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ABSTRACT 

Rapid urbanization is occurring at an unprecedented rate in recent human 
history and is having a marked effect on the natural functioning of ecosystems. 
Changes in land use/land cover (LULC) due to urbanization is proceeding more 
quickly in ASEAN (Association of Southeast Asian Nations). This study aims to 
quantify LULC changes in Mactan Island (Central Philippines) using remote 
sense data from Landsat 7 ETM+ for the year 2000 and Landsat 8 OLI for the 
year 2018. The Semi-Automatic Classification Plugin in QGIS was used in 
analyzing and processing of Landsat data. Fragmentation patterns were 
identified, and the effect of LULC change on land surface temperature was 
evaluated. Overall accuracies of Landsat-derived land use data were 86.2% and 
86.4% for the years 2000 and 2018, respectively. Results showed that the built-
up class had increased to about 31.3% while other classes such as vegetation 
(25.8%), bare soil (7.3%), and water bodies (74.4%) had decreased. The mean land 
surface temperature increased by about 2.9 °C from 2000 to 2018. Vegetation 
patches increased from 515 in 2000 to 862 patches in 2018, suggesting the degree 
of fragmentation and the extent of subdivision of the landscape. LULC has 
significantly changed from the year 2000 to 2018. Fast urbanization in the island 
had led to fragmentation of vegetation and an increase to land surface 
temperature. The results of this study provide additional information that is 
important to the urbanization process in Mactan Island and can be used further 
to investigate the effect of LULC on local climate change in the future. 
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INTRODUCTION 

Urbanization is one of the biggest 
anthropogenic activities that have caused the 
loss of arable land, habitat destruction, and 
the decline of natural vegetation (Alphan, 
2003; Dewan & Yamaguchi, 2009; Lopez et al., 
2001). It is occurring at an unprecedented 
rate in recent human history and having a 
marked effect on the natural functioning of 
ecosystems (Turner, 1994). It is projected that 

land use/land cover (LULC) changes due to 
human activities and the development of 
megacities by the year 2020 will be located in 
developing countries (World Bank, 2007). To 
mitigate haphazard development of urban 
space, it is important to assist government 
officials of affected cities with regards to their 
planning strategies in tackling potential risks 
and adverse effects of urbanization (Son & 
Thanh, 2017). Maps of vegetation, land 
surface temperature (or LST), and LULC can 
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provide a “bird’s-eye view” and concrete 
evidence of urbanization. The practical 
application of remote sensing (RS) and a 
geographic information system (GIS) comes 
in handy in assessing LULC change and LST. 
The interpretation and classification of RS 
data are very useful for estimating the spatial 
pattern and rate of urban growth with time. 
The physical pattern of urban growth can be 
identified, and the characteristics of these 
patterns such as infill, expansion, and 
outlying (Wilson et al., 2003) can provide an 
overview on the spatial distribution and 
arrangement of built environments and 
identify “pockets of urbanization.” Estoque et 
al. (2017) conducted a study on the 
relationship between LST and the abundance 
and spatial pattern of impervious surface and 
green space in the megacities of Southeast 
Asia, including Manila. The methods of 
processing Landsat data for LULC 
assessment were standard. However, using 
an open-source software like the Semi-
Automatic Classification Plugin (SCP) in 
QGIS in this study is new and currently 
limited in growing urban centers in the 
Philippines. Recent studies about RS were 
using commercial software such as ENVI, 
ERDAS Imagine, ArcGIS, etc., which is very 
expensive. Open-source and new technologies 
had paved way to researchers in quantifying 
and assessing anthropogenic impacts on the 
environment. Mactan Island (Lapu-Lapu City 
mainland and Cordova) is a highly urbanized 
area in Central Visayas, Philippines. In 
recent years, the island has experienced rapid 
expansion of urban built-up and tourism-
related developments. The effects of traffic 
congestions, flooding, dense population, and 
housing development in Mactan Island are 
unique (i.e., limited space and fast 
industrialization) compared to other cities in 
the province of Cebu and Central Visayas. In 
this study, we quantified the LULC changes 
in Mactan Island between 2000 and 2018 
using Landsat data. Fragmentation patterns 
were also assessed for the green spaces/urban 

vegetation. Lastly, the effects of LULC 
change on LST were evaluated. 

