
The Fixing Number of Spanning Trees of a Graph 
 

Shiela N. Eje1 and Yvette Fajardo-Lim2,* 
 

1Batangas State University, Batangas City, Philippines 
2Mathematics and Statistics Department, De La Salle University, Manila, Philippines  

 
*Email: yvette.lim@dlsu.edu.ph  

 
 

ABSTRACT 
 

An automorphism is an isomorphism from the vertex set of a graph G to itself. The set of all 
automorphisms of G together with the operation of composition of functions is called the 
automorphism group of G, denoted by Aut(G). A 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠 is a set of vertices to be fixed in G 
such that the only automorphism possible for the remaining unfixed vertices of G is the 
identity map. The 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 𝑜𝑜𝑓𝑓 𝑎𝑎 𝑓𝑓𝑛𝑛𝑎𝑎𝑔𝑔ℎ, denoted by 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺), is the order of the smallest 
fixing set. In this paper, we investigate the fixing number of the spanning trees of some 
special classes of graphs and a simple graph G in general. 
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INTRODUCTION 
 
     In 2006, Josh Laison and Courtney 
Gibbons introduced the concept of a fixing 
number. But it was only in 2009 that their 
paper entitled “Fixing Numbers of Graphs 
and Groups” was published (Gibbons & 
Laison, 2009). The work of Frank Harary 
and David Erwin (Erwin & Harary, 2006) 
was published earlier in the Electronic 
Journal of Combinatorics, which also focused 
on the same concept. Common to researches 
in graph theory, independent works on fixing 
numbers were done under the name of 
“determining number.”  
 
     We consider here finite graphs without 
multiple edges nor loops, that is, simple 
graphs.  Furthermore, only connected simple 
graphs will be considered. A 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠 is a 
set of vertices to be fixed such that the only 
automorphism possible for the remaining 
unfixed vertices is the identity map. The 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 𝑜𝑜𝑓𝑓 𝑎𝑎 𝑓𝑓𝑛𝑛𝑎𝑎𝑔𝑔ℎ, denoted by 
𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺), is the order of the smallest fixing set. 
A given graph may have more than one 
fixing set of the smallest possible order; 
however, a fixing number is only concerned 
with the order of a minimum fixing set 
(Greenfield, 2011). 
 
     Let 𝐺𝐺  be the graph in Figure 1, where 
𝑉𝑉(𝐺𝐺) = {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣5}.  As shown in Figure 
1(A), we fixed vertices 𝑣𝑣1, 𝑣𝑣3, 𝑣𝑣4, and 𝑣𝑣5. Since 
only one vertex is not fixed, no other 
automorphism can be formed aside from the 
identity map; that is, 𝑣𝑣2 is mapped to 𝑣𝑣2. 
Thus, Figure 1(A) is fixed. Also, Figure 1(B) 
is already fixed because given the fixed 
vertices 𝑣𝑣1, 𝑣𝑣4, 𝑣𝑣5, the vertex 𝑣𝑣3, which is not 
fixed, has a degree equal to 2, but vertex 𝑣𝑣2 
has only a degree equal to 1. Furthermore, 
Figure 1(C), which fixes vertices 𝑣𝑣2 and 𝑣𝑣4, 
makes the graph fixed because 𝑣𝑣1, 𝑣𝑣3, and 𝑣𝑣5 
have different degrees. And lastly, Figure 
1(D), which fixes 𝑣𝑣3, does not fix the graph. 
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Since 𝑣𝑣1 has the same degree as 𝑣𝑣2 and both 
of them are adjacent to the same vertex 𝑣𝑣5, 
then an automorphism ϕ can be formed such 
that ϕ(𝑣𝑣1) = 𝑣𝑣2 and ϕ(𝑣𝑣2) = 𝑣𝑣1. 
 

 
Figure 1. Fixing sets of a graph. 

 
     It is important to note that the fixing 
number is the minimum order of all the 
fixing sets of the graph. Consider, a fixing set 
α = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … , 𝑥𝑥𝑛𝑛} of a graph 𝐺𝐺, α is said to 
be a minimal fixing set whenever you can 
find a vertex in α such that a removal would 
yield the graph not fixed. In Figure 1(A), 
{𝑣𝑣1, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣5} is a minimal fixing set since 
removing 𝑣𝑣1 from the set will make the 
graph not fixed since 𝑣𝑣1 has the same degree 
as 𝑣𝑣2 and both of them are adjacent to the 
same vertex 𝑣𝑣5. When you can find another 
fixing set β of the same graph 𝐺𝐺 whose 
cardinality |β| is the least among all the 
other fixing sets of G, β is called the 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠. The cardinality of the 
minimum fixing set is the 𝑓𝑓𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑠𝑠𝑛𝑛. 
Referring to Figure 1(C), which gives the 
smallest fixing set of 𝐺𝐺, the fixing number of 
𝐺𝐺 is 2. We denote the fixing number of a 
graph 𝐺𝐺 by 𝑓𝑓𝑚𝑚𝑥𝑥(𝐺𝐺). In this case, 𝑓𝑓𝑚𝑚𝑥𝑥(𝐺𝐺) =  2. 
 
