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ABSTRACT

We present a symmetric bimatrix game called a “ward game,” which models the
warding strategies of players in popular multiplayer online battle arena games like
Defense of the Ancients 2 and League of Legends. Given some conditions on the
parameters of the game, we establish the set of symmetric Nash equilibria by us-
ing the notions of noncooperative game theory and apply these results to identify
the set of evolutionarily stable strategies on a repeated ward game by using evo-
lutionary game theory (EGT) concepts. We also use reaction networks to analyze
the dynamics of the game and compare the results to that of classical and EGT
approaches.

Keywords: ward games, MOBA games, bimatrix games, Nash equilibrium, evolutionarily
stable strategies, reaction networks

INTRODUCTION

A multiplayer online battle arena
(MOBA) game is a subgenre of strategy video
games where two teams of players compete
against each other in a given battlefield. The
ultimate goal of each team is to destroy the
main structure of its opponent, located at
its base (Hassall, 2021; Riot Games, 2021).
Each player controls a single character, usu-
ally called a “hero” or a “champion,” with a
certain amount of health and a set of unique
skills and abilities that level up over the
course of the game. These skills and abili-
ties can also be upgraded (by the player) by
buying in-game items that vary in price and
impact. These items increase the hero’s ca-
pabilities and contribute to the team’s strat-
egy and overall winning condition. However,
these items also incur a cost for the player,

which is usually an “amount of gold.” Each
hero typically receives a small amount of gold
per second during the course of the game.
Moderate amounts of gold are rewarded for
killing hostile computer-controlled units, and
larger amounts are rewarded for killing en-
emy characters and important monsters lo-
cated at the jungle area (see Figure 1). As
the heroes of each team get stronger, they
can use multiple actions to gain an advan-
tage. These actions may include securing ob-
jectives by destroying enemy structures and
executing important monsters, killing en-
emy heroes, and slaying computer-controlled
units of the opposing team. The stronger
a team gets, the more capable they are at
destroying the enemies’ base while protect-
ing their own, leading to winning the entire
game.

Similar to a real-world warfare scenario
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Red Nexus
(Main Structure)

Blue Nexus
(Main Structure)

Baron

Dragon

(a) A map of League of Legends (LOL).

Dire Ancient
(Main Structure)

Radiant Ancient
(Main Structure)

Roshan

(b) A map of Defense of the Ancients 2 (DOTA 2).

Figure 1. The typical maps of (a) League of Legends (LOL) and (b) Defense of the Ancients
2 (DOTA 2). The main structures (nexus and ancients), important monsters (Baron, Dragon,
and Roshan), and the jungle areas are highlighted in the maps.

wherein belligerents must capitalize on ef-
ficient strategies in order to gain an advan-
tage, the teams in a MOBA game must also
consider a variety of in-game strategies and
important factors in order to win the game
(Schubert et al., 2016; Xia et al., 2019). One
of these key factors is maximizing its gold re-
sources to fully gain an advantage. In fact,
based on the study of Schubert et al. (2016),
a team’s gold advantage against its opponent
is positively correlated to winning the game.
Moreover, another key component to look for
is “map vision and control” (Chitayat et al.,
2020). In this kind of game, most areas of the
map are covered with a fog or darkness that
prevents the player’s hero from spotting the
enemies as they roam about the battlefield.
This scenario captures the concept of mili-
tary jargon known as “fog of war”—a concept
that may refer to the uncertainty faced by
warring parties during military operations
where commanders have incomplete infor-
mation about their enemy and the battlefield
(Hagelback & Johansson, 2008; Hale & Soci-
ety, 1896). The player’s character or one of

the teammates’ character must be within vi-
sual range to spot them, or the enemy char-
acters must pass near one of the team’s sta-
tionary “wards”—an item that is bought and
deployed by a player in a specific area to re-
move the fog of war in a certain radius and
provide vision for the team (see Figure 2).
Gaining vision is a crucial part of the game
since by spotting the position of the oppo-
nents’ characters, the player’s team can eas-
ily gain an advantage by making the right
decisions (e.g., to kill the enemy characters,
to gain more golds by killing the enemy units,
etc.).

In real-world warfare and conflict situ-
ations, “warding” may be compared to mil-
itary intelligence activities like espionage
and reconnaissance where opposing parties
may deploy (almost) unnoticeable units like
drones, tracking devices, and even cyberspies
to gain vision and relevant information about
their opponents. Moreover, they may also
utilize radar systems to protect their own
and to detect the possible presence of en-
emy units in a certain area of the battlefield



68 VOLUME 14 (2021)MANILA JOURNAL OF SCIENCE

(a) A player’s vision of the Baron area of the map in
LOL without a vision ward.

(b) A player’s vision of the Baron area of the map in
LOL after placing a vision ward.

Figure 2. The comparison of a player’s visions of the map before and after placing a vision
ward in a specific area of the battlefield.

(Austin & Rankov, 1995; Moafa, 2020; Pun,
2017). The concept of warding can also be
applied to the corporate world in a form of
industrial espionage (Crane, 2005) and ten-
sion between two countries in a territorial
dispute (Powell & Wiegand, 2014). In the
context of MOBA games like DOTA 2 and
LOL, a team can buy an invisible ward called
a “vision ward” to remove the fog of war for
a certain radius of the map and serve as an
observer for the team to gain vision in that
area. However, the opposing team can also
buy and utilize a “detection ward” to detect
the presence of a vision ward in a specific
area of the map so as to disable its vision
by destroying it. The detection ward, how-
ever, does not provide vision but is primarily
used to detect and remove a vision ward in
an area.

Due to their growing popularity, MOBA
games have drawn attention from several re-
searchers around the world. For instance,
Mora-Cantallops and Sicilia (2018) identified
published papers conducted since 2011 that
were related to MOBA games and explored
them systematically. The study found out
that LOL and DOTA 2 are the most explored
games, with player experience and toxic be-

havior as popular topics for research. How-
ever, it was also found out that MOBA games
remain underexplored by researchers despite
their massive growth in the last decade.
Moreover, despite being games, there is al-
most a nonexistence of literature that partic-
ularly explores MOBA games in their game-
theoretic aspect.

On one hand, game theory is an area of
study that has widely been applied to vari-
ous fields like economics, behavioral sciences,
and even evolutionary biology (Leonard,
2010). One of the most remarkable notions
that serve as a basis to predict the out-
come of strategic interactions and have been
widely applied and adapted in economics
and other behavioral sciences is the famous
“Nash equilibrium” (Nash, 1950, 1951). A
Nash equilibrium is an array of strategies,
one for each decision maker, where each de-
cision maker’s strategy is the best action for
them, given the strategies of the others. Such
array of strategies is an equilibrium (or sta-
ble point), since no decision maker has an
incentive by changing their strategy. More-
over, the application of game theory to evolu-
tionary biology is primarily based on the fact
that an organism’s genes largely determine
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its observable characteristics and hence its
fitness in a given environment. Its key in-
sight is that many behaviors involve the in-
teraction of multiple organisms in a popu-
lation, and the success of any one of these
organisms depends on how its behavior in-
teracts with that of others (Easley & Klein-
berg, 2010). This concept was articulated
by Smith (1972, 1974, 1982) in his publica-
tions, which led to the birth of evolutionary
game theory (EGT). EGT shows that the ba-
sic ideas of game theory can be applied even
to situations in which no individual is overtly
reasoning or even making explicit decisions
(Easley & Kleinberg, 2010). It has evolved
from game theory by merging it with the
basic concept of Darwinism to capture the
idea of time evolution—an ingredient that is
partially lacking in the classical game the-
ory, which primarily deals with equilibrium
(Tanimoto, 2015). Smith (1972, 1974, 1982)
highlighted how animals fight for their lives
stressing how a conventional fighting be-
havior of a given population becomes stable
against another (mutant) behavior—a con-
dition characterized by the notion of evolu-
tionarily stable strategies (ESS). Since then,
the concept of ESS has been heavily applied
in various fields like economics, social sci-
ence, anthropology, philosophy, political sci-
ence, and evolutionary psychology (Axelrod
& Hamilton, 1981; Dawkins & Davis, 2017;
Hines, 1987; Krebs & Davies, 2009).

