
Manila Journal of Science 15(2) 2022, pp. 34–45

A Preliminary Study on Teaching Programming Through
Physics: Development of a C# Code Library on Classical

Mechanics
Lance Owen C. Gulinao1, Emilio B. Marmol1, Gabriel Paulo A. Rayo1,

Aedan Red E. Tiu1, and Shirley Chu2,*

1De La Salle University Integrated School, Manila, Philippines
2De La Salle University, Manila, Philippines

*Corresponding Author: shirley.chu@dlsu.edu.ph

ABSTRACT

Current programming pedagogy mostly revolves around the concept of syntax first.
This can result in students lacking the ability to form detailed mental models on
programming. A problem-solving-first method is suggested, wherein students can
“imagine” solutions before writing one. Consequently, this makes classical
mechanics a possible education medium for programming, as classical mechanics is
a neurologically intuitive science. However, abstraction is needed to allow students
to write code that solves classical mechanics problems. One possible solution is
through code libraries. Currently, there are few classical mechanics code libraries
available; thus, the researchers created a code library implementing concepts such
as gravity, thrust, and torque. Grade 12 senior high school students were invited to
participate in the study. Due to the work requirement of the study and restrictions
caused by the COVID-19 pandemic, only a few people responded to the invitation.
The participants were asked to construct programs to solve given classical
mechanics problems using the provided code library. Through their insights and
submitted source code, a qualitative approach was used to test the hypothesis.
Results mostly support the suitability of classical mechanics as programming
pedagogy; however, due to the limited participant pool, further reinforcement of the
idea may be done by reimplementing the research on a larger scale of participants
and a more thorough experimental design involving a control group to concretely
ascertain if exposure to the code library improves one’s programming abilities.

Keywords: education, computer programming, programming pedagogy, code library,
classical mechanics

 Copyright © 2022 by De La Salle University

A PRELIMINARY STUDY ON TEACHING PROGRAMMING THROUGH PHYSICS 35GULINAO ET AL.

INTRODUCTION

In today’s age of human exploration and
development, technology has been at the
forefront of leading global change and
innovation. It comes together in providing
ease and comfort to the lives of the everyday
man. Computer programming plays an
integral role in the development of economy,
healthcare, and infrastructure among
others. In 2019, Fedorenko et al. explained
that computer programming has developed
into a crucial skill in various fields and
disciplines.

Considering this, programming
education is therefore in high demand, and
efforts to reevaluate teaching methods have
been made in recent years. The current
methods of programming pedagogy still
focus on syntax (Tran & Torrisi-Steele,
2022). This method of teaching
programming has its disadvantages (Robins
et al., 2003). Mainly, syntax-first instruction
tends to produce programmers that struggle
to translate their knowledge of syntax into
meaningful program structures.
Additionally, the resulting students exposed
to this pedagogy tend to use the imperative
approach in programming. Some methods
have been devised to abstract syntax from
problem-solving, allowing students to focus
on the program structure. One such method
is block-based programming. However, as
Allen et al. (2022) have mentioned, it is
possible that students will experience a loss
of confidence when eventually switching
towards syntax-heavy programming.

Deek et al. (1998) suggest that a
problem-solving-first method is used
instead. This method demands students to
come up with solutions first, and only then
will relevant syntax be taught in the context
of said solutions. In this method, emphasis is
placed on students’ formation of detailed
mental models prior to writing code. In other
words, students must be able to “imagine” a
solution before they write one. Robins et al.

(2003) further suggest that the most optimal
teaching method for novice programming is
one that focuses not on the features of the
programming language but on the
application and combinations of these
features in relation to a problem. Therefore,
there is value to be found in teaching
programming through physics, particularly
classical mechanics.

Classical mechanics, or Newtonian
mechanics, is a field of physics that deals
with the three basic laws of motion. It has
been continually discussed that classical
mechanics is intuitive and easily learned
by empirical means. One such proof is the
ability of a human eye to predict movement
(Fischer et al., 2016). Athletes, as an
example, continually practice their ability
to predict movement, as per classical
mechanics, without needing to calculate
using any formula.