     This paper aims to find the relationship 
of the fixing number of the spanning trees of 
a graph 𝐺𝐺 and 𝑓𝑓𝑚𝑚𝑥𝑥(𝐺𝐺). A spanning tree of a 
graph is a tree that is a spanning subgraph 
of 𝐺𝐺. Specifically, it aims to find the fixing 
number of the spanning trees of some special 

classes of graphs and compare it with its 
fixing number. 
     The following propositions from 
Greenfield (2011) will be used for the 
remainder of the paper. 
 
Proposition 1. For all cycles 𝐶𝐶𝑛𝑛, 𝑚𝑚 ≥ 3, 
𝑓𝑓𝑚𝑚𝑥𝑥(𝐶𝐶𝑛𝑛) = 2. 
 
Proposition 2. For all paths 𝑃𝑃𝑛𝑛, 𝑚𝑚 > 1, 
𝑓𝑓𝑚𝑚𝑥𝑥(𝑃𝑃𝑛𝑛) = 1. 
 
Proposition 3. For all complete graphs 𝐾𝐾𝑛𝑛,
𝑚𝑚 > 3, 𝑓𝑓𝑚𝑚𝑥𝑥(𝐾𝐾𝑛𝑛) = 𝑚𝑚 − 1. 
 
Proposition 4. For all stars 𝑆𝑆𝑛𝑛, 𝑚𝑚 > 2,
𝑓𝑓𝑚𝑚𝑥𝑥(𝑆𝑆𝑛𝑛) = 𝑚𝑚 − 2. 
 
Proposition 5. For all wheel graphs 𝑊𝑊𝑛𝑛, 𝑚𝑚 ≥ 4,
𝑓𝑓𝑚𝑚𝑥𝑥(𝑊𝑊𝑛𝑛) = 2. 
 
Proposition 6. For all friendship graphs 𝐹𝐹𝑛𝑛,
𝑚𝑚 ≥ 2, 𝑓𝑓𝑚𝑚𝑥𝑥(𝐹𝐹𝑛𝑛) = 𝑚𝑚. 
 
Proposition 7. For all complete bipartite 
graphs 𝐾𝐾𝑚𝑚,𝑛𝑛, 𝑚𝑚 ≠ 1, 𝑚𝑚 ≠ 1, 𝑓𝑓𝑚𝑚𝑥𝑥(𝐾𝐾𝑚𝑚,𝑛𝑛) = 𝑚𝑚 +
𝑚𝑚 − 2. 
 
Proposition 8. The fixing number of a tree 
with 𝑚𝑚 ≥ 7 vertices can be any value from 0 
to 𝑚𝑚 − 2 other than 𝑚𝑚 − 3. 
 
     The following sections present the fixing 
sets of spanning trees of cycles 𝐶𝐶𝑛𝑛, complete 
graphs 𝐾𝐾𝑛𝑛, wheel graphs 𝑊𝑊𝑛𝑛, complete 
bipartite graphs 𝐾𝐾𝑚𝑚,𝑛𝑛, and friendship graphs 
𝐹𝐹𝑛𝑛. In order to find the relationship between 
the fixing number of these graphs and the 
fixing number of their spanning trees, 
careful enumeration of the fixing sets of the 
spanning trees was identified. In the 
process, the relationship was obtained. After 
identifying the relationship between the 
fixing number of some special classes of 
graphs and its respective spanning trees, the 
authors characterized the relationship 
between the fixing number of spanning trees 
𝑇𝑇 of a graph 𝐺𝐺, in general. 
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FIXING NUMBER OF SPANNING 
TREES OF CYCLES 

 
     If the vertices of a graph 𝐺𝐺 of order 𝑛𝑛 ≥ 3 
can be labeled 𝑣𝑣1, 𝑣𝑣2, …  , 𝑣𝑣𝑛𝑛 so that its 
edges are 𝑣𝑣1𝑣𝑣2, 𝑣𝑣2𝑣𝑣3, …  , 𝑣𝑣𝑛𝑛−1𝑣𝑣𝑛𝑛 and 𝑣𝑣1𝑣𝑣𝑛𝑛, 
then 𝐺𝐺 is called a 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. A graph that is a 
cycle of order 𝑛𝑛 ≥ 3 is denoted by 𝐶𝐶𝑛𝑛. This is 
a 𝑝𝑝𝑝𝑝𝑝𝑝ℎ in which the first and last vertices 
have been joined by an edge. Figure 2 shows 
cycles of order 4, 5, and 6. 
 