Some researchers have also become inter-
ested in using a different framework of rep-
resentation of games. For instance, Veloz
et al. (2014) published their work entitled
“Reaction Networks and Evolutionary Game
Theory,” which introduced the use of reac-
tion networks (RN) to model games that were
usually being studied in EGT. An RN is com-
posed of a set of “species” that can exist in
a system and the “reactions” among these
species. In their paper, Veloz et al. (2014)
illustrated a framework by modeling the fa-
mous game prisoners’ dilemma, where the
species play the role of agents’ decisions and

their outcomes and reactions play the role
of interactions among these decisions. This
model was built from the payoff matrix as
well as the assumptions of the agents’ mem-
ory and recognizability capacities. Moreover,
they have also analyzed the dynamics of the
game by using the stoichiometric and kinetic
information of the RN and found out the
steady states of the system. They also ap-
plied a similar approach to Tit for Tat and
Defector’s strategies. Furthermore, Nocon
and Ang (2020) used an approach similar to
that of Veloz et al. (2014) in analyzing the
dynamics of an inspection game, focusing on
the profitability of the decisions of the play-
ers. On the other hand, Nocum (2020) and
Nocum and Nocon (2020) also used RN mod-
els of a pyramid game and analyzed its dy-
namics based on specified conditions involv-
ing reaction rate constants, population com-
positions, and parameters pertaining to costs
and rewards.

In this paper, we present a “ward game,”
a game-theoretic model that exhibits ward-
ing strategies in MOBA games. We exam-
ine its properties using the tools of nonco-
operative game theory and EGT, focusing on
the set of its symmetric Nash equilibria, and
prove important results in relation to the set
of its ESS. Moreover, we also model the game
using the notion of RN and use its stoichio-
metric and kinetic information to analyze its
dynamics, identify the steady states, and de-
termine the best decisions for a player given
some conditions on the parameters of the re-
action system.

PRELIMINARIES

In this section, we discuss basic ideas
and concepts on noncooperative game theory,
EGT, and RN theory for the purposes of this
work (please see Easley & Kleinberg, 2010;
Veloz et al., 2014; Watson, 2002; and Weibull,
1995, for a more detailed discussions of these
topics).
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Bimatrix Games

An n-player normal form game is an ar-
ray G = (N, (Si)i∈N , (πi)i∈N ), where N =
{1, 2, . . . , n} is a nonempty set of players,
Si is player i’s pure strategy set, and πi :

×i∈N Si → R is a payoff function assign-
ing a payoff or utility value πi(s) to each
pure strategy profile s = (s1, . . . , sn) in S =

×i∈N Si. For each i ∈ N , player i simultane-
ously chooses a strategy si from their strat-
egy set Si. This results to a pure strategy
profile s = (s1, . . . , sn) ∈ S. Then, player
i receives a payoff or utility value πi(s). If
|Si| = m, then player i has m pure strategies,
and we can denote their strategy set as Si ={
s1i , s

2
i , . . . , s

m
i

}
. Thus, si corresponds to one

of player i’s pure strategies sji , j ∈ {1, . . . ,m}.
In our discussion, we will just focus our anal-
ysis on finite games in normal form.

A bimatrix game G = (A,B) is a two-
player normal form game characterized by
two m × m′ matrices A and B. The values
of payoff functions can be described by a bi-
matrix

G =

s12 s22 . . . sm
′

2





s11 (a11, b11) (a12, b12) . . . (a1m′ , b1m′ )

s21 (a21, b21)
. . .

...
...

...
. . .

...
sm1 (am1, bm1) . . . . . . (amm′ , bmm′ )

where player 1 (also known as row
player) has the pure strategy set S1 ={
s11, s

2
1, . . . , s

m
1

}
and their strategies corre-

spond to choosing among the m rows, while
player 2 (also known as column player) has
the pure strategy set S2 =

{
s12, s

2
2, . . . , s

m′
2

}

and their strategies correspond to choos-
ing among the m′ columns. If player 1
chooses the hth row and player 2 chooses
the kth column, then the payoff of player 1 is
π1

(
sh1 , s

k
2

)
= ahk and the payoff of player 2 is

π2
(
sh1 , s

k
2

)
= bhk. We can decompose bimatrix

G = (A,B) into two separate matrices A and
B, such that

A =




a11 a12 . . . a1m′

a21
. . . ...

... . . . ...
am1 . . . . . . amm′




and

B =




b11 b12 . . . b1m′

b21
. . . ...

... . . . ...
bm1 . . . . . . bmm′




where matrix A is the payoff matrix corre-
sponding to player 1 and matrix B is the pay-
off matrix corresponding to player 2. From
now on, whenever we discuss about a game,
our default assumption would be a bimatrix
game G = (A,B) with pure strategy sets S1 ={
s11, s

2
1, . . . , s

m
1

}
and S2 =

{
s12, s

2
2, . . . , s

m′
2

}
,

unless stated otherwise.
A bimatrix game G is symmetric if S1 =

S2 = S and π1
(
sh1 , s

k
2

)
= π2

(
sk1, s

h
2

)
for all

h, k ∈ {1, . . . , |S|}. We see that in a symmetric
bimatrix game, both players have identical
pure strategy sets and the payoff functions
are also symmetric. In addition, B = AT

(where AT is the transpose of A), so in some
cases, we might only use the payoff matrix A
of player 1 to represent the payoffs of a bima-
trix game.

We now present the case when a player
does not choose one definite pure strategy
but, rather, chooses according to a probabil-
ity distribution over the set of their available
pure strategies—their “mixed strategy.” The
set of mixed strategies for player 1 is given by

∆1 =

{
x1 =

(
x1
1, . . . , x

m
1

)T ∈ Rm
≥0 :

m∑
h=1

xh
1 = 1

}

where Rm
≥0 is the set of m-dimensional vec-

tors with nonnegative real number compo-
nents and xh1 is the probability of choosing
the pure strategy sh1 ∈ S1. Similarly, the set
of mixed strategies for player 2 is given by
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∆2 =


x2 =

(
x1
2, . . . , x

m′

2

)T

∈ Rm′

≥0 :

m′∑
k=1

xk
2 = 1




where Rm′
≥0 is the set of m′-dimensional vec-

tors with nonnegative real number compo-
nents and xk2 is the probability of choosing
the pure strategy sk2 ∈ S2. The support (or
carrier) of a mixed strategy xi (i = 1, 2) is
given by C(xi) = {sji | x

j
i > 0}. That is, C(xi)

is the set of pure strategies that are played
with nonzero probabilities under the mixed
strategy xi. Conceivably, a pure strategy for
a player can be seen as a special case of a
mixed strategy. When xji = 1 for some j in
a mixed strategy xi ∈ ∆i, xi is a unit vector
which corresponds to a pure strategy in Si,
and we denote this strategy by eji . Moreover,
the interior of ∆1 is given by

int (∆1) =

{
x1 =

(
x1
1, . . . , x

m
1

)T ∈ Rm
>0 :

m∑
h=1

xh
1 = 1

}
.

