCU on Power Savings and Efficient Irrigation System 
(MPSEIS). Motor speed can be reduced and increased 
using three fuzzy inputs namely, starting process, 
maintaining process, and stopping process. These fuzzy 
inputs can be triggered from feedback data of water 
reservoir level sensor, plant water requirements, and 
power optimization control. To test the controller’s 
performance, different frequencies using variable 
frequency driver (VFD) in real time undergoing 
different water level and power load variations. The 
whole system is powered by photovoltaic cells, water 
demand on crops can be quickly and accurately 
calculated which can be scientific basis for water and 
power savings for irrigation. For continuous plant 
production on Smart Farm with independent power 
supply, new technologies using fuzzy logic were used. 
The results of experiment showed that the developed 
controller is reliable, accurate and robust.

Keywords—Fuzzy logic, Irrigation System, MCU, 
motor speed control, Smart Farm, Three phase motor

1. Introduction

FOOD security is one of major problems that the world 
faces today. The effect of global warming coupled 

with the world population explosion poses a big challenge 
to solve this issue. The Philippines being a developing 

Fuzzy Logic Implementation for MCU on 
Power Savings and Efficient Irrigation System 

(MPSEIS) for Smart Farming
Francisco B. Culibrina and Elmer P. Dadios

country suffered a lot due to lack of food security due 
to unpredictable weather conditions that destroyed its 
agricultural products. In addition, due to climate change, 
the Philippines power/energy generation is compromised 
that resulted in crops water irrigation problem. As a result, 
decreasing of agricultural products such as rice, corn, 
tomato, etc. was sentient by the farmers especially during 
off-season.

Next crop to rice and corn farming system is tomato, 
due to continued high demand in the market and increase 
in consumers. This was considered as one of the most 
cultivated vegetables having different varieties around the 
globe [HYPERLINK \l “Pat15” 1]. It has various uses and 
is attractive to consumers for its health benefits, and it is 
used as a siding in food presentations and preparations. 
It is also an important raw material in manufacturing of 
tomato paste. 

From the record of  Bureau of Agricultural Statistics 
(BAS)2] of the Philippines, tomato production increased 
in 2006 to 2010 from 188.8 thousand Metric Tons (MT) 
to 204.3 thousand MT which results to an annual growth 
of 3.87 percent. Increase of area harvested from 17.1 
thousand hectares to 17.7 thousand hectares, produced 
an average yield of 3.08 percent, which grew from 10.26 
MT to 11.57 MT per hectares from 2006 to 2010. In 
2010, Ilocos is the leading region in production of tomato 
producing 69.62 thousand MT that contributed about 34 
percent of the country’s total production. Next is Northern 
Mindanao contributing 25 percent, followed by Central 
Luzon and Cavite, Laguna, Batangas, Rizal and Quezon  
(CALABARZON) region with 10 percent and 9 percent, 
respectively.

According to World Processing Tomato Council, 
Figure 1 shows the statistic data of global production and 
consumption of tomato. It shows that NAFTA, Eu-10, 
Eu-15, and other parts of Europe has a huge consumption 
compare with the production. One of the best solutions  
to address this problem of increasing the demand of 
tomatoes is an all season crop production. Smart farming 
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or precision farming addresses all season plants/crops 
production. The focus of smart farming is to use new 
technology for continuous site-specific plant production [  
HYPERLINK \l “Mig121”  3 ]. The continuous monitoring 
of plant growth is complex and technically challenging. 
Thus, using fuzzy logic for this new technology, intelligence 
learning for power saving and efficient irrigation is utilize.

In Smart Farming, the parameters to be monitor are: soil 
moisture, humidity, temperature and physical appearance 
of the plants[4].

Fig. 1. Global Statistic Data for the Distribution of Tomato 
Production and Consumption

II.  Controller Units for Power Savings and 
Efficient Irrigation System (MPSEIS)

A.  Irrigation System

Deep irrigation must be appropriate for tomato and it 
requires semi-regular rather than light, daily irrigation. One 
to two inches of soil moisture or one gallon of water each 
week are the basic requirements of each tomato plants, but 
more accurately one gallon of water for five days. Infrequent 
or irregular irrigations for tomato plant results to stress and 
growth development problems, including blossom end rot 
and cracked or split fruit [5]. To address these needs, constant 
water supply must be maintained in spite of limited power 
source.