 
 
Figure 2. Cycle graphs of order 4, 5, and 6. 
 
     All the spanning trees of 𝐶𝐶3 and 𝐶𝐶4 are 
shown in Figures 3 and 4. Observe that the 
numbers of spanning trees of 𝐶𝐶3 and 𝐶𝐶4 are 
both equal to the order of the graph. Also, 
note that all the spanning trees of 𝐶𝐶3 and 𝐶𝐶4 
are isomorphic to 𝑃𝑃3 and 𝑃𝑃4, respectively. In 
general, since every tree on 𝑛𝑛 vertices has 
exactly 𝑛𝑛 − 1 edges, we must remove exactly 
one edge from 𝐶𝐶𝑛𝑛 to enumerate all the 
spanning trees 𝑇𝑇 of 𝐶𝐶𝑛𝑛. Hence, 𝐶𝐶𝑛𝑛 has 𝑛𝑛 
spanning trees, which are all isomorphic to a 
path 𝑃𝑃𝑛𝑛. From Proposition 1 and Proposition 
2, we have the following relationship. 
 
Proposition 9. Let 𝑛𝑛 ≥ 3. For all spanning 
trees 𝑇𝑇 of 𝐶𝐶𝑛𝑛, 
 

2 = 𝑓𝑓𝑓𝑓𝑓𝑓(𝐶𝐶𝑛𝑛) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) = 1. 
 

 
Figure 3. Spanning trees of 𝐶𝐶3. 

 

 
Figure 4. Spanning trees of 𝐶𝐶4. 

 
 

FIXING NUMBER OF SPANNING 
TREES OF COMPLETE GRAPHS 

 
     A 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐 𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝ℎ of order 𝑛𝑛, denoted by 
𝐾𝐾𝑛𝑛, is the graph in which every two distinct 
vertices are adjacent. Complete graphs of 
order 3, 6, and 4 are shown in Figure 5. 
 

 
Figure 5. Complete graphs of order 3, 6, and 

4. 
 
     Since 𝐾𝐾3 ≅ 𝐶𝐶3, they have the same set of 
spanning trees. If 𝑛𝑛 = 4,  𝐾𝐾4 has 16 spanning 
trees. Figure 6 shows the spanning trees of 
𝐾𝐾4 with minimum fixing sets. Observe that 
the first 12 spanning trees are isomorphic to 
𝑃𝑃4 while the rest are isomorphic to 𝑆𝑆4. 
 

 
Figure 6. Fixing set of spanning trees of 𝐾𝐾4. 
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     From these enumerations, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) =
𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃4) or 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) = 𝑓𝑓𝑓𝑓𝑓𝑓(𝑆𝑆4) for all spanning 
trees 𝑇𝑇 of 𝐾𝐾4. From Proposition 3, observe 
that the fixing number of 𝐾𝐾4 is greater than 
the fixing number of any of its spanning 
trees.  
 
     According to Cayley (1889), 𝐾𝐾𝑛𝑛 has 𝑛𝑛𝑛𝑛−2 
spanning trees. Hence, 𝐾𝐾5 will have 125 
spanning trees. Now, the three 
nonisomorphic trees with five vertices, 
which are all spanning trees of 𝐾𝐾5, are given 
in Figure 7. It can be verified that 𝐾𝐾5 has 5 
spanning trees isomorphic to the first tree, 
60 isomorphic to the second tree, and 60 
isomorphic to the third tree. The fixing sets 
were identified.  
 

 
Figure 7. Nonisomorphic spanning trees of 

𝐾𝐾5. 
 
     From these spanning trees, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) =
𝑓𝑓𝑓𝑓𝑓𝑓(𝑆𝑆5) or 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) = 𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃5) or 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) = 1. 
Similarly, we have the relationship 
𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾5) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇), for all spanning trees 𝑇𝑇 of  
𝐾𝐾5. 
 
     Enumerating all spanning trees and 
getting their minimum fixing set using the 
listed algorithms from Greenfield (2011) 
would be difficult since there would be 1,296 
spanning trees for  𝐾𝐾6, 16,807 for 𝐾𝐾7, and so 
on. 
 
     In Caceres et al. (2010), it was shown that 
the fixing number of every tree of order 𝑛𝑛,
𝑛𝑛 > 1, is at most 𝑛𝑛 − 2. This is stated in the 
following proposition, which is similar to 
Proposition 8 but differs with the minimum 
order of the tree.  
 
Proposition 10 (Caceres et al., 2010). The 
fixing number of a tree with 𝑛𝑛 ≥ 2 vertices 

can be any value from 0 to 𝑛𝑛 − 2 and may be 
equal to 𝑛𝑛 − 3 only if 𝑛𝑛 = 4. 
     From Proposition 3 and Proposition 10, 
we have the following result.  
 