This means that int (∆1) contains all the
mixed strategies in ∆1 whose components
are all positive real numbers. Similarly, the
interior of ∆2 is given by

int (∆2) =


x2 =

(
x1
2, . . . , x

m′
2

)T

∈ Rn
>0 :

m′∑
k=1

xk
2 = 1


 .

For any player i ∈ {1, 2}, we shall use
the notation −i for the opposing player. Ac-
cordingly, we denote the expected payoff of
i playing the mixed strategy xi when their
opponent plays the mixed strategy x−i as
ui(xi,x−i). Using this notation in a bima-
trix game, we say that the expected payoffs of
player 1 and player 2 playing mixed strate-
gies x1 ∈ ∆1 and x2 ∈ ∆2 are given by the
relations

u1(x1,x2) = x1 ·Ax2 =
m∑

h=1

m′∑
k=1

xh1x
k
2ahk

and

u2(x2,x1) = x2 ·BTx1 = x1 ·Bx2 =

m∑
h=1

m′∑
k=1

xh
1x

k
2bhk.

The Nash Equilibrium

In this paper, we are interested in finding
the Nash equilibrium of a bimatrix game. A
Nash equilibrium for a bimatrix game G is
a combination of (pure or mixed) strategies,
one for each player, such that no player could
increase their payoff by unilaterally chang-
ing their strategy. More formally, a pair of
strategies (x̃1, x̃2) ∈ ∆1 ×∆2 is a Nash equi-
librium for the bimatrix game G = (A,B) if
and only if

i) for every strategy x1 of player 1,
u1(x1, x̃2) ≤ u1(x̃1, x̃2); and

ii) for every strategy x2 of player 2,
u2(x2, x̃1) ≤ u2(x̃2, x̃1).

The strategy x1 ∈ ∆1 strictly dominates
y1 ∈ ∆1 if u1(x1, z) > u1(y1, z) for all z ∈
∆2. The strategy x1 ∈ ∆1 weakly dominates
y1 ∈ ∆1 if u1(x1, z) ≥ u1(y1, z) for all z ∈ ∆2

and there exists z ∈ ∆2 such that u1(x1, z) >
u1(y1, z). We define strict and weak domi-
nance for player 2 in the same way. More-
over, a strategy xi ∈ ∆i (i = 1, 2) is strictly
(weakly) dominant if it strictly (weakly) dom-
inates all other strategies in ∆i.

In a Nash equilibrium, each player as-
signs positive probability only to their pure
strategies that maximize their payoff. So,
given the mixed strategy of the other player,
the expected payoffs for all pure strategies in
the support of a player must be equal and
maximal. Thus, we have the following the-
orem (Spirakis, 2010).

Theorem 1. A strategy profile (x1,x2) ∈ ∆1×
∆2 is a Nash equilibrium of an m×n bimatrix
game G = (A,B) if and only if

xh1 > 0 =⇒ u1(e
h
1 ,x2) = max

q=1,...,m
u1(e

q
1,x2)
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for each h = 1, . . . ,m, and

xk2 > 0 =⇒ u2(e
k
2,x1) = max

q′=1,...,n
u2(e

q′

2 ,x1)

for each k = 1, . . . , n.

The following theorem is a well-known re-
sult that guarantees the existence of a Nash
equilibrium in any bimatrix game (please see
Nash, 1950; Weibull, 1995).

Theorem 2. Every bimatrix game in mixed
strategy has at least one Nash equilibrium.

Symmetric Bimatrix Games

We now focus our discussions on symmet-
ric bimatrix games. Recall that if a bima-
trix game G = (A,B) is symmetric, then
both players have the same pure strategy
set S1 = S2 = S and mixed strategy space
∆1 = ∆2 = ∆, B = AT , and the payoff
function is also symmetric. Thus, in a sym-
metric bimatrix game, when player 1 plays
x ∈ ∆ and player 2 plays y ∈ ∆, we can drop
the player subscript and denote the expected
payoff of player 1 as

u(x,y) = x ·Ay =
m∑

h=1

m∑
k=1

xhykahk

and the expected payoff of player 2 as

u(y,x) = y ·Ax =

m∑
h=1

m∑
k=1

yhxkahk.

Here, xh and yk represent the probabilities of
choosing a player’s hth and kth pure strate-
gies, respectively. Moreover, we also denote a
player’s hth pure strategy as eh.

In this paper, we are particularly inter-
ested in a symmetric Nash equilibrium. A
symmetric Nash equilibrium of a symmetric
bimatrix game is a Nash equilibrium (x̃, ỹ)
with x̃ = ỹ. For the purposes of this work,
we denote the set of symmetric Nash equilib-
ria by ∆NE ⊂ ∆ and the set of strict symmet-
ric Nash equilibria by ∆NE> ⊂ ∆. Thus, a

strategy x ∈ ∆NE has a natural correspon-
dence to a symmetric Nash equilibrium pro-
file (x,x) ∈ ∆ × ∆. The following theorem
is equivalent to Theorem 1 for the case of a
symmetric bimatrix game.

Theorem 3. A strategy x ∈ ∆ is a Nash
equilibrium of a symmetric bimatrix game
G = (A,AT ) if and only if

xh > 0 =⇒ u(eh,x) = max
q=1,...,m

u(eq,x)

for each h = 1, . . . ,m.

In order to find all the symmetric Nash
equilibria x ∈ ∆NE of a symmetric bima-
trix game, we check if there is a solution to
the system of equations as in Theorem 3, for
all possible supports of x. If such a solution
exists and corresponds to some probabilities,
that is, all xks are nonnegative and sum up
to 1, then a symmetric Nash equilibrium x
is found. There are a total of 2m − 1 possi-
ble cases to consider since there are 2m − 1
possible supports of x.

One useful result is that every symmet-
ric bimatrix game has at least one symmetric
Nash equilibrium. This is presented without
proof in the succeeding theorem (please see
Weibull, 1995, for a detailed proof).

Theorem 4. Every symmetric bimatrix game
in mixed strategy has at least one symmetric
Nash equilibrium.

Evolutionarily Stable Strategies

We have so far considered bimatrix games
in the context of classical game theory in
which the solution (Nash equilibrium) was
based in each player’s rationality in the sense
that each of them uses the best response to
the strategy chosen by the other so that nei-
ther would benefit by changing their strat-
egy. Now, we give an alternative interpre-
tation for the Nash equilibria by placing the
game in a population context. In here, we
consider a game with a large population of
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agents who are genetically hardwired to play
a particular strategy and meet randomly in
pairs. In this setting, a mixed strategy x ∈ ∆
lists the prevalence of each of the pure strate-
gies in the population. We can interpret it in
either of the two ways: (1) every agent is ge-
netically hardwired to play the mixed strat-
egy x, or (2) every agent is genetically hard-
wired to play a pure strategy where for each
h ∈ {1, . . . ,m}, xh is the proportion of agents
following the hth pure strategy.

We can say that x ∈ ∆ is an ESS if the
large population of individuals who are pro-
grammed to play this strategy is resistant to
small mutations, that is, if everyone is play-
ing x ∈ ∆, and when a small proportion of
mutants playing y ∈ ∆ is introduced in the
population, then the mutants obtain a lower
payoff than the rest of the population. More
formally, a mixed strategy x ∈ ∆ is an ESS
if for every strategy y ∈ ∆,y �= x, there ex-
ists some small number εy such that for all
ε ∈ (0, εy) we have

u (x, εy + (1− ε)x) > u(y, εy + (1− ε)x).

We denote the set of ESS as ∆ESS .
The following theorem shows necessary

and sufficient conditions for a strategy to be
an ESS (please see Weibull, 1995, for the de-
tailed proof).

