
FORECASTING AND UPDATING 
PRICES OF SELECTED 
COMMODITIES IN THE 
PHILIPPINES FUTURES MARKET 

ONE INVESIMENT that has made millionaires overnight is 
the futures commodities market. It is the proverbial pot 
of gold for those who have turned richer and the woeful 
tale of the many others who have lost their money in just 
the wink of an eye. The Philippines futures market is 
relatively new, being in existence for a little less than 12 
years, with the local commodity exchange inaugurated 
only in the latter half of 1987. Its intricacies are quite 
unknown to local businessman, but somehow it is highly 
attractive to liquid investors, particularly the Chinese. 

In contrast to a cash contract where cash is paid for 
the immediate delivery of a product, a futures contract is 
ao agreement that involves the delivery of a specified 
amount of a stated commodity at a designated time in the 
future. The buyer simply pays a deposit or margin, about 
5% • 10% of the full contract price. Speculation then 
becomes encouraging as there is a potential for large rates 
Jf return in a short period of time because of the 
;ubstantialleverage involved, i.e., controlling a la;ge sum 
lf money with little cash. 

However, it must be made clear that an investor can 
lose more than his original investruent, because the latter 
is only a marginal deposit, but his losses (or winnings) are 
computed on the full amount of the contract; hence, the 
millionaire-to-pauper's tale. 

Consequently, strategies and techniques to 
maximize profits and offset losses are continuously being 
refiued. This paper then attempts to equip the investor 
with an alternative method to forecasting commodity 
prices by identifying the behavior pattern of three selected 
commodities (Tokyo Soy Bean, Hong Kong Soy Bean, 
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and Tokyo Red Bean) using univariate time series 
analysis. (Data in weekly prices were provided by the 
Kingly Commodities Research Department.) 

Statistical Methodology: Time Series Analysis and the 
Box-Jenkins Methodology 

Basic Tenns and Concepts 

A time series is a set of ordered observations at 
equally spaced discrete time iotervals. The mean of a time 
series is its over-all level, and is computed just like any 
other mean. The variance of the series is a measure of the 
dispersion of the time series observations about its mean. 

We also make a distinction between a process and 
realization. An observed time series is a realization of 
some underlying process. Hence, a process is similar to a 
population in classical statistics, and a realization is 
analogous to a sample. This realization is then used to 
build a model, or a representation of the process 
expressed as an algebraic equation. The procedures for 
this model-building are referred to as time series analysis. 

A trend is a motion of the series in a specific 
direction, usually upward or downward. It describes any 
systematic change in the level of the time series. Wbcn a 
time series does not follow a trend, then it may drift. The 
real difference that lies between trend and drift is that 
trend is deterministic (or a fixed function of time), while 
drift is stochastic, meaning that future values vary in a 
probabilistic manner. Many time series are a combination 
of both, which are incorporated as components in the 
ARIMA models. 

ARIMA is the acronym for Auto-Regressive 
Integrated Moving Average, the family of linear models 
which are the bases of the Box-Jenkins methodology of 
model-building for a time process. 
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APPLYING DECISION-MAKING TOOLS 

Model EqruUions 

A discrete linear stochastic model is described by 
the equation 

Y, = .,. + •• - Out - 1 - ... -llq •• - q (1) 
where 

Yt = anobservationofatimeseriestakenattime 
interval t 

Et = random error component possessing white 
noise properties 

E(Et) = O;E(Eh-E2 

E (Et · s) = 0, t "' s 
fl.= constant 

81 ... llq = parameters 

or equivalently (proof shown on thesis) as 

Yt = 4>1 Yt -1 +4>2 Yt- 2 + ... + cj>p Yt ·-p + II + lit (2) 

where Yt ... Y1 • p = successive values of a time series 
4>1 ... cj>p = parameters 

li = constant 

A time series model with the form of (1) is referred 
to as a moving average model of order q, or MA ( q), while 
model equation (2) is called an autoregressive model of 
order p, orAR(p). This time series is said to be stationary 
if its statistical properties do not change over time. To 
fulfill this, certain conditions are imposed on the 
parameters of the model For MA models, these are the 
stationarity conditions, and for AR models, these are the 
invertibility conditions. 