Therefore, instead of completely
abstracting syntax from students,
programming pedagogy can revolve around
solving physics problems that students can
already “imagine” the solution to. However,
writing physics simulations is another
difficulty entirely. It is only the essence of
intuitive classical mechanics that is
beneficial for instruction. This area is where
abstraction should be applied. This can be
done using code libraries. Kumar (2020)
described code libraries as methods for
locating existing resources without having to
construct from scratch. Additionally, Xie et
al. (2019) stated that code templates can
bridge the gap between syntax learning and
problem-solving using abstractions of
programming knowledge, which is similar to
how code libraries operate. Similar to
physical libraries, code libraries abstract
information that is not relevant to the user.
They ease workload and improve time
efficiency and quality by effectively storing
relevant functionality.

36 VOLUME 15 (2) 2022MANILA JOURNAL OF SCIENCE

Although there are already existing code
libraries available online such as on the
Astrophysics Source Code Library (ASCL),
libraries dedicated to classical mechanics
concepts are not publicly available.
Furthermore, there are little to no code
libraries that focus on abstracting
functionality for instructional purposes.

As such, this research focuses on
exploring the possibility of using classical
mechanics to bridge syntax learning and
problem-solving, whilst providing a classical
mechanics code library to be used as a
learning tool targeted towards beginner
programmers.

MATERIALS AND METHODS

The Code Library

The goal of the code library is to allow
beginner programmers to simulate physics
in hopes of training their programming skill;
thus, the code library is constructed in a way
that is usable in an educational level of
programming. Additionally, the code library
was designed with intuitiveness in mind.
This is to adhere to Deek et al.'s (1998)
methods in which the syntax should only be
introduced in the context of a problem that
needs it. The code library was designed in a
way that the syntax matches with what is
required to be solved, therefore ensuring
that language/syntax features (i.e., loops and
lists) are not introduced unnecessarily early
into a problem-solving process. This is done
in hopes of guiding the student’s learning
process through the methods explained by
prior research. Furthermore, the code
library aims to be modular to allow beginner
programmers to easily dissect and
understand how the code library functions.
The code library intends to serve as a model
on what “clean and maintainable code”
should look like.

The concepts of classical mechanics
that are implemented were chosen due to
their usefulness and intuitiveness.
Gravity, thrust, and torque were
implemented as they are the most useful
concepts for beginner programmers to
work with and since these are the concepts
that will be primarily used for most basic
applications that utilize the code library.
Aside from the aforementioned concepts,
collision detection was also added as it is
generally useful when dealing with
movement. C# will be utilized as the
programming language; for that reason, it
can be imported into any C# code project
and into any Unity Game Engine project.
Furthermore, the code library in this
research is distanced from other libraries
that are made to be used in a professional
context. Instead, it merely functions as a
pathway for beginner programmers to
understand abstract programming
concepts.

To achieve the desired modularity of
the code library, it revolves around the
extension of a base class such that each
subclass will only contain the methods it
needs. To organize and prevent the code
library from interfering with other
libraries, all its code is stored inside the
SpaceSimulation namespace. Thus, to
use the code library, one could either
prepend the namespace or import it into
the file by adding a using directive.

● TrajectoryData struct—The
TrajectoryData struct contains
various information about the
trajectory of an object at a given
time.

● TrajectoryBody class—The
TrajectoryBody class represents any
object in space and thus contains all
the methods and properties common
to all objects. It is an abstract class,
meaning it cannot be instantiated;

A PRELIMINARY STUDY ON TEACHING PROGRAMMING THROUGH PHYSICS 37GULINAO ET AL.

rather, a subclass must inherit from
it so that it can be instantiated.