Theorem 5. A strategy x ∈ ∆ is an ESS
if and only if it satisfies the following condi-
tions:

i) u(x,x) ≥ u(y,x) for all y; and

ii) u(x,x) = u(y,x) ⇒ u(x,y) >
u(y,y) for all y �= x.

Observe that the first requirement in
Theorem 5 is equivalent to the condition for
x to be a symmetric Nash equilibrium. Thus,
we have the following corollary.

Corollary 6. If x ∈ ∆ESS , then x ∈ ∆NE .

Corollary 6 shows the relationship of the
notions of symmetric Nash equilibrium in
classical game theory and ESS in EGT. It
shows that when a strategy x ∈ ∆ is evo-
lutionarily stable, then the strategy profile
(x,x) ∈ ∆ × ∆ is a symmetric Nash equilib-
rium (i.e., x ∈ ∆NE).

The Reaction Network

An RN primarily deals with species (or
molecular species) and reactions formed by
these species. We denote the set of species by
M = {M1, . . . ,Mn} and the set of reactions
they formed by R = {R1, . . . , Rr}. Each reac-
tion R ∈ R is modeled by a pair (E,F ) where
E and F are multisets. For instance, we de-
note the multiset E by

E =
∑

Mj∈M
ejMj ,

where each species Mj is preceded by its mul-
tiplicity ej ∈ N0 (where N0 is the set of natu-
ral numbers and 0) in E. We also denote the
reaction R = (E,F ) by R = E → F . More for-
mally, an RN is a pair 〈M,R〉 of nonempty
finite sets, where

i. M = {M1, . . . ,Mn} is the set of species;
and

ii. R = {R1, . . . , Rr} is the set of reactions.

From now on, we focus our discussion on
an RN 〈M,R〉 such that M = {M1, . . . ,Mn}
and R = {R1, . . . , Rr}, where Rl = El → Fl,

El = el1M1 + . . .+ elnMn

and
Fl = fl1M1 + . . .+ flnMn

for l = 1, . . . , r.
In an RN, the dynamical process of con-

sumption and production of species are of-
ten represented by a stoichiometry matrix—
a matrix whose rows and columns are formed
by using the stoichiometric coefficients of the
given reactions. A stoichiometry matrix S =
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(sjl) is an n× r matrix where n is the number
of species and r is the number of reactions in
the RN and each sjl = flj − elj , computed by
subtracting the coefficient of each species of
Ej from the coefficient of each species of Fj ,
corresponds to the stoichiometric coefficient
of species Mj in the reaction Rl. We say that
the species Mj is produced by the reaction Rl

whenever sjl is positive. Moreover, we say
that the species Mj is consumed by the reac-
tion Rl whenever sjl is negative.

To model the occurrence of each reac-
tion, we use a nonnegative flux vector v =
(v1, . . . , vr), where vl represents the rate of oc-
currence of reaction Rl for each l = 1, . . . , r.
By applying the flux vector v on the stoichio-
metric matrix S, we can represent a reaction
process where the rate of reaction Rl is given
by vl. Thus, we can define the production rate
vector as

f = Sv.

For each j = 1, . . . , n, fj is the rate of produc-
tion of the species Mj in the reaction process
determined by v.

Now, to describe the dynamics of the
species concentration w = (w1, . . . , wn), we
use mass action kinetics law. It states that
the speed of reaction is proportional to the
product of reactants. Thus, for any l =
1, . . . , r, the coordinate vl of v depends on the
concentration of the species and the reaction
rate constants k1, . . . , kr. Hence, we have

vl = kl

n∏
j=1

w
ajl
j ,

where ajl is the multiplicity of wj . In addi-
tion, the dynamics of the species concentra-
tion is described by the system of ordinary
differential equations (ODE),

ẇ = Sv(w,k)

where S is the stoichiometric matrix and
v(w,k) is the flux vector. This system of
ODEs is called a reaction system.

THE WARD GAME

In this section, we establish the ward
game by defining the basic terms and spec-
ifying the underlying assumptions and con-
ditions of the game. Next, we define the
game by presenting the strategies and pay-
offs as well as the corresponding payoff ma-
trix. Finally, we analyze the game in relation
to the notions of symmetric Nash equilibrium
and ESS by using the tools of noncooperative
game theory and EGT.

A ward is an item that can be bought by
a player for a corresponding cost that they
can deploy into a specific area in the battle-
field to provide them vision or to detect their
opponent’s ward in a specific radius of that
area. It can be either a vision ward or a de-
tection ward. A vision ward is an invisible
ward (cannot be seen by the opposing player)
that can be deployed by a player on a spe-
cific area of the battlefield to gain vision in a
certain radius. By deploying a vision ward,
a player receives a vision reward. Moreover,
a detection ward is a ward that can be used
by a player to detect the presence of the op-
ponent’s vision ward in a certain radius. If
a player’s detection ward detects the oppo-
nent’s vision ward, then the former receives
a detection reward.

We analyze the ward game in the perspec-
tive of two opposing players (player 1 and
player 2) who are maximizing their gold re-
sources. Although a typical MOBA game is
usually composed of five members per team,
we consider each team as one player in our
model. Thus, the parameters in our model
may be viewed as the average of the costs
and rewards incurred by all the members of
a specific team. We also assume that the
strategies of the two players always interact
with each other. In the context of a MOBA
game, we assume that wards are placed
in common warding areas and certain radii
where clashes usually happen (e.g., Baron
area, Roshan area, Dragon area, ward hills,
etc.). These areas are considered hot spots
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for warding since gaining control over these
areas gives the team an upper hand in the
game when it comes to clash vision, securing
objectives, and gaining more gold. Moreover,
we also assume that each player deploys only
one ward in every interaction. Finally, a vi-
sion reward is the average amount of gold
that the player receives after gaining vision
on a battle zone, that is, the average util-
ity that a player receives from the advantage
that vision gives through clashes and skir-
mishes, securing objectives, getting bounties,
etc.

We assume that each player must uti-
lize one of the two possible pure strategies:
(1) vision ward (VW) and (2) detection ward
(DW). A vision ward, which costs −a, pro-
vides a vision reward v, and a detection ward,
which costs −b, provides a detection reward
r, where a, b, r, v ≥ 0, a < r < v, and b < r < v.
The vision reward v will be given to a player
who chooses VW whenever the other player
chooses VW, and the detection reward r will
be given to a player who chooses DW when-
ever the other player chooses VW. The payoff
matrix of the game is provided in Table 1.

The payoff matrix of a ward game can be
explained as follows:

a. If both players choose to buy a vision
ward, each of them receives a vision re-
ward v but also incurs a cost −a. Since
v > a, both players receive a positive
payoff v − a.

b. If both players choose to buy a detec-
tion ward, each of them incurs a cost
−b. However, since a detection ward
only receives a detection reward when
paired with a vision ward, then both
players receive a negative payoff −b.

c. If one player chooses to buy a vision
ward and the other player chooses to
buy a detection ward, the player who
chooses to buy a vision ward is denied
of the benefit of gaining a vision re-
ward but incurs a cost −a, thus a neg-

ative payoff −a. Moreover, the player
who chooses to buy a detection ward re-
ceives a detection reward r and incurs
a cost −b, thus a positive payoff r − b
(since r > b ).

Formally, we have the following definition
of a ward game.

Definition 7. A ward game is a symmetric
bimatrix game G = (A,AT ) where

A =

(
v − a −a
r − b −b

)
;

a, b, r, v ≥ 0, a < r < v, and b < r < v; and v is
the vision reward, r is the detection reward,
−a is the cost of a vision ward, and −b is the
cost of a detection ward.