MATERIALS AND METHODS 

The Study Area 
 Mactan Island (Fig. 1) is a densely 
populated island located about few kilometers 
from Cebu Island (Central Philippines). The 
island is located between 123°54'4.49"E 
longitude, 10°20'2.57"N latitude and 
124°2'45.00"E longitude, 10°14'43.66"N 
latitude. It consists of the mainland Lapu-
Lapu City and the municipality of Cordova 
with a land area of approximately 6,244.5 ha. 
The island is dominated mostly by industrial 
and residential areas. Economic zones such 
as the Mactan Export Processing Zone 
(MEPZ) I and II and Cebu Light Industrial 
Park (CLIP) serve as the base operations of 
various multinational companies. The 
Mactan-Cebu International Airport is located 
in the island and serves as the gateway for 
domestic and international air travel. It has 
two bridges that link to Cebu Island, and a 
third bridge (from Cordova to Cebu) is 
undergoing construction. The island 
topography is generally flat, and some areas 
are slightly elevated. 

 

Figure 1. Location map of study area. Map 
showing its road networks and proximity to 
Cebu City and Mandaue City (data source: 
GADM, 2012). The map projection is in UTM 
Zone 51N. 
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GADM Collection 
The methods used in this study 

generally involved the following steps: data 
collection, preparation, processing, analysis, 
and assessment of the data collected (see 
Figure 2). Landsat time series data were 
collected for the years 2000 and 2018 from 
https://glovis.usgs.gov with Worldwide 
Reference System (WRS) path 113 and row 
053 (Global Visualization [GloVis] Viewer, 
2005). For 2000 data, Landsat 7 images were 
used since Landsat 8 has only images from 
2013 onwards. Scenes with minimum or 
without cloud cover were considered in 
choosing the appropriate satellite images in 
this study. We used Landsat Level-2 or 
Surface Reflectance data products except for 
scene 2018 of Landsat 8, where we used the 
Level-1 data since no Level-2 data were 
available. The availability of Landsat 
Surface Reflectance High Level Data 
Products was prioritized since it can provide 
better and more accurate land cover 
classifications. However, if these data are not 
available, the conversion to surface 
reflectance using the Dark Object 
Subtraction 1 method was done to provide 
significant enhancement to the original 
Landsat image, particularly for 
the supervised classification of old images 
(Congedo, 2016). This study uses Landsat 
data with 30-m-per-pixel resolution and 
applies it in the scale ranges between 
1:50,000 and 1:100,000 (Bhatta, 2010; Sabins, 
1996). 

 
Data Analysis and Processing 

We used QGIS 3.0 (QGIS 
Development Team, 2015) and the SCP in 
QGIS to analyze and process the Landsat 
data. Landsat images were projected using 
UTM Zone 51N projection with WGS84 
datum and clipped within the desired study 
area. Dark Object Subtraction was used for 
atmospheric corrections. It is worth pointing 
out that the accuracy of image-based 
techniques is generally lower than physically 

based corrections, but they are very useful 
when no atmospheric measurements are 
available as they can improve the estimation 
of land surface reflectance (Chavez, 1996).  
LULC classification went through 
unsupervised and supervised classification 
procedures. Identified spectral signatures of 
land covers were defined through a 
Macroclass ID, a group of regions of interest 
(ROIs) having different Class IDs, which is 
useful when one needs to classify materials 
that have different spectral signatures in the 
same land cover class. For instance, one can 
identify a grass or trees Class as a vegetation 
Macroclass (i.e., Class = grass or trees, 

Macroclass = vegetation). Multiple Class IDs 
can be assigned to the same Macroclass ID, 
but the same Class ID cannot be assigned to 
multiple Macroclass IDs. Table 1 shows the 
different Classes assigned to a Macroclass.
 The Maximum Likelihood 
classification algorithm in SCP was used. The 
classification of land cover in urban areas was 
more challenging because of landscape 
heterogeneity and the amount of threshold in 
the environment that creates confusion in 
identifying the accurate cover of an area. In 
order to increase classification accuracy and 
reduce classification error caused by 
confusion in spectral response of specific 
classes, the generalized images were 

Figure 2. Data processing flow diagram 
showing the summary of procedures in 
generating LULC maps and evaluation of LST 
from Landsat data. 
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spatially reclassified and refined for 
classification validation (Congedo, 2016). 

Table 1. Different Class Names Assigned to a Macroclass 
Macroclass Name Class Name 
Vegetation Trees, grass, shrubs 
Built-up Buildings, roads 
Bare soils Barren land, excavation sites 
Water bodies Rivers, seas 

 
Data reclassification was applied to 

properly consolidate the different LULC 
types. Reclassification was carried out using 
reference data (e.g., roads, boundaries) and 
Google Earth, which provided clear present 
image-based information and some historical 
imageries that were very useful in 
reclassification. 

 
Change Detection 

Classification results were compared 
to quantify the changes that occurred in 
different years (2000 and 2018) using change 
detection analysis in SCP. Two change 
detection statistics were obtained from 
independent classified images. “From-to” 
change information matrices and maps were 
presented to show the main gains and losses 
in each category. 
 