● ThrustBody class—The ThrustBody
class is a concrete class that extends
from the TrajectoryBody class. It
represents any object in space that
can move under its own influence (or
thrust).

● CelestialBody class—The
CelestialBody class is a concrete class
that extends from the TrajectoryBody
class. It represents any celestial
object in space.

Code Library Usage

The code library was meant to be used
mostly by beginner programmers; special

attention was given to minimize the
amount of code and syntax that they will
have to write to perform relatively trivial
tasks. As such, both a high-level and low-
level application programming interface
(API) were implemented in the code library
through method overloading such that they
could use the high-level API, which
abstracts the complexity of the low-level
API. Aside from applying abstraction,
documentation for both the high- and low-
level APIs was also provided to aid users in
understanding the code library and
developing their own applications. One
such application is an orbital rocket
simulator, which was made by the
researchers as a proof of concept or as a
showcase of the code library’s capabilities.

Figure 1. Orbital rocket simulator.

The process of creating physics
simulations is abstracted through the code
library in the following general steps:

1. Users can import the
SpaceSimulation namespace into
the file using either of the following
methods:

a. through using a directive or
b. by calling the classes and

structs directly through the
SpaceSimulation
namespace keyword.

2. Create the TrajectoryBody
instances that are to be included in
the simulation.

a. Generate the initial trajectory
data of the object.

i. Instantiate a new
TrajectoryData
instance <with the
status of the object that
will be used>.

38 VOLUME 15 (2) 2022MANILA JOURNAL OF SCIENCE

b. To instantiate a ThrustBody:
i. Generate the linear

and angular movement
keys of the
ThrustBody by
creating a new double
array and populating
each element with the
thrust percentage at a
given second.

ii. Call the ThrustBody
constructor method
and pass in all the
required parameters.

c. To instantiate a
CelestialBody:

i. Call the
CelestialBody
constructor method
and pass in all the
required parameters.

3. Combine all the generated
CelestialBody instances in a single
array.

4. Calculate the next
CurrentTrajectoryData of the
ThrustBody using the
CalculateNext() method.

a. Define a loop that calls the
CalculateNext() method
for every movement key
defined.

b. Optionally, print the
calculated
CurrentTrajectoryData
by calling its
PrintToConsole() method.

5. If needed, the user can fetch data
from the computed trajectory by
any of the following:

a. fetching the entire
TrajectoryList of the object
by calling the
GetTrajectoryList()
method or

b. fetching a specific piece of
data at a specific moment in
time using the abstract
getter methods.

It is through these five primary steps
that the code library attempts to ease
students into learning only the required
syntax that is required in the context of a
problem, therefore adhering to the
methods of Deek et al. (1998).

using System;
//Step 1
using SpaceSimulation;

namespace MyDemonstrationProgram
{
 class Program
 {
 static void Main(string[] args){
 //Step 2.a
 Double2 startingPos = new Double2(0, 0); // position of the rocket
 TrajectoryData startingTrajectoryData = new TrajectoryData(10000, startingPos, Double2.Zero,
45, 0);
 //Step 2.b.i
 double[] thrustKeys = { 0, 0, 0, 0, 0 };
 double[] angularThrustKeys = { 0.1, 0.0, -0.2, 0.0, 0.1 };
 //Step 2.b.ii
 ThrustBody rocket = new ThrustBody(startingTrajectoryData, thrustKeys, angularThrustKeys, 1,
1000, 1000);
 //Step 2.a
 Double2 planetStartingPos = new Double2(0, -10000); // position of the planet
 TrajectoryData planetTData = new TrajectoryData(7.5 * Math.Pow(10, 20), planetStartingPos,
Double2.Zero, 0, 0);
 //Step 2.c
 CelestialBody earth = new CelestialBody(planetTData, 4000);
 //Step 3

A PRELIMINARY STUDY ON TEACHING PROGRAMMING THROUGH PHYSICS 39GULINAO ET AL.

