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A Markov-switching model was used to analyze the monthly return of the Philippine Stock Exchange, based on data from 
January 2000 to July 2017, to estimate the regime-switching behavior of the equity market. The study identified two states 
of the market: one characterized by positive mean return and low volatility, and another with negative mean return and high 
volatility. The high-volatility periods of the exchange were linked to various political and economic events. Results showed 
that the Philippine stock market reacted to domestic political issues that changed or challenged the country’s leadership. 
Economic events such as the Asian financial crisis, the country’s rapid currency depreciation, and the global financial crisis 
also prompted the local bourse to switch to a high-volatility state. 
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The Philippine Stock Exchange Composite 
Index, or PSEi, is a selection of 30 common stocks 
of listed companies that are used as a benchmark to 
represent the performance of the Philippine stock 
market (PSE Academy, 2011). Based on data from 
EIU Financial Services and Forecasts (2017), the 
Philippine economy has been expanding steadily, 
with GDP growth averaging at 5.61% over the last 10 
years. Consequently, the Philippine stock market also 
flourished as the PSEi’s average closing price increased 
from 2,071 in January 2000 to 7,935 in July 2017 (The 
Wall Street Journal, n.d.). This is very much expected 
as stock market performance is positively and robustly 
correlated with economic growth (Levine & Zervos, 

1998). The Philippine stock market is likely to develop 
further as the International Monetary Fund (2017) saw 
the country to be among the fastest growing economies 
in the world, with growth outlooks amounting to 6.8% 
in 2017 and 6.9% in 2018. However, despite its high 
growth performance and potential, the Philippines, 
being an emerging market, remains to be characterized 
by high risk relative to developed markets. Therefore, 
investing in this market would still require higher 
returns (Bekaert & Harvey, 2017).

This paper tracks the periods when the Philippine 
stock market switched to a high-volatility state, and 
identifies the events that can be linked in the change 
in regime. This provides insights in understanding the 
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market movement, which is helpful in risk management 
and asset pricing. The study employs the Markov 
switching model (also known as the regime-switching 
model), which was popularized by Hamilton (1989). 
As empirical pieces of evidence have shown that 
economic and financial variables may demonstrate 
different patterns over time, the Markov switching 
model captures these changes as it employs two or 
more models to represent these variations in patterns. 
These models are then combined through a Markovian 
switching mechanism (Kuan, 2002). This model 
permits the variance of stock returns to interchange 
across different states, taking into consideration any 
change in the variance over the study period (Moore & 
Wang, 2007). The Markov-switching model has been 
employed in various financial and economic studies 
to analyze the shifting trend of different variables. 
In Western cases, the model was used to study the 
U.S. business cycle by analyzing the country’s real 
GNP data (Hamilton, 1989); the volatility persistence 
in the monthly excess returns of the three-month 
treasury bill vis-à-vis one-month Treasury bill (Cai, 
1994); the implied stock market volatilities which 
were tested in predicting the volatility index (VIX) 
compiled by the Chicago Board Options Exchange 
(Dueker, 1997); and the volatility in the stock markets 
of Czechia, Hungary, Poland, Slovenia, and Slovakia 
(Moore & Wang, 2007). In Asia, Wang and Theobald 
(2007) studied the regime-switching pattern in the 
stock market volatility of Indonesia, Korea, Malaysia, 
Philippines, Taiwan, and Thailand by using data from 
1970 to 2004.

In Philippine studies, the model was utilized in the 
analysis of the country’s business cycle by using GDP 
data (Bautista, 2002), and the time-varying betas 
of select stocks (Yu, Goyeau, & Bautista, 2011. 
Bautista (2003) also tracked the regime-switching 
behavior of the Philippine stock market by using 
a regime-switching ARCH model on weekly stock 
return data from February 1987 to October 2007. 
This research extends that study by also using a 
regime-switching model on data from January 2000 
to July 2017. Unlike the model used by Bautista 
(2003), the model in this study does not include an 
autoregressive term, and utilizes monthly returns 
instead of weekly returns; both of which are discussed 
in the succeeding sections. 