Proposition 11. Let 𝑛𝑛 ≥ 3. For all spanning 
trees 𝑇𝑇 of 𝐾𝐾𝑛𝑛, 
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾𝑛𝑛) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇). 
 
 

FIXING NUMBER OF SPANNING 
TREES OF WHEELS 

  
     A 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 graph of order 𝑛𝑛 + 1 denoted by 
𝑊𝑊𝑛𝑛, 𝑛𝑛 ≥ 3, is a graph formed by connecting a 
single vertex called the ℎ𝑢𝑢𝑢𝑢 to all the vertices 
of an 𝑛𝑛 cycle. A wheel of order 5 is shown in 
Figure 8. This is the smallest order we will 
consider in this section since a wheel graph 
of order 4 is isomorphic to 𝐾𝐾4. 
 

 
Figure 8. Wheel graph 𝑊𝑊4. 

 
     Now, Figure 9 shows a wheel graph 𝑊𝑊4 
and all its nonisomorphic spanning trees, 
𝑇𝑇1,  𝑇𝑇2, and 𝑇𝑇3 with a minimum fixing set. 
Note that these are all the nonisomorphic 
trees of order 5. From this illustration, 
𝑓𝑓𝑓𝑓𝑓𝑓(𝑊𝑊4) < 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇1), 𝑓𝑓𝑓𝑓𝑓𝑓(𝑊𝑊4) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇2), and 
𝑓𝑓𝑓𝑓𝑓𝑓(𝑊𝑊4) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇3). Observe that 𝑓𝑓𝑓𝑓𝑓𝑓(𝑊𝑊4) <
𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) only when 𝑇𝑇 ≅ 𝑆𝑆5, and 𝑓𝑓𝑓𝑓𝑓𝑓(𝑊𝑊4) >
𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇), for the other spanning trees 𝑇𝑇. We 
now have a case where the fixing number of 
a graph is not strictly greater than the fixing 
number of its spanning tree. 
 

 
Figure 9. Minimum fixing set of 𝑊𝑊4 and its 

spanning trees, 𝑇𝑇1,  𝑇𝑇2, and 𝑇𝑇3. 
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     In Figure 10, all the six nonisomorphic 
spanning trees of a wheel of order 6 are 
shown. These are the nonisomorphic trees of 
order 6. 
 

 
Figure 10. Minimum fixing set of the 

spanning trees of 𝑊𝑊5. 
 
     Basically, we have the following fixing 
numbers for each spanning tree 𝑇𝑇𝑖𝑖, 1 ≤ 𝑖𝑖 ≤
6: 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇1) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇2) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇3) = 1 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇4) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇5) = 2 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇6) = 4 
 
Hence, for a wheel of order 6,  

𝑓𝑓𝑖𝑖𝑓𝑓(𝑊𝑊5) < 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇6); 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑊𝑊5) > 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖), 1 ≤ 𝑖𝑖 ≤ 3; and 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑊𝑊5) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖),  4 ≤ 𝑖𝑖 ≤ 5. 
 
     For a wheel of order 6, we see that there 
exists a spanning tree 𝑇𝑇 such that 𝑓𝑓𝑖𝑖𝑓𝑓(𝑊𝑊5) =
𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇). From Haghighi and Bibak (2012), the 
number of spanning trees of a wheel 𝑊𝑊𝑛𝑛 is 
(3+√5

2 )
𝑛𝑛

− (3−√5
2 )

𝑛𝑛
− 2. Hence, the number of 

spanning trees of 𝑊𝑊5 is 118. As the value of 
𝑛𝑛 gets bigger, we expect more spanning 
trees. However, in general, the path 𝑃𝑃𝑛𝑛+1 and 
star 𝑆𝑆𝑛𝑛+1 are spanning trees of a wheel 𝑊𝑊𝑛𝑛. 
Also, if the order of the wheel is greater than 
6, we can always find a spanning tree similar 
to 𝑇𝑇5 in Figure 10. The hub will be the vertex 

of degree 4 as illustrated in Figure 11. We 
have the following propositions. 
 
Proposition 12. Let 𝑛𝑛 ≥ 4. For all spanning 
trees 𝑇𝑇 ≅ 𝑃𝑃𝑛𝑛+1 of 𝑊𝑊𝑛𝑛, 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑊𝑊𝑛𝑛) > 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇). 
 
Proposition 13. Let 𝑛𝑛 ≥ 4. For all spanning 
trees 𝑇𝑇 ≅ 𝑆𝑆𝑛𝑛+1 of 𝑊𝑊𝑛𝑛, 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑊𝑊𝑛𝑛) < 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇). 
 