Fragmentation Pattern 

In identifying fragmentation patterns 
of vegetation, landscape metrics were 
calculated using LecoS (Landscape Ecology 
Statistics), a plugin for QGIS (Jung, 2016). A 
landscape is represented as a collection of 
discrete patches (Leitão et al., 2006). The 
LecoS plugin identifies patches by class to 
calculate metrics (i.e., Land Cover, 
Landscape Proportion [LP], Number of 
Patches, Greatest Patch Area, Mean Patch 
Area). Fragmentation pattern analysis using 
LecoS was performed to identify patches of 
class vegetation and calculate several 
landscape metrics. The proportional 

abundance of vegetation class obtained 
through LP indicates changes in area. 

 
Vegetation and Built-Up Areas 

The normalized difference vegetation 
index (or NDVI) provided information about 
the density of vegetation, crop production, 
and measurement of surface radiant 
temperature (Aboelnour & Engel, 2018) 
while the normalized difference built-up 
index (or NDBI) was used to investigate the 
extent of imperviousness and built-up areas 
and can highlight the urban distribution with 
a typically higher reflectance in the short-
wave infrared region band than in the near-
infrared one (Aboelnour & Engel, 2018; 
Alwahiti & Mitsova, 2016). NDVI and NDBI 
were calculated using the following formulas: 
  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 5 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4)/(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 5 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4) (1) 
 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆– 𝑁𝑁𝑁𝑁𝑁𝑁) (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑁𝑁𝑁𝑁𝑁𝑁)⁄  (2) 
where  

 
NIR = Near Infrared (Band 4 for 
Landsat 7 and Band 5 for Landsat 8); 
and 
SWIR = Short Wavelength Infrared 

(Bands 5 and 7 are the SWIR 
for Landsat 7, while Bands 6 
and 7 are the SWIR for 
Landsat 8). 

 
LST 

Before at-sensor reflectance can be 
determined for Landsat 7 ETM+ images, the 
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radiance was first calculated using digital 
number (DN) values. The following equation 
was used to convert DN to radiance units: 

 
𝐿𝐿(𝜆𝜆) = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (3) 
 
where  

 
L(λ) is at sensor; 
Gain is the slope of the radiance/DN 

conversion function; 
DN is the digital number of a given 

pixel; and 
Offset (or bias) is the intercept of the 

radiance/DN conversion function. 
 

For this study, we used a land cover 
classification for the definition of the land 
surface emissivity of each class (Weng et al., 
2004):  
 
𝑒𝑒 = 𝑎𝑎 + 𝑏𝑏 × 𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) (4) 
 
where a and b were obtained by regression 
analysis based on the largest data set 
(Aboelnour & Engel, 2018; Faridatul, 2017). 

It should be noted that the correct 
evaluation of LST was constrained to an 
accurate estimation of surface emissivity 
(Aboelnour & Engel, 2018). The estimation of 
LST (denoted as T in the equation) was 
calculated as  

 
𝑇𝑇 = 𝑇𝑇𝐵𝐵 [1 + (𝜆𝜆 ∗ 𝑇𝑇 𝐵𝐵 𝑐𝑐⁄ 2) ∗ 𝑙𝑙𝑙𝑙(𝑒𝑒)]⁄  (5) 
where 
 

𝜆𝜆 = wavelength of emitted radiance; 
𝑐𝑐  = h*𝑐𝑐/𝑠𝑠 = 1.4388*10−2 m K;  
h = Planck’s constant = 6.626*10−34 J 
s; 
𝑠𝑠 = Boltzmann constant = 1.38*10−23

 J/K;  
𝑐𝑐 = velocity of light = 2.998*108 m/s; 
and  
e = emissivity. 

 
The calculation of LST for Landsat 7 

ETM+ images was processed in units of 

absolute radiance using 32-bit floating-point 
calculations or DNs. These values were 
converted to spectral radiance scaling factors 
provided in the metadata file (USGS, 2016): 

 
 (6) 
where 
 

Lλ    = Spectral radiance     
(W/(m2*sr*μm)); 

ML   = Radiance multiplicative 
scaling factor for the band 
(RADIANCE_MULT_BAND_n 
from the metadata); 

AL   = Radiance additive scaling
 factor for the band
 (RADIANCE_ADD_BAND_n
 from the metadata); and 
Qcal  = L1 pixel value in DN. 