 

Model Specification

The return model assumes the basic Markov 
switching model discussed by Timmermann (2000) 
in the form of:
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𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑠𝑠𝑡𝑡 + 𝜎𝜎𝑠𝑠𝑡𝑡𝜀𝜀𝑡𝑡          (1) 

where 𝑦𝑦𝑡𝑡 represents the monthly return of the Philippine stock market, 𝜀𝜀𝑡𝑡 is an i.i.d. random 

variable with mean 0 and variance 𝜎𝜎2; and 𝑠𝑠𝑡𝑡 is an unobserved state indicator which only 

assumes integer values {1, 2, …, k}, following a k-state Markov process. Similar to Bautista 

(2003), this study also classifies the regimes of the Philippine stock market into two: low-

volatility state, and high-volatility state. This means that 𝑠𝑠𝑡𝑡 will either be 1 or 2. Consequently, 

the regime-switching mean 𝜇𝜇𝑠𝑠𝑡𝑡 will take on the value 𝜇𝜇1 to represent the mean return for regime 

1, and 𝜇𝜇2 to denote the mean return for regime 2. At the same time, the regime-switching 

volatility 𝜎𝜎𝑠𝑠𝑡𝑡 will equate to 𝜎𝜎1 to show the volatility of regime 1, and 𝜎𝜎𝑠𝑠 to present the volatility 

of regime 2. This model is consistent in the discussion in Timmermann (2000) in comparing the 

mean return and volatility between two states of a stock market. 

 The value that 𝑠𝑠𝑡𝑡 takes on depends only on the most recent value 𝑠𝑠𝑡𝑡−1. Hamilton (1994) 

showed that the probability that 𝑠𝑠𝑡𝑡 takes on some value 𝑗𝑗 is equal to: 

𝑃𝑃{𝑠𝑠𝑡𝑡 = 𝑗𝑗 | 𝑠𝑠𝑡𝑡−1 = 𝑖𝑖, 𝑠𝑠𝑡𝑡−2 = 𝑘𝑘, … } = 𝑃𝑃{𝑠𝑠𝑡𝑡 = 𝑗𝑗 | 𝑠𝑠𝑡𝑡−1 = 𝑖𝑖} = 𝑝𝑝𝑖𝑖𝑖𝑖       (2) 

The transition probability for the two-state Markov chain, {𝑝𝑝𝑖𝑖𝑖𝑖}𝑖𝑖,𝑖𝑖=1,2, gives the probability that 

state 𝑗𝑗 will follow after state 𝑖𝑖. For any k-state Markov chain, the transition probabilities will 

have the following relationship: 

𝑝𝑝𝑖𝑖1 + 𝑝𝑝𝑖𝑖2 + ⋯ + 𝑝𝑝𝑖𝑖𝑖𝑖 = 1         (3) 

The transition probabilities can be presented in a transition matrix. For a two-state process, the 

corresponding transition matrix will be: 

P = [𝑝𝑝11 𝑝𝑝21
𝑝𝑝12 𝑝𝑝22

]          (4) 

   (1)

where yt  represents the monthly return of the Philippine 
stock market, et is an i.i.d. random variable with 
mean 0 and variance s2; and st is an unobserved state 
indicator which only assumes integer values {1, 2, 
…, k}, following a k-state Markov process. Similar to 
Bautista (2003), this study also classifies the regimes 
of the Philippine stock market into two: low-volatility 
state, and high-volatility state. This means that st will 
either be 1 or 2. Consequently, the regime-switching 
mean mst   will take on the value m1 to represent the 
mean return for regime 1, and  m2 to denote the mean 
return for regime 2. At the same time, the regime-
switching volatility sst

  will equate to s1 to show the 
volatility of regime 1, and ss to present the volatility 
of regime 2. This model is consistent in the discussion 
in Timmermann (2000) in comparing the mean return 
and volatility between two states of a stock market.