 CelestialBody[] planets = { earth }; // create the planets array with only one planet as the
item
 //Step 4.b
 Console.WriteLine("Initial TrajectoryData: ");
 startingTrajectoryData.PrintToConsole();
 //Step 4.a
 for (int currentTime = 0; currentTime < thrustKeys.Length; currentTime++) {
 Console.WriteLine("Currently on iteration: " + currentTime);
 rocket.CalculateNext(planets);
 rocket.CurrentTrajectoryData.PrintToConsole();
 }
 }
 }
}

Initial TrajectoryData:
Velocity: [0, 0]
Position: [0, 0]
Angle: 45
AngularVelocity: 0

Currently on iteration: 0
Velocity: [0, -500.5725]
Position: [0, -500.5725]
Angle: 732.549354156988
AngularVelocity: 687.549354156988

Currently on iteration: 1
Velocity: [0, -1055.29032561037]
Position: [0, -1555.86282561037]
Angle: 1420.09870831398
AngularVelocity: 687.549354156988

Currently on iteration: 2
Velocity: [0, -1757.32154795294]
Position: [0, -3313.18437356331]
Angle: 732.549354156988
AngularVelocity: -687.549354156988

Currently on iteration: 3
Velocity: [0, -2876.83235325745]
Position: [0, -6190.01672682075]
Angle: 45
AngularVelocity: -687.549354156988

Currently on iteration: 4
Velocity: [0, 0]
Position: [0, -6190.01672682075]
Angle: 45
AngularVelocity: 0

Figure 2. Sample console application program and output.

Experimental Design
A qualitative experimental approach

was used to evaluate the code library as a
learning tool. A group of seven senior high
school students responded to the invitation
to participate in the study. Chosen
participants had no external programming
expertise other than what was taught to
them by the required curriculum.

The participants were subject to take a
preliminary form containing a diagnostic
test. After two days, an orientation meeting

with the seven participants was held. The
meeting was held online through Zoom
meetings. In this meeting, a brief
introduction about the research was given,
followed by a tutorial on the installation of
the code library and simulator. An overview
of the documentation was given, so that the
students had a grasp of the basic syntax of
C# to be able to use the code library’s API. It
was in this meeting that the students were
assigned one individual task each that they
needed to complete by the creation of a C#
program.

Table 1. Task Pool
Task # Task

1 Suppose a rocket whose initial position is at the origin and a planet whose initial position is
10,000 m to the right of the rocket. The rocket has a mass of 7.5 * 10^20 kg and a radius of
4,000 m. Determine the position of the rocket and if it has collided with the planet after 6
seconds if the rocket has no thrust for the entire duration.

2 Create a rocket whose initial position is at the origin, if the rocket has 100% thrust for 7
seconds and mass flow rate of 2,200 kg/s and an exhaust velocity of about 2,900 m/s.

3 Create a rocket whose initial position is at the origin; if the rocket has 100% positive angular
thrust for 7 seconds and max torque of 200,000 newton meters, what is its final angular
velocity?

The students were given one week to

complete their assigned tasks. A second
meeting was scheduled for a group
interview. During this interview, questions
regarding the strengths and weaknesses of
the code library were asked. The group
interview was conducted following Mazza

and Berre’s (2007) methodology that consists
of two parts: general impressions and
specific cognitive tasks involved in using the
library. In the interview, for each answer
given, every participant was asked if they
agreed or disagreed with that particular
answer.

Figure 3. Participant activity timeline.

Notes and transcripts from the second
meeting were categorized to gain consensus
on the quality of the library based on
strengths, weaknesses, opportunities, and
threats (SWOT) factors. On the other hand,
the submitted code of the students were
analyzed and viewed in the context of their
unfamiliarity with C# and programming in
general. Four aspects were considered in the
evaluation of the submitted code:

1. The code is first checked for the
absence of compilation errors.

2. Then, if the code compiles, it is
checked if the correct solutions were
applied. Then, the resulting final
answer is also checked for
correctness.