Proposition 14. Let 𝑛𝑛 ≥ 5. There exists a 
spanning tree 𝑇𝑇 of 𝑊𝑊𝑛𝑛 such that 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑊𝑊𝑛𝑛) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇). 
 

 
Figure 11. Minimum fixing set of a 

spanning tree of 𝑊𝑊𝑛𝑛, 𝑛𝑛 ≥ 5. 
 
 

FIXING NUMBER OF SPANNING 
TREES OF COMPLETE BIPARTITE 

GRAPHS 
 
     A complete bipartite graph 𝐾𝐾𝑚𝑚,𝑛𝑛 is a 
graph whose vertices are partitioned into 
two nonempty sets of order 𝑚𝑚 and 𝑛𝑛 such 
that every vertex in one set is adjacent to all 
vertices in the other set and no pair of 
vertices within the same set are adjacent. 
 
     In Figure 12, observe that 𝐾𝐾1,1 and 𝐾𝐾1,2 
are isomorphic to 𝑃𝑃2 and 𝑃𝑃3, respectively. 
Thus, the fixing numbers are 𝑓𝑓𝑖𝑖𝑓𝑓(𝐾𝐾1,1) =
𝑓𝑓𝑖𝑖𝑓𝑓(𝐾𝐾1,2) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇) = 1 from Proposition 2. 
Similarly, 𝐾𝐾1,3,  𝐾𝐾1,4, and 𝐾𝐾1,5 are isomorphic 
to 𝑆𝑆4, 𝑆𝑆5, and 𝑆𝑆6, respectively, and thus, the 
fixing numbers are 𝑓𝑓𝑖𝑖𝑓𝑓(𝐾𝐾1,3) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑆𝑆4) =
𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇) = 2, 𝑓𝑓𝑖𝑖𝑓𝑓(𝐾𝐾1,4) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑆𝑆5) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇) = 3, 
and 𝑓𝑓𝑖𝑖𝑓𝑓(𝐾𝐾1,5) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑆𝑆6) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇) = 4 from 
Proposition 4. 
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Figure 12. Complete bipartite graphs. 
 
     For 𝐾𝐾2,2, the graph is isomorphic to 𝐶𝐶4. 
According to the discussion on the spanning 
trees of a cycle, the fixing number of a 
spanning tree 𝑇𝑇 of 𝐾𝐾2,2 is 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) = 𝑓𝑓𝑓𝑓𝑓𝑓(𝐶𝐶4) −
1 = 1. Next, for the complete bipartite graph 
𝐾𝐾2,3, the nonisomorphic spanning trees with 
minimum fixing set are given in Figure 13. 
The minimum fixing set of the spanning 
trees shows that 𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾2,3) >
𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) from Proposition 7. Similarly,  
𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾2,4) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) and  𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾2,5) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) as 
shown in Figures 14 and 15.  
 

 
Figure 13. Nonisomorphic spanning trees of 

𝐾𝐾2,3. 
 

Figure 14. Nonisomorphic spanning trees of 
𝐾𝐾2,4. 

 

Figure 15. Nonisomorphic spanning trees of 
𝐾𝐾2,5. 

 
     We now consider 𝐾𝐾3,3. As shown in Figure 
16, it also follows that 𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾3,3) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) for 
all spanning trees 𝑇𝑇 of 𝐾𝐾3,3. For 𝐾𝐾𝑚𝑚,𝑚𝑚, 𝑚𝑚 > 3, 
the path 𝑃𝑃2𝑚𝑚 is a spanning tree together with 
the tree illustrated in Figure 17. This graph 
is a doublestar, 𝐷𝐷𝑚𝑚,𝑛𝑛, a graph obtained by 
joining the center of two stars 𝑆𝑆𝑚𝑚 and 𝑆𝑆𝑛𝑛 with 
an edge. 
 

 
Figure 16. Nonisomorphic spanning trees of 

𝐾𝐾3,3. 
 

 
Figure 17. Doublestar 𝐷𝐷𝑚𝑚,𝑛𝑛. 

 
Proposition 15. For all doublestars 𝐷𝐷𝑚𝑚,𝑛𝑛, 𝑚𝑚 >
2, 𝑛𝑛 > 2, 
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝐷𝐷𝑚𝑚,𝑛𝑛) = (𝑚𝑚 − 2) + (𝑛𝑛 − 2). 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓. By definition, a doublestar 𝐷𝐷𝑚𝑚,𝑛𝑛 is a 
graph obtained by joining the center of two 
stars 𝑆𝑆𝑚𝑚 and 𝑆𝑆𝑛𝑛 with an edge. The proof 
follows from Proposition 4. ∎ 
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From Proposition 15 and the discussion 
above, the following proposition follows. 
 