The value that st takes on depends only on the 
most recent value st-1. Hamilton (1994) showed that 
the probability that st takes on some value j is equal to:

 4 

𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑠𝑠𝑡𝑡 + 𝜎𝜎𝑠𝑠𝑡𝑡𝜀𝜀𝑡𝑡          (1) 

where 𝑦𝑦𝑡𝑡 represents the monthly return of the Philippine stock market, 𝜀𝜀𝑡𝑡 is an i.i.d. random 

variable with mean 0 and variance 𝜎𝜎2; and 𝑠𝑠𝑡𝑡 is an unobserved state indicator which only 

assumes integer values {1, 2, …, k}, following a k-state Markov process. Similar to Bautista 

(2003), this study also classifies the regimes of the Philippine stock market into two: low-

volatility state, and high-volatility state. This means that 𝑠𝑠𝑡𝑡 will either be 1 or 2. Consequently, 

the regime-switching mean 𝜇𝜇𝑠𝑠𝑡𝑡 will take on the value 𝜇𝜇1 to represent the mean return for regime 

1, and 𝜇𝜇2 to denote the mean return for regime 2. At the same time, the regime-switching 

volatility 𝜎𝜎𝑠𝑠𝑡𝑡 will equate to 𝜎𝜎1 to show the volatility of regime 1, and 𝜎𝜎𝑠𝑠 to present the volatility 

of regime 2. This model is consistent in the discussion in Timmermann (2000) in comparing the 

mean return and volatility between two states of a stock market. 

 The value that 𝑠𝑠𝑡𝑡 takes on depends only on the most recent value 𝑠𝑠𝑡𝑡−1. Hamilton (1994) 

showed that the probability that 𝑠𝑠𝑡𝑡 takes on some value 𝑗𝑗 is equal to: 

𝑃𝑃{𝑠𝑠𝑡𝑡 = 𝑗𝑗 | 𝑠𝑠𝑡𝑡−1 = 𝑖𝑖, 𝑠𝑠𝑡𝑡−2 = 𝑘𝑘, … } = 𝑃𝑃{𝑠𝑠𝑡𝑡 = 𝑗𝑗 | 𝑠𝑠𝑡𝑡−1 = 𝑖𝑖} = 𝑝𝑝𝑖𝑖𝑖𝑖       (2) 

The transition probability for the two-state Markov chain, {𝑝𝑝𝑖𝑖𝑖𝑖}𝑖𝑖,𝑖𝑖=1,2, gives the probability that 

state 𝑗𝑗 will follow after state 𝑖𝑖. For any k-state Markov chain, the transition probabilities will 

have the following relationship: 

𝑝𝑝𝑖𝑖1 + 𝑝𝑝𝑖𝑖2 + ⋯ + 𝑝𝑝𝑖𝑖𝑖𝑖 = 1         (3) 

The transition probabilities can be presented in a transition matrix. For a two-state process, the 

corresponding transition matrix will be: 

P = [𝑝𝑝11 𝑝𝑝21
𝑝𝑝12 𝑝𝑝22

]          (4) 

 (2)

 

 4 

𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑠𝑠𝑡𝑡 + 𝜎𝜎𝑠𝑠𝑡𝑡𝜀𝜀𝑡𝑡          (1) 

where 𝑦𝑦𝑡𝑡 represents the monthly return of the Philippine stock market, 𝜀𝜀𝑡𝑡 is an i.i.d. random 

variable with mean 0 and variance 𝜎𝜎2; and 𝑠𝑠𝑡𝑡 is an unobserved state indicator which only 

assumes integer values {1, 2, …, k}, following a k-state Markov process. Similar to Bautista 