 
The estimation of LST for Landsat 8 

OLI images was calculated the same as with 
the Landsat 7 formula. The emissivity (𝑒𝑒) was 
estimated using land cover classification with 
the same formula used in Landsat 7 ETM+ 
since it is also preferably used in some other 
studies (Aboelnour & Engel, 2018; Sobrino et 
al., 2004). Kelvin values were converted to 
Celsius using the following equation: 
 
°𝐶𝐶 = 𝑇𝑇 − 273.15 (7)  
 
 
Accuracy Assessment 

Sampling points were generated 
randomly and validated using Google Earth 
Imageries and actual field surveys. We used 
a stratified sampling design to increase the 
sample sizes for small areal proportions to 
reduce standard errors of the class-specific 
accuracy estimate for other classes. The 
number of samples (N) for each class was 
calculated using the following formula 
(Olofsson et al., 2014):    

 
 N = (∑i = 1 (Wi − Si)/So)2 (8) 
 

Lλ = ML * Qcal + AL 
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where 
 
 N = total number of classes;  
 Wi = mapped area proportion of
     class i; 

Si  = standard deviation of  
stratum i; and 

So = expected standard deviation
    of overall accuracy.  

 
The procedure requires some 

conjectures about overall accuracy and user’s 
accuracy of each class (Congedo, 2016). To 
stratify samples, we conjectured the user’s 
accuracy and standard deviations of strata 
(Olofsson et al., 2014). A rough 
approximation is to consider the mean value 
between equal distribution (Ni = N/c) and 
weighted distribution (Ni = N∗Wi), which 
is Ni = (N/c + N∗Wi)/2. Once the sampling 
data were stratified, single pixel training 
areas (ROIs) were created, and the 
attribution of a land cover class based on 
photo-interpretation of each ROI (Congedo, 
2016) was made. Standard accuracy 
assessment metrics were performed using 
SCP to calculate overall accuracy, producer’s 
accuracy, and user’s accuracy using the 
following formula: 

 
 

 
 
These processes were calculated 

statistically according to the area-based 
error matrix (Olofsson et al., 2014) where 
each element represents the estimated area 
proportion of each class. 
 
 
 
 
 
 
 
 
 

RESULTS 

Accuracy Assessment 
Tables 2 and 3 contain the 

percentage of each class that was divided by 
100 to get the required Wi. The expected 
standard deviation is So = 0.01 and 
conjectures the Si values. 

The allocated samples for the year 
2000 were 151 and for the year 2018 were 
150. Tables 4 and 5 show the estimated 
allocation of samples in every class. Tables 6 
and 7 contain the area-based error matrix 
for the years 2000 and 2018. 
 Table 8 contains the percent producer, 
user, and overall accuracies including 95% 
confidence interval (CI) area per class after 
data processing. The percent overall accuracy 
of 86.2 for year 2000 and 86.4 for year 2018 
are acceptable if compared to other studies 
(e.g., Rahman & Saha, 2007; Tao & Xin, 2004). 
 
LULC Classification and Change 
Detection 

The general direction of urbanization 
as shown in the built-up class (Fig. 3) can be 
seen emanating from the city/municipal 
centers where malls, public markets, schools, 
churches, and public amenities are located. 
For Lapu-Lapu City, the direction of built-up 
sprawl was moving southeast starting from 
the barangays of Poblacion, Pajo, Pusok, Ibo, 
Gun-ob, and Basak. Built-up areas in the 
southeastern part of the city recently sprung 
due to limited spaces near the city proper. 
The direction of built-up sprawl in the 
municipality of Cordova, however, is 
observed as spiraling or circulating outward 
from the municipal proper 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦 (%) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇⁄ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 100 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃’𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (%) = 100% − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (%) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈’𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (%) = 100 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (%) 
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Mactan Island shows a “strip” or 
“ribbon” development, in which residences or 
commercial properties line roads extending 
outward from urban centers (Tsai, 2005). 
Homes arranged along rural highways 
present hazards related to traffic safety; 
commercial strips composed of fast-food 
chains and large retail stores cater to 
automobile access and are often fronted by 
expansive parking lots. 

The increasing areas of built-up cover 
have a significant effect on the magnitude of  

 
 
 
 
 
 
 
 
 
 

LST, and while these areas increased, 
vegetation in the urban surroundings 
decreased over the years. This was observed 
during the field validation as impervious 
pavements, concrete structures, and asphalt 
roads. A matrix showing land cover 
conversion from 2000 to 2018 of Mactan 
Island (Central Philippines) showed the 
greatest change was the built-up class (Table 
9). 

 

 
 

Table 3. Conjectured Standard Deviations on Year 2018 

 Land Cover Class Class 
Number Area (m2) % Wi Si Wi*Si 

20
18

 

Built-up 1 29,778,300 47.27 0.472739 0.13 0.06 
Vegetation 2 23,976,900 38.06 0.38064 0.10 0.04 
Bare soil 3 5,636,700 8.95 0.089484 0.22 0.02 
Water 4 3,599,100 5.71 0.057137 0.06 0.003 
Total      0.123 

For 2018, N = (0.12267/0.01)2 = 150. 
 