Proposition 16. Let 𝑚𝑚 >  1 and 𝑛𝑛 >  1. For 
all spanning trees 𝑇𝑇 ≅ 𝑃𝑃𝑛𝑛+𝑚𝑚  or 𝑇𝑇 ≅ 𝐷𝐷𝑚𝑚,𝑛𝑛  of 
𝐾𝐾𝑚𝑚,𝑛𝑛, 
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾𝑚𝑚,𝑛𝑛) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇). 
 
Moreover, from Proposition 7 and 
Proposition 10, we have the following result 
for the fixing number of a spanning tree of a 
complete bipartite graph of order at least 2 
in general.  
 
Proposition 17. Let 𝑚𝑚 >  1 and 𝑛𝑛 >  1. For 
all spanning trees 𝑇𝑇 of 𝐾𝐾𝑚𝑚,𝑛𝑛, 
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾𝑚𝑚,𝑛𝑛) ≥ 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇). 
 
 

FIXING NUMBER OF SPANNING 
TREES OF FRIENDSHIP GRAPHS 

 
     A friendship graph 𝐹𝐹𝑛𝑛 is a graph 
consisting of 𝑛𝑛 triangles, which all share a 
common vertex and no two of which share a 
common edge. Examples of friendship 
graphs are given in Figure 18. 
 

 
Figure 18. Friendship graphs. 

 
     We now identify the spanning trees of the 
friendship graphs 𝐹𝐹2,  𝐹𝐹3, and 𝐹𝐹4 with 
minimum fixing sets. In Figure 19, observe 
that friendship graphs 𝐹𝐹2,  𝐹𝐹3, and 𝐹𝐹4 have 
𝑛𝑛 + 1 nonisomorphic spanning trees. We now 
analyze the fixing number of the 
nonisomorphic spanning trees of friendship 
graphs, 𝐹𝐹2,  𝐹𝐹3, and 𝐹𝐹4, based on the given 
minimum fixing set. Table 1 shows the 
summary of the fixing number of each 
nonisomorphic spanning tree of the given 

friendship graphs. The spanning trees 𝑇𝑇1 in 
Figure 19 are all isomorphic to a star graph 
with the same order. Hence, from 
Proposition 4, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇1) = 2𝑛𝑛 − 1, where 𝑛𝑛 is 
the number of triangles in the friendship 
graph. The fixing sets of the rest were 
obtained using different methods discussed 
in Greenfield (2011). 
 

 
Figure 19. Minimum fixing sets of 

nonisomorphic spanning trees of 𝐹𝐹2,  𝐹𝐹3, and 
𝐹𝐹4. 

 
Table 1. The Fixing Number of Spanning 

Trees of 𝑭𝑭𝟐𝟐, 𝑭𝑭𝟑𝟑, and 𝑭𝑭𝟒𝟒 
 

 
 
     Following the pattern of obtaining the 
nonisomorphic trees of friendship graphs of 
𝐹𝐹2,  𝐹𝐹3, and 𝐹𝐹4, we now find the 
nonisomorphic spanning trees of friendship 
graph 𝐹𝐹𝑛𝑛, in general shown in Figure 20. We 
see that 𝐹𝐹𝑛𝑛 has 𝑛𝑛 + 1 nonisomorphic 
spanning trees and 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇1) = 2𝑛𝑛 − 1.  
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Figure 20. Friendship graph 𝐹𝐹𝑛𝑛 and its 

nonisomorphic spanning trees. 
  
 
     Now, observe that each spanning tree 𝑇𝑇𝑖𝑖,
1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 1, of 𝐹𝐹𝑛𝑛 is a rooted tree. A rooted 
tree has one vertex as the root, and all edges 
are directed away from the root. The root of 
each 𝑇𝑇𝑖𝑖 is the vertex of 𝐹𝐹𝑛𝑛 with the maximum 
degree.  
 
     Also, each 𝑇𝑇𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 1, has 2𝑛𝑛 + 1 −
𝑖𝑖 pendant vertices. A pendant vertex is a 
vertex of degree 1. The maximum depth of 
each pendant vertex is 2. All pendant 
vertices of 𝑇𝑇1 is of depth 1 while all pendant 
vertices of 𝑇𝑇𝑛𝑛+1 is of depth 2. The rest has a 
combination of depth 1 and depth 2. The 
fixing number of 𝑇𝑇𝑛𝑛+1 is given in Proposition 
18. 
 