(2003), this study also classifies the regimes of the Philippine stock market into two: low-

volatility state, and high-volatility state. This means that 𝑠𝑠𝑡𝑡 will either be 1 or 2. Consequently, 

the regime-switching mean 𝜇𝜇𝑠𝑠𝑡𝑡 will take on the value 𝜇𝜇1 to represent the mean return for regime 

1, and 𝜇𝜇2 to denote the mean return for regime 2. At the same time, the regime-switching 

volatility 𝜎𝜎𝑠𝑠𝑡𝑡 will equate to 𝜎𝜎1 to show the volatility of regime 1, and 𝜎𝜎𝑠𝑠 to present the volatility 

of regime 2. This model is consistent in the discussion in Timmermann (2000) in comparing the 

mean return and volatility between two states of a stock market. 

 The value that 𝑠𝑠𝑡𝑡 takes on depends only on the most recent value 𝑠𝑠𝑡𝑡−1. Hamilton (1994) 

showed that the probability that 𝑠𝑠𝑡𝑡 takes on some value 𝑗𝑗 is equal to: 

𝑃𝑃{𝑠𝑠𝑡𝑡 = 𝑗𝑗 | 𝑠𝑠𝑡𝑡−1 = 𝑖𝑖, 𝑠𝑠𝑡𝑡−2 = 𝑘𝑘, … } = 𝑃𝑃{𝑠𝑠𝑡𝑡 = 𝑗𝑗 | 𝑠𝑠𝑡𝑡−1 = 𝑖𝑖} = 𝑝𝑝𝑖𝑖𝑖𝑖       (2) 

The transition probability for the two-state Markov chain, {𝑝𝑝𝑖𝑖𝑖𝑖}𝑖𝑖,𝑖𝑖=1,2, gives the probability that 

state 𝑗𝑗 will follow after state 𝑖𝑖. For any k-state Markov chain, the transition probabilities will 

have the following relationship: 

𝑝𝑝𝑖𝑖1 + 𝑝𝑝𝑖𝑖2 + ⋯ + 𝑝𝑝𝑖𝑖𝑖𝑖 = 1         (3) 

The transition probabilities can be presented in a transition matrix. For a two-state process, the 

corresponding transition matrix will be: 

P = [𝑝𝑝11 𝑝𝑝21
𝑝𝑝12 𝑝𝑝22

]          (4) 

The transition probability for the two-state Markov 
chain, 

 4 

𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑠𝑠𝑡𝑡 + 𝜎𝜎𝑠𝑠𝑡𝑡𝜀𝜀𝑡𝑡          (1) 

where 𝑦𝑦𝑡𝑡 represents the monthly return of the Philippine stock market, 𝜀𝜀𝑡𝑡 is an i.i.d. random 

variable with mean 0 and variance 𝜎𝜎2; and 𝑠𝑠𝑡𝑡 is an unobserved state indicator which only 

assumes integer values {1, 2, …, k}, following a k-state Markov process. Similar to Bautista 

(2003), this study also classifies the regimes of the Philippine stock market into two: low-

volatility state, and high-volatility state. This means that 𝑠𝑠𝑡𝑡 will either be 1 or 2. Consequently, 

the regime-switching mean 𝜇𝜇𝑠𝑠𝑡𝑡 will take on the value 𝜇𝜇1 to represent the mean return for regime 

1, and 𝜇𝜇2 to denote the mean return for regime 2. At the same time, the regime-switching 

volatility 𝜎𝜎𝑠𝑠𝑡𝑡 will equate to 𝜎𝜎1 to show the volatility of regime 1, and 𝜎𝜎𝑠𝑠 to present the volatility 

of regime 2. This model is consistent in the discussion in Timmermann (2000) in comparing the 

mean return and volatility between two states of a stock market. 