  
Table 4. Year 2000 Allocated Samples for Each Class 

Land Cover Class Weighted Equal Mean 
Built-up 49 38 43.14 
Vegetation 71 38 54.62 
Bare soil 15 38 26.25 
Water 15 38 26.18 
Total   151 

 
 

Table 2. Conjectured Standard Deviations on Year 2000 

 Land Cover Class Class 
Number Area (m2) % Wi Si Wi*Si 

20
00

 

Built-up 1 20,450,700 32.45 0.324508 0.20 0.06 
Vegetation 2 30,085,200 47.74 0.477386 0.10 0.05 
Bare soil 3 6,269,400 9.95 0.099482 0.06 0.01 
Water 4 6,215,400 9.86 0.098625 0.04 0.00 
Total      0.123 
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Table 5. Year 2018 Allocated Samples for Each Class 

Land Cover Class Weighted Equal Mean 
Built-up 71 38 54.35 
Vegetation 57 38 47.42 
Bare soil 13 38 25.53 
Water 9 38 23.10 
Total   150 

 

Table 6. Area-Based Error Matrix for Year 2000 
 Built-Up Vegetation Bare Soil Water Bodies 
 Sample 

Counts Error Sample 
Counts Error Sample 

Counts Error Sample 
Counts Error 

Built-up 41 0.1231 6 0.0180 2 0.0060 0 0.0000 
Vegetation 2 0.0060 68 0.2044 2 0.0060 0 0.0000 
Bare soil 3 0.0090 1 0.0030 11 0.0331 0 0.0000 
Water bodies 0 0.0000 0 0.0000 1 0.0030 14 0.0417 

 
Table 7. Area-Based Error Matrix for Year 2018 

 Built-Up Vegetation Bare Soil Water Bodies 

 Sample 
Counts Error Sample 

Counts Error Sample 
Counts Error Sample 

Counts Error 

Built-up 60 0.1810 4 0.0121 7 0.0211 0 0.0000 
Vegetation 8 0.0242 48 0.1452 1 0.0030 0 0.0000 
Bare soil 3 0.0094 0 0.0000 10 0.0312 0 0.0000 
Water bodies 0 0.0000 0 0.0000 0 0.0000 9 0.0259 

 
Table 8. Producer, User, and Overall Accuracies Including 95% CI Area per Class 

(m2) for Years 2000 and 2018 
 Built-Up Vegetation Bare Soil Water Bodies 

Year 2000     
Producer accuracy  89.1176 90.6748 68.8016 100.0000 
User accuracy 83.6735 94.4444 73.3333 93.3333 
95% CI 85.62 91.65 65.21 86.00 
     
Overall accuracy 86.20    
     
Year 2018     
Producer accuracy  84.5070 84.2105 76.9231 100.0000 
User accuracy 84.3586 92.3285 56.3659 100.0000 
95% CI 87.94 87.20 66.07 100 
     
Overall accuracy 86.41    
     
95% CI area per class (m2) 
Year 2000 2,760,599 2,614,855 2,324,170 812,146 
Year 2018 3,596,569 2,798,390 2,609,639 0 
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Table 9. A Matrix Showing Land Cover Conversion From 2000 to 2018 of Mactan 
Island (Central Philippines)  

20
00

 

 2018   
Class Area 

(ha) 
Built-

Up Vegetation Bare 
Soil 

Water 
Bodies NO CHANGE Difference 

Built-up 1,461.69 425.61 152.64 5.22 1,461.69 932.58 
Vegetation 1,191.51 1,617.75 185.31 12.51 1,617.75 −616.23 
Bare soil 222.93 216.90 154.62 10.44 154.62 −41.31 
Water 
bodies 

101.61 130.59 71.01 341.73 341.73 −275.04 

     3,575.79  
        

Total change 
2008–2018 

1,516.05 773.10 408.96 28.17 2,726.28  

2018 LAND 
COVER 

2,977.74 2,390.85 563.58 369.90   

Note. The results were extracted from Landsat data using the Semi-Automatic Classification Plugin 
algorithms of QGIS 3.0. 
 

 

 
 

 

 
 
The change rate of land cover 

classification (i.e., total of 12 classes) was 
calculated from year 2000 to 2018 (as shown 
in Table 10). The largest change rate increase 
was in vegetation to built-up class in the 
amount of about 143.82 ha (or 9.43%), as 
shown in Table 10. Vegetation cover had a 
decreasing rate of about −229.68 ha 
(−23.94%) followed by the bare soil class with 
a change rate of −165.15 ha (−66.55%). 
 Table 11 shows the different 
landscape metrics of fragmentation analysis. 
From 48% LP, class vegetation decreased to 
38% LP suggesting some degree of 
urbanization. The proportional decrease of 
the vegetation class if analyzed together with 
the increase in the built-up class suggests 
urban expansion. Meanwhile, vegetation 
patches had increased from 515 to 862 
patches in 2018 suggesting the degree of 
fragmentation and the extent of subdivision 
of the landscape. The area of the greatest 
patch area went down from 1,495.5 ha to 
332.3 ha. The mean patch area and land cover 
area of vegetation had also decreased from 

Figure 3. Spatial distribution of land cover 
classes in Mactan Island (Central 
Philippines) from 2000 to 2018. The results 
were extracted from Landsat data using 
SCP algorithm of QGIS 3.0. 
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2000 to 2018 indicating some degree of 
environmental degradation. 