Figure 2 shows the power source system and irrigation 
supply for the Smart farm. 

Fig. 2. Overview of Smart Farm Solar and Actuator System Using 
MCU,WSN, and VFD

Gravitation Cylindrical Water Tank, having a capacity 
of 1500 liters, was used, located at a total of 58 feet vertical 
altitude from the plot area. Gravitational tank was used in this 
research to minimize the use of energy for water pressure. 
The tank is required to have at least 1000 liters to maintain 
a minimum of 25 psi to achieve a good performance for 
automatic sprinkler irrigation and drip irrigation [6].

This research used wireless sensor network for each 
solenoid valve of drip irrigation and sprinkler irrigation 
system. In this study, both sprinkler and drip irrigation 
system shown in Figure 3 has been used. The sprinkler 
irrigation is used not only to water the plant but also to 
help lower the temperature and humidity of the plant’s 
environment. The drip irrigation is used to increase the soil 
moisture content of the plant’s surrounding.

Figure 4 shows the general control system for water 
supply and irrigation.

	 psi = 0.433 x height in feet	 (1)

Fig. 3. Sprinkler and Drip Irrigation System with solenoid valve, 
MCU, and WSN
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The system irrigating 500 tomatoes on the farm has a 
total water consumption of 100 gallons or 400 liters of water 
every day. The system arrived at a formula shown in equation 
1 for water consumption per tomato per liter.

1gallon litersConsumption(liters) 1tomato 4
3days gallon

   
= × ×   

  
	 (2)

Fig. 4. General Control System

B.  Power Requirement

In this paper, the system uses 1 HP three phase induction 
motor to pump and generate water. This is more efficient 
compared to a single phase induction motor [7] since the 
whole system is supplied by 1KW photovoltaic cell (solar 
panel) and 200 ampere hour storage battery. The challenge 
of using three phase induction motor was encountered and it 
was addressed by using Variable Frequency Drive (VFD) and 
Micro Control Unit (MCU). The MCU were programmed 
by implementing Fuzzy Logic Control.

1. Variable Frequency Drive (VFD)
VFD is a device used to control the AC motor speed 

and torque by varying its input frequency and voltage 
[HYPERLINK \l “Dad12”  5 ] [6]. The VFD is used to 
drive an electric motor by varying the frequency and voltage 
supply. To prevent high current requirements in starting 
up a 1 HP three phase motor, the VFD is programmed for 
gradual increase of frequency from 0Hz to 60Hz within 5 
seconds. Since frequency are directly related to the motor 
speed (rpm) [  HYPERLINK \l “Eng10” 7 ], starting-up of 
three phase induction motor requires only small amount of 
current compared to direct single phase motor. Experiment 
data can be seen in Figure 10.

Fig. 5. Basic operation of  VFD and 3 Phase Motor

2. Three Phase Induction Motor
Figure 5 shows the actual 1 HP three phase induction 

motor used in this research that runs on a three phase AC 
supply. The advantage of this setup is that the construction 
is simple and rugged, reliable, highly efficient, has 
excellent power factor, economical, and requires minimum 
maintenance [8]. 

III.  Processes Involved in Formulating  
the Fuzzy-MPSEIS 

Fig. 6. Components of the fuzzy logic - MCU controller

A.  The Fuzzy Logic-MCU Process Flow

The architecture of the fuzzy logic controller 
implemented for power savings and efficient irrigation 
system using a Micro-Controller Unit (MCU) can be 
seen in Figure 7. The starting point (SP) served as the 
reference value of the induction motor speed. Another 
input, process value (PV), is obtained as the feedback 
value of the variable frequency drive (VFD). SP and 
PV will be used to solve error and rate of error. Figure 
7 shows an illustration of the fuzzy control used.  In 
this setup, the micro-controller unit (MCU) served as 
the main controller where the fuzzy logic algorithm 
was programmed. The fuzzy control in this research  
consists of a fuzzifier, an inference engine, and a  
defuzzifier[ HYPERLINK \l “Mam74”  9 ,  HYPERLINK \l 
“RLa99” 10]. 