 The value that 𝑠𝑠𝑡𝑡 takes on depends only on the most recent value 𝑠𝑠𝑡𝑡−1. Hamilton (1994) 

showed that the probability that 𝑠𝑠𝑡𝑡 takes on some value 𝑗𝑗 is equal to: 

𝑃𝑃{𝑠𝑠𝑡𝑡 = 𝑗𝑗 | 𝑠𝑠𝑡𝑡−1 = 𝑖𝑖, 𝑠𝑠𝑡𝑡−2 = 𝑘𝑘, … } = 𝑃𝑃{𝑠𝑠𝑡𝑡 = 𝑗𝑗 | 𝑠𝑠𝑡𝑡−1 = 𝑖𝑖} = 𝑝𝑝𝑖𝑖𝑖𝑖       (2) 

The transition probability for the two-state Markov chain, {𝑝𝑝𝑖𝑖𝑖𝑖}𝑖𝑖,𝑖𝑖=1,2, gives the probability that 

state 𝑗𝑗 will follow after state 𝑖𝑖. For any k-state Markov chain, the transition probabilities will 

have the following relationship: 

𝑝𝑝𝑖𝑖1 + 𝑝𝑝𝑖𝑖2 + ⋯ + 𝑝𝑝𝑖𝑖𝑖𝑖 = 1         (3) 

The transition probabilities can be presented in a transition matrix. For a two-state process, the 

corresponding transition matrix will be: 

P = [𝑝𝑝11 𝑝𝑝21
𝑝𝑝12 𝑝𝑝22

]          (4) 

, gives the probability that state j 
will follow after state i. For any k-state Markov chain, 
the transition probabilities will have the following 
relationship:
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The transition probabilities can be presented in 
a transition matrix. For a two-state process, the 
corresponding transition matrix will be:
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Because of equation (3), equation (4) can be restated as:
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𝑠𝑠𝑡𝑡−1=1      (8) 

Equation (8) determines the probability that the stock market is either in state 1 or 2 conditional 

to information available at time 𝑡𝑡. The two possible values for each period 𝑡𝑡 sum up to 1. On the 

other hand, the smoothed probability determines the probability of being in a state 𝑠𝑠𝑡𝑡 based on 

the full sample up to time 𝑇𝑇: 

𝑃𝑃{𝑠𝑠𝑡𝑡 | 𝑦𝑦𝑇𝑇 , 𝑦𝑦𝑇𝑇−1, … , 𝑦𝑦0} =  ∑ … ∑ 𝑃𝑃{𝑠𝑠𝑡𝑡, … , 𝑠𝑠𝑡𝑡−𝑘𝑘+1 | 𝑦𝑦𝑇𝑇 , 𝑦𝑦𝑇𝑇−1, … , 𝑦𝑦0}2
𝑠𝑠𝑡𝑡−𝑘𝑘+1=1

2
𝑠𝑠𝑡𝑡−1=1      (9) 

The smoothed probability is considered more accurate because it utilizes the full sample, which 

means that this probability is conditional on more information (Bautista, 2002). Therefore, the 

analysis in this study will be based on the smoothed probability. 

 

Data and Estimation Results 

The dependent variable is equal to the monthly returns of PSEi. The publicly available 

information was obtained from the website of The Wall Street Journal (n.d.). Monthly return was 

computed as follows: 

𝑦𝑦𝑡𝑡 = log(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡) − log (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡)       (10) 

wherein 𝑦𝑦𝑡𝑡 is the market return for month 𝑡𝑡, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡 is the closing PSEi value on the last 

trading day of month 𝑡𝑡, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡 is the opening PSEi value on the first trading day of 

month 𝑡𝑡. 

The study period is from January 2000 to July 2017, resulting in a total of 211 observations. 

Table 1 shows the data’s descriptive statistics. The positive mean confirms the bullish run of the 

Philippine market over the study period. Based on the Jarque-Bera test (JB test) result, the null 

hypothesis that the monthly return follows a normal distribution is rejected.  
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 is the opening PSEi value 
on the first trading day of month t.