Analysis of Ward Game

We now analyze the ward game by iden-
tifying the sets of symmetric Nash equilibria
given some conditions on the parameters of
the game.

Theorem 8. Let G be a ward game.

a. If a > b and v − a > r − b, then ∆NE ={
e1, e2,

(
a−b
v−r ,

v−r+b−a
v−r

)}
.

b. If a > b and v − a = r − b, then ∆NE ={
e1 =

(
a−b
v−r ,

v−r+b−a
v−r

)
, e2

}
.

c. If a > b and v − a < r − b, then ∆NE ={
e2
}

.

d. If a = b, then v − a > r − b and ∆NE ={
e1, e2 =

(
a−b
v−r ,

v−r+b−a
v−r

)}
.

e. If a < b, then v − a > r − b and ∆NE ={
e1
}

.

Proof. Let G be a ward game with pure strat-
egy set {VW,DW}. To find the set of all sym-
metric Nash equilibria ∆NE , we consider 22−
1 = 3 possible supports of an arbitrary sym-
metric Nash equilibrium x ∈ ∆. The possible
supports are {VW}, {DW}, and {VW,DW},
corresponding to the respective mixed strate-
gies e1 = (1, 0), e2 = (0, 1), and x = (x1, x2)
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Table 1. The Ward Game Payoff Matrix

Vision Ward (VW) Detection Ward (DW)
Vision Ward (VW) (v − a, v − a) (−a, r − b)

Detection Ward (DW) (r − b,−a) (−b,−b)

such that x1 + x2 = 1 and x1, x2 ≥ 0. Now, for
x = (x1, x2), the values of x1 and x2 such that
u
(
e1,x

)
= (v − a)x1 − ax2 = (r − b)x1 − bx2 =

u
(
e2,x

)
are x1 =

a−b
v−r and x2 =

v−r+b−a
v−r where

a, b, r, v ≥ 0, v > r > a, and v > r > b.

a. If a > b, then we can easily verify (by
examining the payoff matrix in Defini-
tion 7) that e2 ∈ ∆NE . Similarly, if
v − a > r− b, then e1 ∈ ∆NE . Moreover,
since v > r, we have v−r > a−b > 0 and
v−r > v−r+b−a > 0. Thus, 0 < a−b

v−r < 1

and 0 < v−r+b−a
v−r < 1. Hence, by The-

orem 3,
(
a−b
v−r ,

v−r+b−a
v−r

)
∈ ∆NE . There-

fore, ∆NE =
{
e1, e2,

(
a−b
v−r ,

v−r+b−a
v−r

)}
.

b. If a > b, then we can easily verify (by
examining the payoff matrix in Defini-
tion 7) that e2 ∈ ∆NE . If v − a =
r − b, then we have 0 < v − r =
a − b and 0 = v − r + b − a < v −
r. Thus, a−b

v−r = 1 and v−r+b−a
v−r = 0.

Hence, by Theorem 3,
(
a−b
v−r ,

v−r+b−a
v−r

)
=

(1, 0) = e1 ∈ ∆NE . Therefore, ∆NE ={
e1 =

(
a−b
v−r ,

v−r+b−a
v−r

)
, e2

}
.

c. If a > b, then we can easily verify (by
examining the payoff matrix in Defini-
tion 7) that e2 ∈ ∆NE . If v − a < r − b,
then, we have 0 < v − r < a − b and
v − r + b− a < 0 < v − r. Thus, a−b

v−r > 1

and v−r+b−a
v−r < 0. Hence, by Theorem

3,
(
a−b
v−r ,

v−r+b−a
v−r

)
/∈ ∆NE . Therefore,

∆NE =
{
e2
}

.

d. If a = b, then v − a > r − b since
v > r. Thus, we can easily verify (by

examining the payoff matrix in Defini-
tion 7) that e1 ∈ ∆NE . Furthermore,
0 = a − b < v − r and 0 < v − r =
v − r + b − a. Thus, a−b

v−r = 0 and
v−r+b−a

v−r = 1. Hence, by Theorem 3,(
a−b
v−r ,

v−r+b−a
v−r

)
= e2 ∈ ∆NE . Therefore,

∆NE =
{
e1, e2 =

(
a−b
v−r ,

v−r+b−a
v−r

)}
.

e. If a < b, then e2 /∈ ∆NE . Moreover, since
v > r, we have v−a > r−b. Thus, we can
easily verify (by examining the payoff
matrix in Definition 7) that e1 ∈ ∆NE .
Furthermore, a − b < 0 < v − r and
0 < v − r < v − r + b− a. Thus, a−b

v−r < 0

and v−r+b−a
v−r > 1. Hence, by Theorem

3,
(
a−b
v−r ,

v−r+b−a
v−r

)
/∈ ∆NE . Therefore,

∆NE =
{
e1
}

.

Theorem 8 tells us that for some condi-
tions on the values of the parameters of the
ward game, we may be able to identify the
set of the symmetric Nash equilibria. For in-
stance, whenever the cost of the vision ward
is greater than the cost of the detection ward
(a > b) and the profit of choosing a vision
ward is greater than the profit of choosing
the detection ward (v − a > r − b), then the
set of symmetric Nash equilibria is composed
of the two pure strategies e1 and e2 as well
as the mixed strategy

(
a−b
v−r ,

v−r+b−a
v−r

)
. That

is, when both players choose a vision ward
or a detection ward or the combination of
these pure strategies with probability distri-
bution

(
a−b
v−r ,

v−r+b−a
v−r

)
, each of them does not

increase their payoff by unilaterally chang-
ing their strategy.
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Let us now examine an iterated ward
game and use the sets of symmetric Nash
equilibria established in Theorem 8 to iden-
tify the sets of ESS with similar conditions
on the given parameters. Hence, we have the
following theorem.

Theorem 9. Let G be a ward game.

a. If a > b and v − a > r − b, then ∆ESS ={
e1, e2

}
.

b. If a > b and v − a = r − b, then ∆ESS ={
e2
}

.

c. If a > b and v − a < r − b, then ∆ESS ={
e2
}

.

d. If a = b, then v − a > r − b and ∆ESS ={
e1
}

.

e. If a < b, then v − a > r − b and ∆ESS ={
e1
}

.

Proof. Since ∆ESS ⊆ ∆NE , we will only con-
sider all the elements of the set of symmetric
Nash equilibria and check whether they are
ESS or not by using Theorem 5.

a. Suppose that a > b and v −
a > r − b, and consider ∆NE ={
e1, e2,

(
a−b
v−r ,

v−r+b−a
v−r

)}
.

i. For e1 = (1, 0) ∈ ∆NE , we have
u
(
e1, e1

)
= v − a > (v − a)y1 + (r −

b)y2 = u
(
y, e1

)
for all y = (y1, y2) ∈

∆ such that y �= e1 and y1+ y2 = 1.
Thus, by Theorem 5, e1 ∈ ∆ESS .

ii. For e2 = (0, 1) ∈ ∆NE , we have
u
(
e2, e2

)
= −b > −ay1 − by2 =

u
(
y, e2

)
for all y = (y1, y2) ∈ ∆

such that y �= e2 and y1 + y2 = 1.
Thus, by Theorem 5, e2 ∈ ∆ESS .

iii. For x =
(
a−b
v−r ,

v−r+b−a
v−r

)
∈ ∆NE , we

have u(x,x) = ar−bv
v−r = u(y,x) for

all y = (y1, y2) ∈ ∆. Moreover,
u(x,y)−u(y,y) = [b−a+(v−r)y1]

2

r−v < 0
for all y = (y1, y2) ∈ ∆ such that

y �= x since v > r. Thus, u(x,y) <
u(y,y) for all y = (y1, y2) ∈ ∆ such
that y �= x. Hence, by Theorem 5,(
a−b
v−r ,

v−r+b−a
v−r

)
/∈ ∆ESS .