 

 
 

LST, NDVI, and NDBI 
The spatial distribution of LST in the 

year 2000 is shown in Figure 4. Bare soil had 
the highest mean LST (25.6 °C−28.54 °C) and 
high-density built-up areas 
(25.8 °C−28.17 °C) while water bodies had the 
lowest (20.91 °C−24.32 °C). There was a 
mean temperature difference of 2.9 °C from 
2000 to 2018. We also presented NDVI and 
NDBI indices (Figures 5 and 6) derived from 

Landsat 7 and 8 bands. Higher NDVI values 
correspond to dense vegetation areas. In 
general, decreasing vegetation covers and 
increasing impervious surfaces modified 
thermal behavior. Thus, there is an inverse 
relationship between NDVI and NDBI 
indices. Table 12 shows the correlation values 
between LST, NDBI, and NDVI, and 
presented in Figures 7 and 8 is the regression 
analysis of the values derived from pixel 
values of LST and the two indices. 
 
 

  
Table 10. Change Rate of Land Cover Conversion From 2000 to 2018 of Mactan 

Island (Central Philippines) 

Transition Area (ha) % 
Built-up to vegetation −229.68 −23.94 
Built-up to water bodies 7.47 27.13 
Built-up to bare soil 50.22 18.34 
Vegetation to built-up 143.82 9.43 
Vegetation to water bodies −0.63 −1.08 
Vegetation to bare soil 26.01 5.87 
Bare soil to built-up −51.84 −15.73 
Bare soil to vegetation −94.32 −25.13 
Bare soil to water bodies 15.57 20.15 
Water bodies to built-up −10.89 −6.59 
Water bodies to vegetation −73.08 −41.67 
Water bodies to bare soil −165.15 −66.55 

 
Table 11. Landscape Metrics Computed for Vegetation Class (for Year 2000 

and 2018) for Mactan Island, Central Philippines 

Metrics 2000 2018 
Landscape proportion 48% 38% 
Number of patches 515.0 862.0 
Greatest patch area (ha) 1,495.5 332.3 
Mean patch area (ha) 5.84 2.77 
Land cover area (ha) 3,007.1 2,390.9 
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Figure 4. Spatial distribution of land 
surface temperature (LST) in Mactan 
Island (Central Philippines) for the years 
2000 and 2018. The results were extracted 
from the SCP plugin of QGIS 3.0. 

Figure 6. Normalized difference built-up 
index (NDBI) maps of Mactan Island 
(Central Philippines) for years 2000 and 
2018. 

Figure 5. Normalized difference 
vegetation index (NDVI) maps of 
Mactan Island (Central Philippines) 
for the years 2000 and 2018. 

Figure 7. Correlation of land surface 
temperature (LST) versus normalized 
difference vegetation index (NDVI) and 
normalized difference built-up index 
(NDBI) for the year 2000 of Mactan 
Island (Central Philippines). 
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DISCUSSION 

The application of multitemporal 
Landsat data provides a valuable tool in 
monitoring LULC change. Accuracy 
assessment results showed that the 
classification at the given scale is acceptable 
to provide accurate representation of the 
classified land cover when referenced to 
actual on-the-field data. The spectral 
confusion and mixed-pixel problems 
between built-up areas and other land-cover 
types such as bare soil and terrestrial 
vegetation in each studied year complicated 
the classification process, but with the help 
of historical images from Google Earth, the 

correct representation of each land cover 
was confirmed. 

Mactan Island, being a fast-growing 
urban center in Central Philippines, 
exhibits both positive and negative impacts 
of urbanization. Urban growth in the island 
provides higher economic production and 
opportunities for the underemployed and 
unemployed and boosts tourism. However, 
its negative impacts necessitate regulations. 
There is already decreased vegetation cover 
due to increasing built-up development and 
increased urban heat island (UHI) effect. 
The accumulation of industrial and 
domestic wastes, water pollution, and other 
environmental impacts that can affect the 
sustainability of urban areas should not be 
overlooked (FAO & FAPDA, 2015). 