The study period is from January 2000 to July 2017, 
resulting in a total of 211 observations. Table 1 shows 
the data’s descriptive statistics. The positive mean 
confirms the bullish run of the Philippine market over 
the study period. Based on the Jarque-Bera test (JB 
test) result, the null hypothesis that the monthly return 
follows a normal distribution is rejected. 

According to Wang and Theobald (2007), using 
monthly frequency limits the presence of noise, which 
is commonly present in data with higher frequencies 
such as daily data. Noise present in higher frequency 
data can make it difficult to isolate cyclical variations, 
which can blur the analysis of factors causing the 
switching behavior.

Data were subjected to the augmented Dickey-
Fuller test to assess stationarity. The null hypothesis 
that there is a presence of a unit root in the data is 
rejected. Therefore, the time series variable of monthly 
return is stationary. Based on the Q-statistics, no lag 
observation will be used to explain the observation in 
yt. This explains why a Markov switching model with 
no autoregressive term is used in this study.

From the estimated parameters in Table 2, regime 
1 is characterized by positive mean return and low 
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volatility, whereas regime 2 shows negative mean 
return and high volatility. This implies that market 
conditions are unfavorable when it enters regime 
2 as the return is unattractive and risk is higher in 
this state. Section IV identifies the periods when the 
market switched to regime 2, and the events that can 
be associated with that change in state. The residuals of 
the estimated model were subjected to JB test, and the 
null hypothesis that they follow a normal distribution is 
rejected. Based on the transition probabilities in Table 
3, the duration of regime 1 is 78.03 months, and of 
regime 2 is 29.60 months.

Discussion of Results

The Philippine stock market was in state 2 in the 
following ranges in the study period:  January 2000 
to September 2002 and November 2007 to December 
2008. These were the periods when the smoothed 
probability that  equals to 2 is at least 0.50. The 
corresponding movement of the monthly market return 
and smoothed probability that st has the value of 2 
are shown in Figures 1 and 2. Figure 2 shows that the 
high-volatility state of the market from 2000 to 2002 
can be attributed to the domestic political unrest during 
that period, whereas the market regime in 2008 can be 

explained by the global financial crisis. Details of these 
events are discussed further in this section.

The high-volatility state of the market from 2000 
to 2002 can be attributed to various political and 
economic events during this period. The presidency of 
Joseph Estrada, which lasted from June 1998 to January 
2000, was marred with various scandals of corruption 
and economic mismanagement. It was reported that 
he amassed about US$82 million in kickbacks and 
payoffs during his term (Brown, 2001). Consequently, 
the Asian financial crisis and the persistence of its 
effects also occurred within his term, compounding 
the people’s dissatisfaction in his leadership. Thus, 
in January 2001, Joseph Estrada was overthrown 
through a political protest in the form the second EDSA 
Revolution. He was replaced by the Vice-President in 
his administration, Gloria Macapagal-Arroyo. This 
revolution was the beginning of a politically turbulent 
climate for the Philippines that year. In April 2001, 
Joseph Estrada was arrested by the Sandiganbayan 
for plunder. This arrest caused an uprising among 
his followers, which prompted them to gather around 
the EDSA Shrine to form a protest similar to the two 
previous EDSA Revolutions in the country. This 
rebellion, however, was unsuccessful as they were 
unable to unseat Gloria Macapagal-Arroyo from the 

Table 1.  Summary Statistics of the Philippine Monthly Return From January 2000 to July 2017 

Mean Median Max. Min. Std. dev. Skewness Kurtosis JB test
0.005297 0.011212 0.154217 -0.27727 0.058783 -0.67756 5.355226 64.91***

*, **, and *** denote significance at 10%, 5%, and 1% levels, respectively

  Table 2.  Estimated Parameters of the Model 

m1 m2 s1 s2

0.014883***

(0.003833)

-0.026596**

(0.013239)

0.045848***

(0.058996)

0.0810232***

(0.109965)

*, **, and *** denote significance at 10%, 5%, and 1% levels, respectively. Standard errors are enclosed in parentheses 
under the parameter estimates.