Therefore, ∆ESS = {e1, e2}.

b. Suppose that a > b and v − a = r − b,
and consider ∆NE =

{
e1, e2

}
.

i. For e1 = (1, 0) ∈ ∆NE , we
have u

(
e1, e1

)
= v − a = (v −

a)y1 + (r − b)y2 = u
(
y, e1

)
for all

y = (y1, y2) ∈ ∆ and y1 + y2 =
1. Moreover, u

(
e1,y

)
− u(y,y) =

[−a+ b+ (v − r)y1] y2 < 0 for all
y = (y1, y2) ∈ ∆ such that y �= e1.
Thus, by Theorem 5, e1 /∈ ∆ESS .

ii. For e2 = (0, 1) ∈ ∆NE , we have
u
(
e2, e2

)
= −b > −ay1 − by2 =

u
(
y, e2

)
for all y = (y1, y2) ∈ ∆

such that y �= e2 and y1 + y2 = 1.
Thus, by Theorem 5, e2 ∈ ∆ESS .

Therefore, ∆ESS =
{
e2
}

.

c. Suppose that a > b and v − a < r −
b, and consider ∆NE =

{
e2
}

. Then,
u
(
e2, e2

)
= −b > −ay1 − by2 = u

(
y, e2

)
for all y = (y1, y2) ∈ ∆ such that y �= e2

and y1 + y2 = 1. Thus, by Theorem 5,
e2 ∈ ∆ESS . Therefore, ∆ESS =

{
e2
}

.

d. Suppose that a = b, then v − a > r − b
since v > r. Consider ∆NE =

{
e1, e2

}
.

i. For e1 = (1, 0) ∈ ∆NE , we have
u
(
e1, e1

)
= v − a > (v − a)y1 + (r −

b)y2 = u
(
y, e1

)
for all y = (y1, y2) ∈

∆ such that y �= e1 and y1+ y2 = 1.
Thus, by Theorem 5, e1 ∈ ∆ESS .

ii. For e2 = (0, 1) ∈ ∆NE , we have
u
(
e2, e2

)
= −b = −ay1 − by2 =

u
(
y, e2

)
for all y = (y1, y2) ∈ ∆ and

y1 + y2 = 1. Moreover, u
(
e2,y

)
−

u(y,y) = [a− b− (v − r)y1] y1 < 0
for all y = (y1, y2) ∈ ∆ such that
y �= e2. Thus, by Theorem 5, e2 /∈
∆ESS .
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Therefore, ∆ESS =
{
e1
}

.

e. Suppose that a < b, then v − a > r − b
since v > r. Consider ∆NE =

{
e1
}

.
Then, u

(
e1, e1

)
= v−a > (v−a)y1+(r−

b)y2 = u
(
y, e1

)
for all y = (y1, y2) ∈ ∆

such that y �= e1 and y1 + y2 = 1. Thus,
by Theorem 5, e1 ∈ ∆ESS . Therefore,
∆ESS =

{
e1
}

.

Theorem 9 characterizes those strategies
that are resistant to mutations whenever a
small number of agents who are using a mu-
tant strategy invades such strategies. For in-
stance, whenever the cost of a vision ward
is greater than the cost of a detection ward
(a > b) and the profit of choosing a vision
ward is greater than the profit of choosing a
detection ward (v− a > r− b), then both pure
strategies e1 and e2 are resistant to small
mutations; that is, whenever a large popu-
lation of agents are using a pure strategy e1

(e2) corresponding to the vision ward (detec-
tion ward), any member of a small number
of agents who are using a different strategy,
say y ∈ ∆, will have a lesser payoff compared
to any member of the given population and
hence will be driven out by the population.
In the context of MOBA games, this means
that whenever a large population of players
are using a specific ward, say a vision ward
(detection ward), any other small population
of players who are using a different ward or
a combination of these wards as a strategy
will receive a lesser gold reward compared to
the majority of players who are using a vision
ward (detection ward).

Illustration

Suppose that in a ward game, a vision
ward costs 30 gold but contains a bounty of
50 gold, a detection ward costs 25 gold, and
a vision reward is 60 gold. That is, a =
30, b = 25, r = 50, and v = 60 (an example
of the ward game for the case when a > b and

v − a > r − b). Then, we have the following
payoff matrix:

VW DW( )
VW (30, 30) (−30, 25)
DW (25,−30) (−25,−25)

.

a. Finding ∆NE :
We will use Theorem 3 to find all sym-
metric Nash equilibria. There are 22 −
1 = 3 possible symmetric Nash equilib-
ria corresponding to e1 = (1, 0), e2 =
(0, 1), and x = (x1, x2) with supports
C(e1) = {VW}, C(e2) = {DW}, and
C(x) = {VW, DW}, respectively. We
can easily verify that e1, e2 ∈ ∆NE since
30 ≥ 25 and −25 ≥ −30. Moreover, find-
ing the values of x1 and x2 such that
u1(e

1,x) = u1(e
2,x) and x1 + x2 = 1 for

x1, x2 ≥ 0, gives us the third symmet-
ric Nash equilibrium x =

(
1
2 ,

1
2

)
∈ ∆NE .

Thus, we have ∆NE =
{
e1, e2,

(
1
2 ,

1
2

)}
.

b. Finding ∆ESS :
Since ∆ESS ⊆ ∆NE =

{
e1, e2,

(
1
2 ,

1
2

)}
,

we will verify if e1, e2, and
(
1
2 ,

1
2

)
are

ESS.

i. For e1 ∈ ∆NE , we have u
(
e1, e1

)
=

30 > 30y1 + 25y2 = u
(
y, e1

)
for all

y �= e1 and y1 + y2 = 1. Thus, by
Theorem 5, e1 ∈ ∆ESS .

ii. For e2 ∈ ∆NE , we have u
(
e2, e2

)
=

−25 > −30y1 − 25y2 = u
(
y, e2

)
for

all y �= e2 and y1+ y2 = 1. Thus, by
Theorem 5, e2 ∈ ∆ESS .

iii. For x =
(
1
2 ,

1
2

)
∈ ∆NE , we

have u (x,x) = 0 = u (y,x) for
all y ∈ ∆. However, u (x,y) −
u (y,y) = −5(1−2y2)2

2 < 0 for all
y �= x =

(
1
2 ,

1
2

)
. Thus, by Theorem

5,
(
1
2 ,

1
2

)
/∈ ∆ESS .

Hence, ∆ESS =
{
e1, e2

}
.
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WARD GAME AND REACTION
NETWORKS

In this section, we build the RN that mod-
els the ward game and formulate the reac-
tion system that governs its dynamics. We
also present a formula that defines the prof-
its associated with the decisions of the play-
ers and use the reaction system to identify
the dynamics of these profit equations. Fi-
nally, we identify the better decisions for a
player given some conditions on the param-
eters of the system and compare some of the
results to that of game theory approach.

Building the Reaction Network

Now, we represent the player’s possible
decision and the payoff they could get by
species. Let X and Y be the species repre-
senting the vision ward decision and detec-
tion ward decision, respectively. The interac-
tion of two players is the same as a chemi-
cal reaction where the reactants are the deci-
sions. Thus, there are four possible reactions
involving the two decisions X and Y . We as-
sume that the concentration of each type of
decision X and Y is fixed in the system, but
the reactions will generate species that rep-
resent positive and negative payoff. Accord-
ingly, we define GX and GY to represent pos-
itive profit for X and Y , respectively. Simi-
larly, we define LX and LY to represent neg-
ative profit for X and Y , respectively. Thus,
the set of species that models the ward game
is {X,Y,GX , GY , LX , LY }.

