Modified Relativistic Dynamics in Regions of Extremely Small Accelerations: Velocity and Acceleration Dependence of Time

E. T. Rodulfo* and E B. Bornilla[†] + Physics Department, De La Salle University, 2401 Taft Avenue, Manila, Philippines

Title font size: 14 For Author(s) Font size: 10 For affiliation(s) Font size: 8

size of the microsphere) were also included in the optimization process. Near the beam focus, optical trapping force behaves linearly with microsphere displacement where trapping sti®ness is the constant of proportionality.

1. SECTION

1.1. Subsection

Newton's statement of the law of universal gravitation in the form

$$F = \frac{GMm}{r^2} \tag{1}$$

FONT SIZE

Subsection: 12

Subsubsection: 11

Section: 13

has been verified and, along with the second law,

$$\vec{F} = m \frac{d^2 \vec{r}}{dt^2} \equiv m \vec{a} \tag{2}$$

Utilized with great success since its formulation in the 16th century. However, observations in the galactic region exhibit deviations from the predictions of Newton's laws [1]. To explain these, M. Milgrom [2] proposed to generalize eqn (2) with

Utilized with great success since its formulation in the 16th century. However, observations in the galactic region exhibit deviations from the predictions of Newton's laws [2]. To explain these, M. Milgrom [2] proposed to generalize eqn (2) with

Utilized with great success since its formulation in the 16th century. However, observations in the galactic region exhibit deviations from the predictions of <u>Newton's large</u>

2. SECTION

2.2. SUBSECTION

2.2.1. Subsubsection

Utilized with great success since its for 16th century. However, observations in the

2	Column	Format

In between spacing: 0.3"

4

Column #1 (width): 3.36"

Column #2 (width): 3.36"

(to edit this: double click on the shaded-margin at the top-center)

tement of the law of universal gravitation

$$F = \frac{GMm}{r^2} \tag{1}$$

d and, along with the second law,

$$\vec{F} = m \frac{d^2 \vec{r}}{dt^2} \equiv m \vec{a} \tag{2}$$

Othized with great success since its formulation in the 16th century. However, observations in the galactic region exhibit deviations from the predictions of Newton's laws [1]. To explain these, M. Milgrom [2] proposed to generalize eqn (2) with

Font size (Title): 13 Font size (content): 9 Utilized w he $16^{\rm th}$ century þn exhibit deviations from the predictions of Newton's laws [1]. To exp posed to Note: 2 column formatting generalize e for the content and 3. MET References Newton's tion **Captions (Figures and Tables)** in the form Font: Century (1) Font size: 9

Font (everything): Century

has been verified and, along with the second law,

	Pago Margin	ā	(2)
Utilized with 16 th century. H exhibit deviati 1]. To expla generalize equ	Top: 0.75 " Bottom: 1.5 " Left: 0.75 " Right: 0.5 "	formulat the galac s of New n [2] pro	ion in the etic region ton's laws oposed to

RESULTS AND DISCUSSION

^{*}Electronic address: rodulfoe@dlsu.edu.ph

[†]Electronic address: bornillae@dlsu.edu.ph

Fig. 1: Effect of pH on % removal of solids using PAC (800 ppm) and excelfloc (1ppm).

TABLE I: Characteristics of Untreated Wastewate	er.
---	-----

Parameter	Unit	Value
pH	-	12.58 - 12.14
Chemical Oxygen Demand	ppm	666.48 - 669.19
Total Suspended Solids	ppm	116 - 132
Total Dissolved Solids	ppm	3241 - 33256
Total Solids	ppm	3436 - 3451
Chromium	ppm	0.5336 - 0.5349

[1] J. Gale, C. P. Romero, G. B. Tafoya and J. Conia, Application of Optical Trapping for Cells Grown on Plates Optimization of PCR and Fidelity of DNA Sequencing of p53 Gene from a Single Cell, Clinical Chemistry (American Association for Clinical Chemisty, Inc. University of New Mexico, 2003).

Application of C Plates Optimize Sequencing of p Chemistry (An Chemistry Inc II
Chemisty, Inc. \bigcup IIIC: ICO, 2003).

For Figures:

Fig. 1:, Fig. 2:, etc. and **NOT** Figure 1:, Figure 2:, etc. (do NOT forget the **comma** after the number of the figure.)

For Tables:

Table I: , Table II: , etc. and NOT Table 1: , Table 2: , etc.

Take Note (tables and figures):

- The comma is in Times New Roman.
- If the caption for both figures and tables is only one-liner, **center** it.
- If the caption for both figures and tables is two-liner or more, $\ensuremath{\textbf{justify}}$ it
 - **Tables (only):** The caption should be positioned at the top of the table.
 - Figures (only): The caption should be placed at the bottom after each figure.