   Table 3.  Regime Transition Probabilities

p11 p22 p12 p21

0.987184 0.966214 0.012816 0.033786
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presidency. During the same period, the Philippine peso 
also depreciated against the U.S. dollar, especially from 
1999 to 2003, as shown in Table 4. 

On the other hand, the Philippine stock market 
entering regime 2 in 2008 can be attributed to the 
global financial crisis, which was mainly driven by the 
U.S. subprime mortgage market. During this year, the 
PSEi closing value ranged from 1,704 to 3,617, with 

the declining closing values on the last trading day of 
each month shown in Table 5 (The Wall Street Journal, 
n.d.). As it was a time of heightened risk aversion 
and uncertainty, both domestic and foreign investors 
unloaded their stocks or stayed in the sidelines to 
wait for conditions to improve. Raising fresh capital 
through the stock market slowed down during this 
period (Guinigundo, 2010).

Figure 1. Monthly return of the Philippine stock market from January 2000 to July 2017.
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Table 4.  End-Period Exchange Rate of Philippine Peso Against the U.S. Dollar (PHP/USD) 

Year 1998 1999 2000 2001 2002 2003 2004
Exchange Rate 39.06 40.33 50.00 51.40 53.10 55.57 56.27

Source: EIU Financial Services and Forecasts (Online)
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After Joseph Estrada, the presidents who succeeded 
him during the study period—Gloria Macapagal-
Arroyo, Benigno Aquino III—had their share of 
political scandals. Rodrigo Duterte, who succeeded 
Benigno Aquino III and is just in the first year of 
his term in the study period, is just as controversial. 
However, it should be noted that none of the political 
events linked to these presidents caused the Philippine 
stock market to switch to a high-volatility state. The 
Philippine market also did not switch to a high-
volatility regime during the national election seasons 
within the study period, which occurred in 2001, 2004, 
2007, 2010, 2013, and 2016. Based on the evidence, 
it could mean that gravity is necessary for political 
issues to have an impact on the stock market. From the 
results of this study, the political events that explained 
the high-volatility state of the Philippine stock market 
were characterized by mass demonstrations that 
changed or challenged the country’s leadership. This 
is consistent with the results of Bautista (2003) as the 
relevant political events he cited in his study were the 
many coup attempts which hounded the presidency of 
Corazon Aquino from 1987 to 1990.

Conclusion

By employing a Markov-switching model, the 
study determined the periods when the Philippine 
stock market entered states of high volatility. From 
there, various political and economic events, both 
domestic and international, were identified to explain 
the market’s high-volatility regimes during the study 
period. Most events linked to the high-state of the 
stock market were economic in nature. These events 
include the lingering effects of the Asian financial 
crisis, the country’s sharp currency depreciation, and 
the global financial crisis. In terms of domestic political 
issues, only the country’s change and the challenge of 
leadership in 2001 affected the local bourse’s volatility. 
The stock market did not switch to a high-volatility 
state amid other political controversies during the study 
period. This signifies that gravity of a political event 
may be necessary to affect the volatility of the stock 
market, which is consistent with a previous study.

This study provides a guide to fund managers and 
various investors in analyzing and understanding the 
movement of the stock market better. Specifically, it 

    Table 5.  PSEi Closing Value on the Last Trading Day of Every Month in 2008 

Month PSEi Closing Value

January 3,266

February 3,130

March 2,985

April 2,750

May 2,827

June 2,460

July 2,577

August 2,688

September 2,570

October 1,951

November 1,972

December 1,873

     Source: The Wall Street Journal (n.d.).
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offers insights about the nature of political events that 
can statistically change the nature of the stock market 
volatility. This is important in risk management and 
asset pricing brought by exposure to an emerging 
market like the Philippines, especially because 
similar markets are usually characterized by political 
instability.
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