Proposition 18. Let 𝑛𝑛 ≥ 2 be the number of 
triangles in 𝐹𝐹𝑛𝑛. For all spanning trees 𝑇𝑇𝑛𝑛+1 of 
𝐹𝐹𝑛𝑛, 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑛𝑛+1) = 𝑛𝑛 − 1. 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓. Each 𝑇𝑇𝑛𝑛+1 has n pendant vertices with 
depth equal to 2. Fixing 𝑛𝑛 − 1 pendant 
vertices will fix the graph.∎ 
 
     Observe that for 𝑇𝑇1 and 𝑇𝑇𝑛𝑛+1, the fixing 
number is the number of pendant vertices 
minus 1. The pendant vertices of the former 
are all of depth 1 while the pendant vertices 
of the latter are all of depth 2. For the fixing 
number of the nonisomorphic spanning trees 
of 𝐹𝐹𝑛𝑛 other than 𝑇𝑇1 and 𝑇𝑇𝑛𝑛+1, the fixing 
number is the number of pendant vertices 
minus 2. This is because each of these 
spanning trees has pendant vertices of depth 
1 and depth 2. Thus, one from each depth 
may not be fixed. It then follows that the 

fixing number of each 𝑇𝑇𝑖𝑖 is the number of 
pendant vertices minus 2; that is, 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖) =
2𝑛𝑛 − 1 − 𝑖𝑖, 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛. We have the following 
proposition. 
 
Proposition 19. Let 𝑛𝑛 ≥ 2 be the number of 
triangles in 𝐹𝐹𝑛𝑛. For all spanning trees 𝑇𝑇𝑖𝑖, 2 ≤
𝑖𝑖 ≤ 𝑛𝑛, of 𝐹𝐹𝑛𝑛,  
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖) = 2𝑛𝑛 − 1 − 𝑖𝑖. 
 
From Proposition 6 and Proposition 19, we 
note that 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝐹𝐹𝑛𝑛) > 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖),  2 ≤ 𝑖𝑖 < 𝑛𝑛 − 1 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝐹𝐹𝑛𝑛) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖),  𝑖𝑖 = 𝑛𝑛 − 1 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝐹𝐹𝑛𝑛) < 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖),  𝑖𝑖 = 𝑛𝑛. 
 
The fixing number of spanning trees of 
friendship graphs is characterized as 
follows. 
 
Proposition 20. Let 𝑛𝑛 ≥ 2 be the number of 
triangles in 𝐹𝐹𝑛𝑛. For all spanning trees 𝑇𝑇1 and 
all spanning trees 𝑇𝑇𝑛𝑛 of 𝐹𝐹𝑛𝑛,   
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝐹𝐹𝑛𝑛) < 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖),  𝑖𝑖  ∈ {1, 𝑛𝑛}. 
 
Proposition 21. Let 𝑛𝑛 ≥ 2 be the number of 
triangles in 𝐹𝐹𝑛𝑛. For all spanning trees 𝑇𝑇𝑛𝑛−1 of 
𝐹𝐹𝑛𝑛, 
 

𝑓𝑓𝑖𝑖𝑓𝑓(𝐹𝐹𝑛𝑛) = 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑛𝑛−1). 
 
Proposition 22. Let 𝑛𝑛 ≥ 2 be the number of 
triangles in 𝐹𝐹𝑛𝑛. For all spanning trees 𝑇𝑇𝑛𝑛+1 
and 𝑇𝑇𝑖𝑖, 2 ≤ 𝑖𝑖 < 𝑛𝑛 − 1, of 𝐹𝐹𝑛𝑛, 
 
𝑓𝑓𝑖𝑖𝑓𝑓(𝐹𝐹𝑛𝑛) > 𝑓𝑓𝑖𝑖𝑓𝑓(𝑇𝑇𝑖𝑖), 2 ≤ 𝑖𝑖 < 𝑛𝑛 − 1 or 𝑖𝑖 = 𝑛𝑛 + 1. 
 
 

FIXING NUMBER OF SPANNING 
TREES OF A GRAPH 𝑮𝑮 

 
From the foregoing discussion, we have 
shown that the fixing number of a spanning 
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tree 𝑇𝑇 of a graph 𝐺𝐺 may be greater than, less 
than, or equal to the fixing number of the 
graph 𝐺𝐺. In this section, we specify 
conditions when the fixing number of the 
spanning tree 𝑇𝑇 would be a lower bound or 
an upper bound of the fixing number of 𝐺𝐺. 
 
Proposition 23. Let 𝐺𝐺 be a graph on 𝑛𝑛 
vertices, 𝑛𝑛 ≥ 4, and suppose 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺) < 𝑛𝑛 − 2. 
If 𝐺𝐺 has at least one vertex of degree 𝑛𝑛 − 1, 
then there exists a spanning tree 𝑇𝑇 of 𝐺𝐺 such 
that 
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓. Since 𝐺𝐺 has a vertex of degree 𝑛𝑛 − 1, 
it follows that a star 𝑆𝑆_𝑛𝑛 is a spanning tree of 
𝐺𝐺. From Proposition 4, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑆𝑆𝑛𝑛) = 𝑛𝑛 − 2 >
𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). ∎ 
 