Using the payoff matrix in Equation 7, we
build the set of reactions of the ward game as
follows:

R1 = 2X → 2X + 2vGX + 2aLX

R2 = X + Y → X + Y + aLX + rGY + bLY

R3 = Y +X → Y +X + aLX + rGY + bLY

R4 = 2Y → 2Y + 2bLY .
(1)

The interaction between two vision ward
decisions is modeled by the first reaction R1

in Equation 1. This means that when two

vision ward decisions interact, 2v units of
positive profit for X decision and 2a units
of negative profit for X decision are gener-
ated. Moreover, the interaction between a vi-
sion ward decision of player 1 and a detec-
tion ward decision of player 2 is modeled by
the second reaction R2 in Equation 1. This
means that when these two decisions inter-
act, a units of negative profit for X decision,
r units of positive profit for Y decision, and
b units of negative profit for Y decision are
generated. The other two interactions can be
explained similarly. It is also worth noting
that due to the symmetry of our game, the
reactions R2 and R3 are identical. Hence, the
RN that models this system is

〈M,R〉 = 〈{X,Y,GX , GY , LX , LY } , {R1, R2, R3, R4}〉 .

The stoichiometric matrix S and the flux
vector v corresponding to Equation 1 are

S =

R1 R2 R3 R4





X 0 0 0 0
Y 0 0 0 0
GX 2v 0 0 0
GY 0 r r 0
LX 2a a a 0
LY 0 b b 2b

and

v =




k1X
2

k2XY
k3Y X
k4Y

2


 ,

respectively, where ki (i = 1, . . . , 4) are the
reaction rate constants. Thus, the produc-
tion vector is calculated by

f = Sv =




0 0 0 0
0 0 0 0
2v 0 0 0
0 r r 0
2a a a 0
0 b b 2b







k1X
2

k2XY
k3Y X
k4Y

2



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=




0
0

2k1vX
2

k2rXY + k3rXY
2ak1X

2 + ak2XY + ak3XY
bk2XY + bk3XY + 2bk4Y

2




.

Now, to form the reaction system, we take
the product f = Sv yielding the systems’ dy-
namics governed by the following system of
differential equations:

Ẋ, Ẏ = 0

ĠX = 2k1vX
2

ĠY = k2rXY + k3rXY

L̇X = 2ak1X
2 + ak2XY + ak3XY

L̇Y = bk2XY + bk3XY + 2bk4Y
2.

(2)

Each constant kl corresponds to the reaction
rate of Rl for l = 1, 2, . . . 4.

We now present a formula that defines
profit with respect to a particular type of
species. Consider the species representing
the strategy X. Then, the profit associated
with X is defined to be the difference be-
tween the gain and loss that result from this
move over the total payoff associated with
this strategy. Hence, when PX represents the
profit generated by choosing the strategy X,
then

PX =
GX − LX

X
.

Similarly,

PY =
GY − LY

Y
.

Using the system’s dynamics, we have

ṖX = 2k1vX − a [2k1X + (k2 + k3)Y ]

and

ṖY = (k2 + k3) rX − b (k2X + k3X + 2k4Y ) .

Thus,

PX(t) = 2k1vX0t− at [2k1X0 + (k2 + k3)Y0]
(3)

and
PY (t) = (k2 + k3) rX0t− bt (k2X0 + k3X0 + 2k4Y0) .

(4)

Dynamic Analysis and the Player’s
Decision

Using the concept of EGT, we established
in Theorem 9 that the vision ward strategy
e1 ∈ ∆ is an ESS whenever v − a > r − b.
Particularly, when a small number of agents
who are using a mutant strategy (detection
ward strategy) e2 invades a large popula-
tion of agents who are using the vision ward
strategy e1, then this population can resist
the invasion whenever v − a > r − b. We
will now present how this result relates to
the case using the RN approach by consider-
ing the profit relationship of decisions.

Theorem 10. Let 〈M,R〉 be an RN that mod-
els the system as in Equation 1 correspond-
ing to the ward game. If the reaction system
yields the systems’ dynamics as in Equation
2 such that Y0 � X0 and k1 = k2 = k3 = k4,
then X is a better decision for a player when-
ever v − a > r − b.

Proof. Suppose that Y0 � X0. Then, there
exists n such that Y0 = nX0, where 0 < n �
1. If k1 = k2 = k3 = k4 = k, then Equations 3
and 4 become

PX(t) = 2kX0(v−a)t−2akX0nt ≈ 2kX0(v−a)t

and

PY (t) = 2kX0(r−b)t−2bkX0nt ≈ 2kX0(r−b)t.

Since v > a and r > b, we have PX(t) > 0 and
PY (t) > 0. Let Pr = PX

PY
be the ratio of the

profit corresponding to choosing vision ward
X and the profit corresponding to choosing
detection ward Y . Thus, we have

Pr ≈
v − a

r − b
.

Then, choosing a vision ward X is a favor-
able choice for a player if and only if Pr > 1.
If v − a > r − b, then

Pr ≈
v − a

r − b
> 1.

Therefore, X is a better decision for a
player.
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Theorem 10 tells us that if the reaction
rate constants are all equal (i.e., k1 = k2 =
k3 = k4) and if almost all of the players
are choosing a vision ward (Y0 � X0), then
choosing a vision ward (X) is a better de-
cision for a player whenever the difference
of the reward and cost of choosing a vision
ward is greater than the difference of the re-
ward and cost of choosing a detection ward
(v − a > r − b). In the context of EGT, this
means that a population of vision ward deci-
sions can successfully resist the invasion of
a small number of detection ward decisions
whenever k1 = k2 = k3 = k4 and v− a > r− b,
making the vision ward strategy an ESS. In
fact, we have already shown in Theorem 9
that this is true by using the EGT approach.
However, if the condition v−a > r− b in The-
orem 10 becomes v−a < r−b, then by follow-
ing similar proof in Theorem 10, we can es-
tablish that the detection ward decision (Y )
becomes a better decision for a player. In the
context of EGT, this means that a population
of vision ward decisions cannot resist the in-
vasion of a small number of detection ward
decisions whenever k1 = k2 = k3 = k4 and
v − a < r − b, making the vision ward strat-
egy not an ESS. We have also shown in The-
orem 9 that this is true by using the EGT ap-
proach.

Now, we identify which conditions favor
the vision ward decision (X) and detection
ward decision (Y ) by assuming that k2 = k3 =
k, supposing symmetry of reactions R2 and
R3 (a general assumption in EGT), and that
Y0 � X0.

Theorem 11. Let 〈M,R〉 be an RN that mod-
els the system as in Equation 1 correspond-
ing to the ward game. If the reaction sys-
tem yields the systems’ dynamics as in Equa-
tion 2 with Y0 � X0 and k2 = k3 = k, then
X is a better decision for a player whenever
k1(v − a) > k(r − b).

Proof. If Y0 � X0 and k2 = k3 = k, then
Equations 3 and 4 become

PX(t) ≈ 2k1t(v − a)X0

and
PY (t) ≈ 2kt(r − b)X0.

Let Pr = PX
PY

be the ratio of the profit corre-
sponding to vision ward decision (X) and the
profit corresponding to detection ward deci-
sion (Y ). Then, vision ward decision (X) is
a favorable choice for a player if and only if
Pr > 1, that is, if and only if

2k1t(v − a)X0

2kt [(r − b)X0
=

k1(v − a)

k(r − b)
> 1

⇔ k1(v − a) > k(r − b).