B. The MCU Programming 

In this study, there are two inputs and one output of the 
system. The inputs are the water level and energy available, 
and the output is the motor speed. The water level has three 
membership functions which are L, M, and H. L stands for 
low, M stands for Medium and H stands for high level. For 
energy available there are four membership functions which 
are VL, L, M, and H. 
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Fig. 7. Fuzzy Control Flow Chart Diagram

VL indicates for very low, L stands for low, M stands for 
medium and H stands for high. The output motor speed has 
three membership functions such as Stop for stopping, M 
for moderate running and H for High speed running. 

Fig. 8. Fuzzy Logic Rule and Membership Function 

TABLE I
Fuzzy Rule

Water Level Available Energy Motor Speed

L VL Stop

L L M

L M M

L H H

M VL Stop

M L Stop

M M H

M H H

H VL Stop

H L Stop

H M Stop

H H Stop

IV.  Experiment Results

The information given in Table 1, Figure 7 and Figure 8 
were implemented in C language program. The response of 
motor controller is shown in Figure 9. This indicates that 
the energy consumed for the whole system is very minimal.  
The output energy consumption for the irrigation system to 
fill the tank is 3.73kW-hr/day. To maintain the 1500 liters 
of water as mentioned earlier, the energy requirements for 
the system is 1.24kW-hr/day.

F i g .  9 .  F u z z y  S u r f a c e  o u t p u t  f o r  Wa t e r  l e v e l ,  
Energy available and Motor

V.  Discussions and Analysis of Results

Figure 10 shows the comparison of the results of the 
current consumption for the proposed MPSEIS against the 
conventional system. Note that the conventional system 
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uses 1HP single phase induction motor. It was observed 
that the conventional system required high current for 
starting process. This also gave a very high average current 
consumption of 8.1 amperes. This problem was solved 
using three-phase induction motor with variable frequency 
drive (VFD) implementing the fuzzy logic controller that 
maximized the percent energy savings. It is possible even if 
the supply coming from photovoltaic cell (solar panel), the 
system can manipulate the starting revolution per minute 
(rpm) of motor by gradual increasing the frequency (Hz) 
from 0Hz to 60Hz induced in the motor, since the rpm of 
motor is directly proportional to frequency. The current 
requirements resulted into a very minimal value. It was 
also noted that the current consumption of MPSIES had an 
average of 2.0 amperes, while the conventional system had 
an average of 8.1 amperes, which can be seen on Table II. 
The graph also showed that the out

MPSIE are linear while conventional system are non-
linear.

Fig. 10. Line graph of current consumption for PMSEIS and 
Convention

TABLE II
% Savings and Current Consumption of MPSEIS  

and Conventional System

Time in 
seconds 0 5 10 15 20 25 30 35 40 45 50 55 60

PMSEIS 0 2.2 2.1 1.9 1.8 1.7 1.9 2 2.1 2.2 1.8 2.1 2.2

Conventional 0 15 12 9 6.8 6 6.5 6.8 7 7.3 6.5 6.9 7.1

% Savings 0 85.3 82.5 78.9 73.5 71.7 70.8 70.6 70.0 69.9 72.3 69.6 69.0

Fig. 11. Percentage Savings of Current

Figure 11 shows the percentage savings of current where 
calculated based on the Equation 3. The average current 
savings was computed equal to 73.7% compare from the 
conventional system.

  con.current MPSEIS Current%savings 100
Con.Current
−

= × 	 (3)

VI.  Conclusion and Recommendations

Using VFD and MCU with Fuzzy Logic-Based Motor 
Speed Controller into Irrigation System for Smart Farming 
was proven to be successful. Based on the experiment 
results, it is significantly better and reliable compared 
to the conventional controller in terms of load variations 
handling.

For enhancing the capabilities of MCU, fuzzy logic was 
appreciated for providing intelligent automation system 
process. The result of the developed controller showed  
that it is reliable, accurate and robust by providing a 
percentage savings of current usage which is equal to 73.7 
percent. 
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