Proposition 24. Let 𝐺𝐺 be a graph other than 
a tree on 𝑛𝑛 vertices, 𝑛𝑛 ≥ 3, and suppose 
𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺) > 1. If 𝐺𝐺 contains a Hamiltonian 
path, then there exists a spanning tree 𝑇𝑇 of 
𝐺𝐺 such that 
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) < 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓. Since 𝐺𝐺 contains a Hamiltonian path, 
it follows that a path 𝑃𝑃𝑛𝑛 is a spanning tree of 
𝐺𝐺. From Proposition 2, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑃𝑃𝑛𝑛) = 1 <
𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). ∎ 
 
Proposition 25. Let 𝐺𝐺 be a graph on 𝑛𝑛 
vertices, 𝑛𝑛 ≥ 2, and suppose 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺) = 𝑛𝑛 − 2, 
then for all spanning trees 𝑇𝑇 of 𝐺𝐺,  
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇)  ≤ 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓. From Proposition 10, for all spanning 
trees 𝑇𝑇 of 𝐺𝐺, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) is at most 𝑛𝑛 − 2. The 
result follows.∎ 
 
Proposition 26. Let 𝐺𝐺 be a graph on 𝑛𝑛 
vertices, 𝑛𝑛 ≥ 7, and suppose 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺) = 𝑛𝑛 − 3, 
then for all spanning trees 𝑇𝑇 of 𝐺𝐺,  
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇)  ≠ 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓. This follows directly from Proposition 
8.∎ 
 
     In a rooted tree, a vertex 𝑣𝑣 is a child of 
vertex 𝑤𝑤 if 𝑣𝑣 immediately succeeds 𝑤𝑤 on the 
path from the root to 𝑣𝑣. Vertex 𝑣𝑣 is a child of 
𝑤𝑤 if and only if 𝑤𝑤 is the parent of 𝑣𝑣. Strongly 
binary trees are a special class of rooted 
trees in which the root has either degree 0 or 
2. All other vertices have either degree 1 or 
3. From Greenfield (2011), the fixing number 
of any strongly binary tree 𝑇𝑇 is either 1 or 2. 
This gives us the following proposition. 
 
Proposition 27. Let 𝐺𝐺 be a graph on 𝑛𝑛 
vertices, 𝑛𝑛 ≥ 7, and suppose 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺) ≥ 2. If a 
strongly binary tree 𝑇𝑇 is a spanning tree of 
𝐺𝐺,  
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇)  ≤ 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). 
 
Proposition 27. Let 𝐺𝐺 be a graph on 𝑛𝑛 
vertices, 𝑛𝑛 ≥ 7, and suppose 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺) = 𝑛𝑛 − 4. 
If 𝑇𝑇 is a rooted spanning tree of 𝐺𝐺 where each 
child is of degree at most 2 and there exists 
a child with a parent other than the root,   
 

𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇)  ≤ 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓. If the parent of the pendant vertex is 
the root, this pendant vertex is of depth 1. 
Other pendant vertices would have depth 
greater than 1. Let 𝑛𝑛𝑖𝑖 be the number of 
pendant vertices of 𝑇𝑇 of depth 𝑗𝑗 > 0. 
Necessarily, 𝑛𝑛𝑖𝑖 − 1 vertices must be fixed. If 
there are 𝑘𝑘 different depths, then all the 
pendant vertices in each depth must be fixed 
except one. Hence, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) = ∑ 𝑛𝑛𝑖𝑖

𝑘𝑘
𝑖𝑖=1 − 𝑘𝑘.

If the pendant vertices are all of depth 1 and 
there is one pendant vertex of depth 2,  
𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) = ∑ 𝑛𝑛𝑖𝑖

2
𝑖𝑖=1 − 2 = 𝑛𝑛 − 2 − 2 = 𝑛𝑛 − 4. In 

this case, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) =  𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺). 
 
It is easy to see that if there is a depth 
greater than 2, 𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) <  𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺).∎ 
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CONCLUSION AND 
RECOMMENDATION 

 
The results on the fixing number of the 
spanning trees of special classes of graphs 
showed that the fixing number of a subgraph 
of a graph may be less than, equal to, or 
greater than the fixing number of the graph. 
In the previous section, the authors specified 
some conditions when the fixing number of 
the spanning tree of a graph is an upper 
bound or a lower bound of the fixing number 
of the graph. 
 
The authors recommend further study on 
the relationship of the fixing numbers of the 
spanning trees of a graph 𝐺𝐺 and 
𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑓𝑓𝑖𝑖 𝑒𝑒𝑛𝑛𝑡𝑡 𝑖𝑖𝑓𝑓𝑠𝑠𝑔𝑔𝑠𝑠𝑒𝑒. It is 
also recommended that an application of this 
study to networks be investigated. 
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