Certain time series may combine both of the above 
models, called the AR-MA(p,q) or 

Yt = 4>1 Yt-1 + ... +cj>p Yt ·P + li+Et- OtEt-1· ... 
- 9qE t • q (3) 

To simplify (3), the backshift notation may be used, 
which is defined as 

aiY, =Yt-j 

Hence, (3) can be rewritten as 

cl>P (B) Yt = Oo + Oq (B) El 

where cj>p (B) = (1 - 4>1 B - 4>2 B2 - ... - cj>p B1
) 

Oq (B) = (1 - 81 B - 4>2 B2 - ... -llq Bq) 
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If a time series is nonstationary, this may be due to: 
(a) changing level of the series (no constant mean); (b) 
changing variability; or both (a) and (b). 

One way to transform a nonstationary time series 
due to (b) to stationary values is to take the logarithm of 
these values. If nonstationarity is due to (a), the difference 
operator is V used, where 

vd = (1-B)d 
for d = 1, VYt = (1- B) Yt = Yt- Yt -1 

d = 2, VYt = (1-BlYt = Yt-2Yt-1+Yt.2 

and the model equation is now called the ARIMA (p, d, 
q) 

cj>p (B) ~ Yt = Oo + Oq (B) £or 

If a time series has seasonal variation, then the 
model equation of the multiplicative type can be 
expressed as 

cj>p (B) cj>p (Bs) (1- bs)dV d Yt = Oq (B) llq (Bs) Et 

and is called the ARIMA (p, d, q) (P, D, O)s 
where 

(1) B is the backshift operator. 
(2) dis the degree of regular differencing. 
(3) D is the degree of seasonal differencing. 
( 4) Bp (B) is the nonseasonal AR operator of 

orderp. 
(5) ap (B) is the seasonal AR operator of order p. 
(6) Oq (B) is the nonseasonal MA operator of 

order q. 
(7) BOB is the seasonal MA operator of order 0. 
(8) sis the length of seasonality or periodicity. 

The Box J~nkins Methodology 

Statistical properties which describe the 
relationship between paired observations of a time series 
are the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF). 

For a given time process, the autocorrelation is a 
measure of the correlation between each observation Yt 
and Y t lagged K time units forward in time. 

The partial autocorrelation is a measure of the 
correlation between time series observations K time units 
apart after correlation at intermediate lags has been 
partialled out. 

Each time series has a unique ACF and PACF and 
can be identified by graphing these properties. For AR 
models, the time series has an ACF which is characterized 
by exponential decay and a P ACF which cuts off after lag 
p. Every MA series, on the other hand, has a PACF which 
decays and an ACF which cuts off after lag q. Table 1 



presents a summary of the characteristics of the general 
and common nonseasonal models. 

The Box-Jenkins (B-J) technique is then an 
experimental method used to identify the appropriate 
ARIMA model. It advises the use of at least 50 and 
preferably 100 observations for useful analysis. Basically, 
it consists of four steps: identification of the model, 
estimation of parameters, diagnostic checking and 
forecasting. Since the objective of the B-J technique is to 
obtain parsimonious models, i.e., models that adequately 
describe a time series and yet employ relatively few 
parameters, the selection process necessarily becomes 
iterative. F~gure 1 shows the flowchart for this process. 

It is also to be noted that over other estimating 
procedures, the appropriate ARIMA model produces 
optimal forecasts, i.e., the least forecast error variance 
among all linear models. 

Summary Of Results 

Applying the B-J methodology to Tokyo Soy Bean 
(TSB: January 1983 - October 1986), Hong Kong Soy 
Bean (HKSB: May 1983- October 1986), and Tokyo Red 
Bean (TRB: January 1976- January 1986), the followin~ 
results were obtained: 

1. The final model selected for the three bean 
products take the form of ARIMA (0,1,1) 
{l,O,O)s. 

2. All the time series of the three different 
commodities do not possess a deterministic 
trend but mainly stochastic components. This 
explains why many shorter strategies used by 
commodity agents to aid investors in forecasting 
are not very successful. These are mainly based 
on trend lines which are deterministic while 
analysis reveals that the behavior of commodity 
prices is a random phenomenon which is a 
result of combined market forces and other 
conditions (demand and supply, weather 
conditions, import-export control, 
warehousing) which come from several 
countries which are the major suppliers and 