3. Finally, the code is checked for the
presence of code comments and their
substance.

4. Any form of assistance given to the
participant will be listed, if there is
any.

To provide reasoning on why code
comments are checked, it is generally agreed
upon that the presence of code comments
contributes towards better readability and
clarity, albeit not always indicative (Buse &
Weimer, 2010). Subsequently, clarity has
been found to have a positive correlation to
programming experience (Fernandes et al.,
2017). Particularly with novice
programmers, it can be implied that the
optional nature of code comments makes
their existence significant. An assumption
can be made about the correlation of a
students’ understanding of their written
code with the amount of code comments they
put in.

Issues Encountered

Due to the work requirement of the
current study, only a handful of people
responded to the invitation. Furthermore,
due to restrictions because of the COVID-19
pandemic, the study could not be conducted
in a physical context, which could factor into
students’ unwillingness to participate. This
issue hindered the study in terms of its scale.

Additionally, although a diagnostic test
on physics problems was administered, it
was later discovered that the scores of the
students on this test are irrelevant to the
current study. This is due to the goals of the
research later shifting focus from physics
education to programming education.
Presentation materials for the orientation
meeting and interview questions for the
second meeting were changed and updated
as needed. This shift was made in
consideration of the existing nature of the
code library and in what use case it would be
better suited for at its current design.
Furthermore, it is more practical and
realistic for precollege students to learn
programming through existing physics

knowledge, rather than learn physics
through nonexisting programming
knowledge.

RESULTS AND DISCUSSIONS

Results

Seven senior high school students
accepted the invitation to participate in the
current study.

Table 2. Participant Profile
Participant # SHS

Strand
Curriculum

Programming
Language Used

1, 7 STEM Python

2 ICT C#

3, 4, 5, 6 ICT Python

Note. SHS = senior high school.

Upon acquisition of their profile, it is

known that only two of these students are
from the Science, Technology, Engineering,
and Mathematics (STEM) strand, while
the rest come from the Information and
Communication Technology (ICT) strand.
The programming language that their
curriculum uses, however, differs. Six
participants learned Python in their senior
high school curriculum, while only one
learned C#.

42 VOLUME 15 (2) 2022MANILA JOURNAL OF SCIENCE

Table 3. Programming Task Results
Participant # 1 2 3 4 5 6 7

Compiles? Yes Yes Yes Yes Yes Yes No

Correct? Yes Yes Yes Yes Yes Yes No

Presence of
code
comments

- Problem
statement

- Labeled
formulas

- Labeled
variables

N/A N/A - Problem
statement

- Labeled
formulas

- Labeled
variables

- Labeled
variables

- Labeled
variables

N/A

Assistance? N/A Variable
placement

Syntax N/A N/A N/A N/A

Task #
assigned

Task #1 Task #1 Task #3 Task #1 Task #1 Task #2 Task #3

Six out of seven participants wrote code that

both compiled successfully and produced correct
answers. Four of these submissions contained
comments on their code to label variables. Two
submissions (Participants #1 and #4) contained
comments on much of the written code and
included a proper problem statement as well. It
is worthy to note that Participant #1, a STEM

student having no prior knowledge on the C#
language, wrote significantly better code than
Participant #2, who is an ICT student who has a
background in C#. It is also noteworthy how the
participants who put comments on their code are
also the participants who required no midweek
assistance.

Table 4. Interview Summary
Question Theme/Answer Participants

Answered

Did you have any issues with the code
library and the processes you must take
to use it?

- No. Extensive documentation helped
guide me. Even as a beginner, the
code was easy to understand.

All

 - No, but I did experience considerable
difficulty that may be considered
user-error.

2, 3, 4, 5, 6

 - No, but my difficulty came from a
difference in operating system.

7

Would you consider using the library for
personal projects?

- Yes, I would consider using it in
game development.

3, 6

 - Yes, I would consider using it in
academic simulations.