If v − a ≤ r − b (so that a > b), then
it must be the case that k1 > k in order
for the vision ward decision (X) to become
more profitable than the detection ward de-
cision (Y ). This means that there should be
significantly more interactions among vision
ward decisions compared to the interactions
between a vision ward decision and a detec-
tion ward decision so that the vision ward
decision (X) is more profitable than the de-
tection ward decision (Y ) when Y0 � X0 and
k2 = k3 = k. On the other hand, if the con-
dition k1(v − a) > k(r − b) in Theorem 11 be-
comes k1(v − a) < k(r − b), then by following
similar proof in Theorem 11, we can establish
that the detection ward decision (Y ) becomes
a better decision for a player. In such case, if
v − a ≥ r − b, then it must be the case that
k1 < k in order for the detection ward deci-
sion (Y ) to become more profitable than the
vision ward decision (X). This means that
there should be significantly less interactions
among vision ward decisions compared to the
interactions between a vision ward decision
and a detection ward decision so that the de-
tection ward decision (Y ) is more profitable
than the vision ward decision (X) when Y0 �
X0 and k2 = k3 = k.

We have also established in Theorem 9
that detection ward strategy e2 is an ESS
whenever a > b. Particularly, when a small
number of agents who are using a mutant
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strategy (vision ward strategy) e1 invades a
large population of agents who are using the
detection ward strategy e2, then this popula-
tion can resist the invasion whenever a > b.
The following theorem shows that this is true
when using RN.

Theorem 12. Let 〈M,R〉 be an RN that mod-
els the system as in Equation 1 correspond-
ing to the ward game. If the reaction system
yields the systems’ dynamics as in Equation
2 with X0 � Y0 and k1 = k2 = k3 = k4, then
Y is a better decision for a player whenever
a > b.

Proof. Suppose that X0 � Y0. Then, there
exists n such that X0 = nY0, where 0 < n �
1. If k1 = k2 = k3 = k4 = k, then Equations 3
and 4 become

PX(t) = 2knY0(v − a)t− 2akY0t ≈ −2akY0t

and

PY (t) = 2knY0(r − b)t− 2bkY0t ≈ −2bkY0t

so that PX(t) < 0 and PY (t) < 0. Let Pr =
PX
PY

be the ratio of the profit corresponding to
choosing a vision ward X and the profit cor-
responding to choosing a detection ward Y .
Thus,

Pr ≈
a

b
.

Now, choosing a detection ward Y is a favor-
able choice for a player if and only if Pr > 1.
Since a > b, we have

Pr ≈
a

b
> 1.

Therefore, Y is a better decision for a
player.

Theorem 12 tells us that if the reaction
rate constants are all equal (i.e., k1 = k2 =
k3 = k4) and if almost all of the players are
choosing a detection ward (i.e., X0 � Y0),
then choosing a detection ward (Y ) is a bet-
ter decision for a player whenever the cost
of a vision ward is greater than the cost of

a detection ward (a > b). In the context
of EGT, this means that a population of de-
tection ward decisions can successfully resist
the invasion of a small number of vision ward
decisions whenever k1 = k2 = k3 = k4 and
a > b, making the detection ward strategy
an ESS. In fact, we have already shown in
Theorem 9 that this is true by using the EGT
approach. However, if the condition a > b
in Theorem 12 becomes a < b, then by fol-
lowing similar proof in Theorem 12, we can
establish that the vision ward decision (X)
becomes a better decision for a player. In the
context of EGT, this means that a population
of detection ward decisions cannot resist the
invasion of a small number of vision ward de-
cisions whenever k1 = k2 = k3 = k4 and a < b,
making the detection ward strategy not an
ESS. We have also shown this case in Theo-
rem 9.

Now, we identify which conditions favor a
vision ward decision (X) and detection ward
decision (Y ) by assuming the symmetry of re-
actions R2 and R3, where k2 = k3 = k and
X0 � Y0.

Theorem 13. Let 〈M,R〉 be an RN that mod-
els the system as in Equation 1 correspond-
ing to the ward game. If the reaction sys-
tem yields the systems’ dynamics as in Equa-
tion 2 with X0 � Y0 and k2 = k3 = k, then
Y is a better decision for a player whenever
ak > bk4.

Proof. If X0 � Y0 and k2 = k3 = k, then
Equations 3 and 4 become

PX(t) ≈ −2aktY0

and
PY (t) ≈ −2bk4tY0.

Let Pr = PX
PY

be the ratio of the profit corre-
sponding to a vision ward decision (X) and
the profit corresponding to a detection ward
decision (Y ). Then, a detection ward decision
(Y ) is a favorable choice for a player if and
only if Pr > 1, that is, if and only if

ak

bk4
> 1
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⇔ ak > bk4.

If a ≤ b, then it must be the case that
k > k4 in order for the detection ward deci-
sion (Y ) to become more profitable than the
vision ward decision (X). This means that
there should be significantly greater interac-
tions between a vision ward decision and de-
tection ward decision than among detection
ward decisions so that the detection ward
decision (Y ) is more profitable than the vi-
sion ward decision (X) when X0 � Y0 and
k2 = k3 = k. On the other hand, if the
condition ak > bk4 in Theorem 13 becomes
ak < bk4, then by following similar proof in
Theorem 13, we can establish that the vision
ward decision (X) becomes a better decision
for a player. In such case, if a ≥ b, then it
must be the case that k < k4 in order for
the vision ward decision (X) to become more
profitable than the detection ward decision
(Y ). This means that there should be signif-
icantly lesser interactions between a vision
ward decision and a detection ward decision
than among detection ward decisions so that
the vision ward decision (X) is more prof-
itable than the detection ward decision (Y )
when X0 � Y0 and k2 = k3 = k.

SUMMARY AND OUTLOOK

In this paper, we have presented a sym-
metric bimatrix game called a “ward game,”
which models the warding strategies of play-
ers in a MOBA game. This scenario can be
compared to a typical real-world warfare be-
tween two opposing parties where each party
has a choice to either utilize mechanisms to
gain vision and information about their oppo-
nents (e.g., spying drones) or utilize a system
to detect the presence of the opponent’s vi-
sion and spying devices (e.g., radar detection
system). We represented the two possible
strategies of players to be (1) the vision ward
(VW) strategy and (2) the detection ward

(DW) strategy, the former being a vision and
spying mechanism and the latter being a de-
tection mechanism. Using the classical non-
cooperative game theory approach, we have
identified the sets of symmetric Nash equi-
libria for some given conditions on the pa-
rameters of the game. Moreover, treating it
as a population game, we have also estab-
lished the set of ESS by using the EGT ap-
proach. Furthermore, we have used the no-
tion of RN to analyze the dynamics of the
game and identified the best decisions for a
player given some conditions on the parame-
ters of the system. We also compared some of
its important results to that of game theory
approaches.

The ward game is a 2 × 2 bimatrix game
model that utilizes two possible warding
strategies (vision ward and detection ward)
that are commonly used in MOBA games like
DOTA 2 and LOL. In general, however, there
could be other ward types that players can
utilize during a MOBA game. For further
studies, bimatrix game models of a higher di-
mension might be formulated by considering
other types of wards. It would also be inter-
esting to see how the notions of RN theory re-
lates with the classical game theory and EGT
on these models. Furthermore, since the con-
cept of a ward game is closely related to war-
fare, territorial disputes, and industrial espi-
onage, similar researches might also investi-
gate such areas of studies.
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