The change in LST from 2000 to 
2018 is a manifestation of the UHI effect 
(EPA, 2008) in Mactan Island. UHI has a 
significant and negative impact on the 
urban ecosystem and quality of life. 
Negative impacts include increased energy 
consumption, elevated emissions of air 
pollutants and greenhouse gasses, 
compromised human health and comfort, 
and degraded water quality (EPA, 2008). 

In a growing urban system, 
vegetation cover undergoes alteration, 
replaced with built-up covers from simple 
houses to subdivisions, commercial 
buildings, and industrial zones. In the span 
of 18 years, the vegetated areas in Mactan 
Island decreased and became more 
fragmented. Based on the result, the LST 
had increased over time along with the 
decline in vegetation cover. The conversion 
of vegetation to urban built-up areas can be 
observed near the city/municipal center, 
high-density populated residential zones, 
the industrial zone, and the airport. This 
finding agreed with the results of Busato et 
al. (2014) and Wu et al. (2019). 

Impervious pavements, concrete 
structures, and asphalt roads that 
efficiently absorb heat from sunlight and 
reradiate it as thermal infrared radiation 

Figure 8. Correlation of land surface 
temperature (LST) versus normalized 
difference vegetation index (NDVI) and 
normalized difference built-up index 
(NDBI) for the year 2018 of Mactan Island 
(Central Philippines). 
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could lead to modifications of the land 
surface characteristics such as albedo and 
evapotranspiration (EPA, 2008; Oke, 1982). 
Buildings block air that cools the 
surrounding and is associated with the 
production of heat from air conditioning and 
refrigeration systems. In effect, this causes 
discomfort for the people living in the urban 
area (Jacquin et al. 2008). If temperatures 
will continue to rise, it is possible that the 
feeling of discomfort due to heat will 
increase in barangays that are located very 
near urban centers of Lapu-Lapu City and 
Cordova. 

NDBI, which represents the indices 
of impervious surface in built-up cover, 
positively correlates with LST. Hence, built-
up areas with less vegetation should 
experience warmer temperature. Many 
studies (Abdollahi & Ning, 2000; Akbari et 
al., 1996, 2001; Miller & Small, 2003; 
Nowak et al., 2000; Wagrowski & Hites, 
1997) have shown that abundance and 
distribution of vegetation play an important 
role in controlling temperature in an urban 
environment. Spatial variations in 
vegetation cover have a direct impact on 
solar energy flux, evapotranspiration, 
microclimate, and air circulation in the 
urban environment (Miller & Small, 2003). 

The population grew because of the 
substantial influx of people to industrial 
centers. The population of Mactan Island 
increased by about 86% from 2000 (251,051) 
to 2015 (467,824; PSA, 2000, 2015). Mactan 
Island hosts three industrial economic 
zones, namely, Mactan Export Processing 
Zone 1 (MEPZ 1), Mactan Eco-zone 2 (MEZ 
2), and CLIP. These transient workers came 
from different provinces not only in Cebu 
but also in other parts of the country. As 
more and more people settled for the 
convenience and access to their workplace, 
residential and subdivision developments 
also increased. 

The island is also experiencing legal 
disputes causing people to leave vacant 
spaces within the inner city. This has led to 

the outward growth from the city centers. 
As a consequence, residential developments 
spread wider since transient workers 
preferred convenience in going to their job 
sites, which are mostly in the industrial 
economic zones. Though Mactan Island is 
relatively flat geologically, there is a high 
risk to high-rise buildings and 
condominiums due to the presence of 
sinkholes. Thus, horizontal development is 
preferred. It is expected that years from 
now, more vacant lots will be converted to 
built-up housing at the expense of 
vegetation cover. This development should 
be tempered by increasing available green 
areas to reduce local temperature 
(Takebayashi & Moriyama, 2007) and 
mitigate the effect of UHI (Susca et al., 
2011). Surely, there are still small patches 
of lands along pavements, urban sprawls, 
and roundabouts that can be vegetated. 
Hence, policy makers should be aware and 
should provide green spaces (vegetated) as 
much as possible so as to make urban living 
livable. Allen et al. (2018) stressed the 
importance of understanding the role of 
public spaces and associated amenities of 
the neighborhood (i.e., parks, shops, schools, 
etc.) as population density increases in 
urban areas. According to the paper, local 
government units must acknowledge and 
incorporate into urban planning policy and 
strategy directives the community’s sense of 
enhanced livability towards a successful 
path for urban sustainability. 