1, 2, 4

If you had anything to change about the
code library, what would it be?

- None. 1, 5, 6

 - A more complete documentation and
guide.

2, 3, 4, 7

A PRELIMINARY STUDY ON TEACHING PROGRAMMING THROUGH PHYSICS 43GULINAO ET AL.

All participants agree that the code
library was beginner friendly, as proven by
their performance on their assigned
programming tasks. It is interesting to note
that five participants experienced
difficulties that they considered as “user-
error”; however, only two of these
participants reached out to request
assistance. One participant had difficulty in
installation since the entirety of the tutorial
and guide targets Windows users. Two
participants expressed desire to use the code
library in game development, while three
others agreed on the idea of the library being
used in academic simulations. Four
participants commented on the need for
more complete documentation and guide.
This can also be extended to the idea of
making installation guides for other
operating systems.

Discussions

Six out of seven participants had
submitted code that both compiled without
error and answered respective tasks
correctly. However, due to the small sample
size and lack of a control group, this may not
be decisively indicative of classical
mechanics being suitable to bridge syntax
learning and problem-solving. Nonetheless,
it is significant to note the performance of
each participant in the context of their
background and their answers in the group
interview.

Participant #1 was one of the two
students who thoroughly wrote comments on
their submitted code. Although their
background is in Python and they are not an
ICT student, they still displayed an
understanding of C# concepts and was able
to follow proper syntax with no assistance.
Furthermore, this particular participant
was not one of those who attested to having
major difficulty. This specific case is
interesting when compared to the
participants who agreed that they had

difficulty, because it is these participants
who have a background in ICT. A
presumptive argument could be made about
STEM students having a better intuition on
classical mechanics, therefore possessing a
more detailed mental model of the problem
given. If this is indeed the case, it would be
consistent with the discussion of Robins et
al. (2003), wherein emphasis was placed on
the ability of programmers to form detailed
mental models prior to writing code.

Participants #4, #5, and #6 are also
notable cases. These participants also
submitted code that compiles and is
correct; however, despite being ones who
attested to having difficulty while
completing the tasks, they still did not
request any midweek assistance. This
implies that these three students, though
not having any C# background, managed to
debug their own code properly and add
comments as well. This particular case
may be used as a relatively stronger
argument towards the suitability of
classical mechanics as an alternative
method in programming instruction, since
it shows how students can be left on their
own and yet still understand unfamiliar
language features (i.e., syntax) through a
detailed mental model formed with the
assistance of physics.

Participant #2 is an interesting case.
Though a student from ICT with a
background in C#, they needed a
clarification on where to put a particular
value (planet mass, on Task #1) in relation
to their code. This case can be contrasted
with Participants #1, #4, and #5, who were
students also assigned to Task #1, but unlike
Participant #2, they did not need assistance.
This case could be an example of what
Robins et al. (2003) warn about syntax-first
instruction. Students exposed to this
pedagogy will tend to rely on memorized
facts rather than a mental model. Therein

44 VOLUME 15 (2) 2022MANILA JOURNAL OF SCIENCE

lies the problem when students eventually
forget what they had tried to memorize.

To understand the sole failure of
Participant #7, the case of Participant #3 can
be considered. These two students both were
assigned to accomplish Task #3, which is
undeniably a more difficult task when
compared to Task #1, for instance. However,
unlike Participant #7, Participant #3
requested assistance. Presumably, this
difference could have been the deciding
factor on whether Participant #7 could have
made working and correct code. However, it
is unlikely due to the sheer length of the time
given to the students, which therefore
increases the number of possible factors that
could affect their completion. Nevertheless,
if this was indeed the case, then this scenario
emphasizes the importance of introducing or
reinforcing language features (i.e., syntax) to
students after the problem has been
thoroughly introduced to the student, as
done by Deek et al. (1998).