Stage 1: ldcntifu:ation 

Stage 2: Estimation 

Stage 3: Diagnostic checking 
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users of these commodities. 
3. TSB (s = 21), HKSB (s = 19), and TRB (s = 

6) all show a distinct seasonal pattern which are 
related to their delivery periods. Periodicity of 
21 for TSB can be explained by its delivery 
period of six months, or 24 weeks. Speculators 
are then forced to unload their contracts before 
maturity date, or face warehousing problems 
with the delivery of the commodity, thus forcing 
prices to go down. For HKSB, the seasonality 
of 19 can be similarly related to its delivery 
period of also 24 weeks. It is earlier than the 
TSB series by two weeks, because actual 
delivery period for HKSB is 22 weeks, or two 
weeks before the end of the stipulated delivery 
month. For TRB, the seasonality of 6 (being a 
factor of 24) is still consistent with its delivery 
period of 24 weeks, but has been reduced due 
to the high volatility of price movements of 
TRB, a favorite commodity for all types of 
investors. 

4. The ARIMA model equation fmally selected 
produces the minimum mean square error 
forecasts at origin N,but variance of the 
forecasts increases as lead time departs from 
this origin. Percentage forecast errors 
computed on the three commodities vary from 
less than 1% to about 7% where values are 
forecast to a maximum of five weeks. 
Forecasting should therefore be limited to just 
two to three periods away from the origin. 

5. The method of forecast updating leads to 
improved forecast prices for the commodities, 
with the computed reductions as low as 1/4 the 
original percentage error (For HKSB, % error 
was as low as 0.37%). Every time a new 
observation comes in, forecast origin is shifted 
to this period, resulting in reduced error 
variance. The new forecast value one period 
ahead is estimated, using the new observation. 
However, updating should not be used beyond 
two periods since this may lead to doubtful 
results. Instead, parameters of the model 
should be reestimated. 

I Choose one or more ARIMA models as candidates l-
1 . 

!Estimate the parameters of the model(s) chosen at Stage 1 I 
I 

f Check the candidate model(s) for adequacy ! 
I 

I Forecast [ Yes Is Model Satisfactol)'? ------No 

Figure 1. Stages in the Iterative Approach to Model Building as adapted from the B-J Method 
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~ 
~ TABLE 1 

EQUATIONS AND CHARACTERISTICS OF THE GENERAL AND COMMON SPECIFIC NONSEASONAL MODELS ~ 
~ 
t1 

Model/Equation Theoretical Theoretical Stationery lnvertibility 
ti1 
n -ACF PACF Conditions Conditions "' 
~ (1) Moving Average Model of order q, (MA)(q) 

Yt = (1 - Ot B - 92B2 - ... - OqBq £1 cuts off after lag q dies down ~ 
(a) MA(1) ~ 
Yt = (1 - Bt B) £t cuts off after lag 1 dies down always stationery lOti < 1 ..., 

0 
0 

(b) MA(2) !;; 
Yt = (1 - BtB- B2B2) £1 cuts off after lag 2 dies down always stationery Bt + 82 < 1 

82~1 < 1 
/92/ < 1 

(2) Autoregressive Model of order p, AR(p) 
(1 - <l>t B - <j>2B2 

- ... - <j>pBP) Yt = £1 dies down cuts off after laq p 

(a) AR(1) 
(1 - <j>tB) Yt = £t dies down cuts off after lag 1 /<j>t/ < 1 always invertible 

(b) AR(2) dies down cuts off after lag 2 <l>t +4>2 < 1 always invertible 
(1 - <l>tB- <j>2B2) Yt = £1 <j>2-<j>1 < 1 

/<j>t/ < 1 

(3) Mixed AR-MA Model of order (p,q), AR-MA(p
2
q) 

(1 - <j>tB- <j>2B2- ... - <j>pBP) Yt = (1 - OtB- 82B - ... - OqBq) £1 dies down dies down 

(a) AR-MA(1,1) dies down dies down /<j>t/ < 1 I Ot! < 1 
(1 - <j>tB) Yt = (1 - OtB) £1 

(4) ARIMA Model of order (p,d,q) 
(1 - <j>tB- ... -<f>pBPj(1 - B)0 Vt = (1 - OtB- .•. BqB) £t 
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