Another consequence of 
urbanization that the island is experiencing 
is rapid flooding during heavy rains leading 
to overflowing of the water drainage 
systems. In November 2016, more than a 
thousand households in Basak, Lapu-Lapu 
City, were affected by the flood that has not 
subsided for more than one month. Tropical 
storm “Urduja” (international name “Kai-
tak”) in December 2017 also brought a 15-
cm flood in some barangays of Lapu-Lapu 
City. An increase in impervious surfaces in 
the city induces more total runoff volume. 
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The growing development of subdivisions 
and industrial infrastructures at the edge of 
the island can hinder the proper flow of 
drainages from barangays located at the 
center of the island. Since the urban 
development on the island is widely 
dispersed, it can cause more urban runoff, 
which may eventually pollute waterways 
(Lassila, 1999; Wasserman, 2000). 
Reclamation in some coastal parts of the 
island and changes in LULC resulted in the 
decline of vegetated areas and could also 
threaten mangrove communities. 

Following Wilson et al.’s (2003) 
category of urban growth patterns, the 
changes in built-up covers in Lapu-Lapu 
City can be described mostly as infill growth, 
especially in nearby city/municipal centers. 
Some areas in the southeastern part tended 
to exhibit an expansion type of growth. 
Patterns of built-up change in Cordova are 
mostly expansion and some infill growth. 
The vegetation class shows an outlying 
isolated and fragmented pattern of change 
both in Lapu-Lapu City and in Cordova. 
These patterns do not represent urban 
growth. Both the classes bare soil and water 
bodies showed mostly an infill pattern since 
they are surrounded by vegetation and 
built-up classes. It is the result mostly of 
excavation of land, dried ponds, reclamation, 
and construction. As cities develop, urban 
demand will increase with obvious impact 
on the sociospatial scale of its urban space 
(Twum & Ayer, 2019). Monitoring these 
complex change patterns demand critical 
attention from policy makers and academia 
towards the effective monitoring and 
modelling of complexities of urban settings 
(Ilieva, 2017; Tefft et al. 2017).   

Degradation and fragmentation of 
vegetation in urban areas have negative 
impacts on human well-being including 
their quality of life and, to some extent, 
threaten urban sustainability. Ensuring 
adequate opportunities for people to be in 
contact with nature in their daily life could 
directly benefit health and happiness 

(Fuller et al., 2007; Mitchell & Popham, 
2008; Pretty et al., 2007). Urban green 
spaces can be provided using existing LULC 
as has been done in Singapore. The 
presence of green parks, tree canopies along 
the roads, and plant boxes and gardens in 
subdivisions and condominiums suggests 
that vegetation can coexist with built-up 
development in urban cities. The amount of 
vegetation needed for an urban 
environment includes a mixture of 
quantitative and accessibility standards as 
well as qualitative standards taking into 
consideration some variations in its 
structures and components according to 
Douglas et al. (2011). Urban areas in Asia 
offer good examples of new forms of suburbs 
with emphasis on high-rise apartment 
buildings interspersed with managed green 
spaces. Singapore, for instance, has 
developed an island-wide park connector 
network designed to meet the perceived 
growing need for a variety of alternative 
recreational facilities. Green corridors at 
least 20 m wide link these open spaces. The 
highly urbanized island has planned its 
parks and open spaces to optimize the use 
of limited land and resources (Tan, 2006). 
Similar approaches can be seen in some 
newer urban developments in China (Kong 
et al., 2010), and Mactan Island could be a 
model for the Philippines. A long-term 
development plan on the study area can be 
found in their Comprehensive Land Use 
Plan (CLUP), which is updated and 
reviewed every 5 years to provide direction 
for future activities over a 10- to 20-year 
period after plan adoption. The results of 
this study could provide the local 
government unit better information in 
identifying places such as provisions of 
green spaces that can be included in their 
CLUP. The provision of vegetation or green 
spaces to coexist with built-up areas could 
be achieved through proper planning and 
policy implementation by the local 
government with the cooperation and 
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participation of the people of Lapu-Lapu 
City and Cordova. 

 
CONCLUSION 

As Mactan Island is a developing 
economy, there are still many limitations 
concerning data acquisition, analysis, 
interpretation, and use of geospatial data 
that are appropriate for urban land use 
and land cover planning. Nevertheless, a 
significant step towards progress has been 
made via this study. The rise of and access 
to recent technologies such as satellite 
imagery and open-source GIS software 
mean that data gathering and modeling 
scenarios pertinent to conservation and 
enhancement of urban environment 
become easier. Change in land cover in 
Mactan Island was observed using these 
data and tools. Inclusions of these methods 
in the local planning system will help 
decision makers better explain and 
interpret the implications of information 
derived from the data provided by these 
methods. Unlike any other cities in Cebu, 
the island has its limitations in land areas 
when it comes to urban expansion. The 
increasing population that stimulates 
rapid land cover change may threaten the 
carrying capacity of the island. LST change 
observed during the study period was 
found to correlate with LULC change. 
These findings provide a new 
understanding of the urbanization process 
in Mactan Island, Central Philippines, and 
can be used further to investigate the effect 
of LULC on local climate change in the 
future.  
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