CONCLUSIONS AND FUTURE
WORK

This study has explored the possibility
of using physics, particularly classical
mechanics, as a tool to bridge the gap
between syntax learning and problem-
solving learning. To do this, a code library
was developed in the C# programming
language. It implements and abstracts the
concepts of gravity, thrust, torque, and
collision detection. This code library is then
distributed to seven participants who were
assigned tasks they needed to solve using the
library.

Due to the limited participant pool, a
conclusion cannot be made regarding the
viability of classical mechanics as a
suitable means for programming
education. Although some participants
were able to accomplish their given tasks,

it is difficult to determine if the code library
aided in their abilities due to a lack of a
control group. Further research is required
to be able to properly evaluate the
effectiveness of a classical mechanics code
library as a tool for teaching problem-
solving skills. Future researchers should
employ a more thorough experimental
design involving a control group to
concretely ascertain if exposure to the code
library improves one’s programming
abilities. Both groups should have minimal
to no programming experience, with one
being tutored through exposure to the code
library, while the control group is tutored
through traditional means of learning. It is
also recommended to have a shorter time
frame between the initial tutoring and the
submission of the assigned task to reduce
the impact of external factors on their
solutions.

REFERENCES

Allen, O., Downs, X., Varoy, E., Luxton-Reilly
A., & Giacaman, N. (2022). Block-based
object-oriented programming. IEEE
Transactions on Learning Technologies,
15(4), 439–453.
https://doi.org/10.1109/TLT.2022.3190318

Buse, R. P. L., & Weimer, W. R. (2010).
Learning a metric for code readability.
IEEE Transactions on Software
Engineering, 36(4), 546–558.
https://doi.org/10.1109/TSE.2009.70

Deek, F. P., Kimmel, H., & McHugh, J. A. (1998).
Pedagogical changes in the delivery of the
first-course in computer science: Problem
solving, then programming. Journal of
Engineering Education, 87, 313–320.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers,
M. U. (2019). The language of programming:
A cognitive perspective. Trends in Cognitive
Sciences, 23(7), 525–528.
https://doi.org/10.1016/j.tics.2019.04.010

Fernandes, E., Ferreira, L. P., Figueiredo, E., &
Valente, M. T. (2017). How clear is your code?
An empirical study with programming
challenges. In Proceedings of the Ibero-

A PRELIMINARY STUDY ON TEACHING PROGRAMMING THROUGH PHYSICS 45GULINAO ET AL.

American Conference on Software
Engineering: Experimental Software
Engineering Track (CIbSE-ESELAW) (pp. 1–
14).

Fischer, J., Mikhael, J. G., Tenenbaum, J. B., &
Kanwisher, N. (2016). Functional
neuroanatomy of intuitive physical inference.
Proceedings of the National Academy of
Sciences, 113(34), E5072–E5081.
https://doi.org/10.1073/pnas.1610344113

Kumar, V. (2020, October 21). How to get started
with external code libraries. Analytics
Insight.
https://www.analyticsinsight.net/how-to-get-
started-with-external-code-libraries/

Mazza, R., & Berre, A. (2007). Focus group
methodology for evaluating information
visualization techniques and tools.
https://ieeexplore-ieee-

org.dlsu.idm.oclc.org/stamp/stamp.jsp?tp=
&arnumber=4271964

Robins, A., Rountree J., & Rountree, N. (2003).
Learning and teaching programming: A
review and discussion. Computer Science
Education, 13(2), 137–172.
https://doi.org/10.1076/csed.13.2.137.14200

Tran, T., & Torrisi-Steele, G. (2022). A
conversation with my peers on learning and
teaching programming.
https://doi.org/10.21125/edulearn.2022.210
7

Xie, B., Loksa, D., Nelson, G., Davidson, M.,
Dong, D., Kwik, H., & Ko, A. (2019). A
theory of instruction for introductory
programming skills. Computer Science
Education, 29, 1–49.
https://doi.org/10.1080/08993408.2019.156
5235

