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Abstract

Let 𝑋𝑋 denote the vertex set of the Shrikhande graph. Fix 𝑥𝑥 𝑥 𝑥𝑥. Associated with 𝑥𝑥
is the Terwilliger algebra 𝑇𝑇 𝑇 𝑇𝑇 𝑇𝑇𝑇𝑇 of the Shrikhande graph, a semisimple subalgebra
of Mat𝑋𝑋(ℂ). There exists a subalgebra 𝑄𝑄 𝑄 𝑄𝑄𝑄𝑄𝑄𝑄 of 𝑇𝑇 that is generated by the lower­
ing, flat, and raising matrices in 𝑇𝑇 . The algebra 𝑄𝑄 is semisimple and is called the quan­
tum adjacency algebra of the Shrikhande graph. Terwilliger & Zitnik (2019) investigated
how 𝑄𝑄 and 𝑇𝑇 are related for arbitrary distance­regular graphs using the notion of quasi­
isomorphism between irreducible 𝑇𝑇 ­modules. Using their results, together with descrip­
tion of the irreducible 𝑇𝑇 ­modules of the Shrikhande graph by Tanabe (1997), we show in
this paper that for the Shrikhande graph, we have 𝑄𝑄 𝑄 𝑄𝑄 .

Keywords: Terwilliger algebra, quantum adjacency algebra, Shrikhande graph,
distance­regular graph

The Terwilliger algebra or subconstituent
algebra was first presented by Terwilliger
(1992). This algebra is a finite­dimensional,
semisimple matrix ℂ­algebra which is non­
commutative in general. Since its introduc­
tion (Terwilliger, 1992, 1993a, 1993b), the
Terwilliger algebra has been a rich area of re­
search in the study of algebraic structures of
graphs (e.g., see Gao et al., 2014; Gao et al.,
2015; Go, 2002). The said algebra is also uti­
lized to explore several association schemes
(e.g., Caughman et al., 2005; Levstein et al.,
2006; Morales, 2016; Tanabe, 1997)..

On the other hand, the quantumadjacency
algebra was introduced by Hora & Obata
(2007). This algebra was used to study quan­
tum probability. The relationship of the Ter­
williger algebra and quantum adjacency al­

gebra of graphs was studied by Terwilliger &
Zitnik (2019). According to Terwilliger & Zit­
nik (2019), the two algebras are the same in
the case of Hamming graphs but are different
in the case of bipartite dual­polar graphs.

In this paper, we aim at finding the rela­
tionship of the Terwilliger algebra and quan­
tum adjacency algebra in the case of the
Shrikhande graph. To be able to describe
our results, we first recall some preliminary
concepts. For more background information,
refer to the papers by Bannai & Ito (1984),
Brouwer et. al. (1989), Martin & Tanaka
(2009), and Terwilliger (1992).

Let 𝑋𝑋 be an arbitrary nonempty finite set.
Denote by Mat𝑋𝑋(ℂ) the ℂ­algebra of |𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋
matrices with entries in ℂ whose rows and



32 VOLUME 13 (2020)MANILA JOURNAL OF SCIENCE

columns are indexed by𝑋𝑋. The ℂ­vector space
of column vectors whose coordinates are in­
dexed by 𝑋𝑋 is denoted by 𝑉𝑉 𝑉 𝑉𝑋𝑋. Observe
that Mat𝑋𝑋(ℂ) acts on 𝑉𝑉 by left multiplica­
tion. The vector space 𝑉𝑉 is called the standard
module. For all 𝑣𝑣𝑣 𝑣𝑣 𝑣 𝑣𝑣 , endow 𝑉𝑉 with the
Hermitian inner product ⟨𝑣𝑣𝑣 𝑣𝑣𝑣 𝑣 𝑣𝑣𝑡𝑡𝑢̄𝑢 where 𝑣𝑣𝑡𝑡

denotes the transpose of 𝑣𝑣 and 𝑢̄𝑢 denotes the
complex conjugate of 𝑢𝑢. For each 𝑥𝑥 𝑥𝑥𝑥 , we
associate a unique vector ̂𝑥𝑥 in 𝑉𝑉 that has an
entry 1 in the 𝑥𝑥­coordinate and entries 0 in all
other coordinates. Observe that { ̂𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑥
is an orthonormal basis for 𝑉𝑉 .

Let 𝐺𝐺 𝐺𝐺𝐺𝐺𝐺  𝐺𝐺𝐺 denote a finite, undirected,
simple connected graph with vertex set 𝑋𝑋 and
edge set𝑅𝑅. The distance from 𝑥𝑥 to 𝑦𝑦 written as
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  for all 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    is the length of a short­
est path from 𝑥𝑥 to 𝑦𝑦. The diameter 𝐷𝐷 of 𝐺𝐺 is
the scalar

𝐷𝐷 𝐷 max{𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕      𝜕

If for all integers ℎ, 𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖 and for
all 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    with 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕   , the number

𝑝𝑝ℎ
𝑖𝑖𝑖𝑖 = ∣{𝑧𝑧 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧    𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧    𝑧𝑧𝑧𝑧𝑧𝑧  𝑧𝑧

is independent of 𝑥𝑥 and 𝑦𝑦, then 𝐺𝐺 is said to be
a distance­regular graph. The integers 𝑝𝑝ℎ

𝑖𝑖𝑖𝑖 are
called the intersection numbers for 𝐺𝐺. We ob­
serve that if one of ℎ, 𝑖𝑖𝑖 𝑖𝑖 is greater than the
sum of the other two, then 𝑝𝑝ℎ

𝑖𝑖𝑖𝑖 =0 . Also,
𝑝𝑝ℎ

𝑖𝑖𝑖𝑖 = 𝑝𝑝ℎ
𝑗𝑗𝑗𝑗. We abbreviate the following:

𝑏𝑏𝑖𝑖 ∶= 𝑝𝑝𝑖𝑖
1𝑖𝑖𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖

𝑐𝑐𝑖𝑖 ∶= 𝑝𝑝𝑖𝑖
1𝑖𝑖𝑖𝑖 (1≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖

For convenience, we set 𝑐𝑐0 ∶=0  and 𝑏𝑏𝐷𝐷 ∶=0 .
From here on, we assume that 𝐺𝐺 is a distance­
regular graph with diameter 𝐷𝐷 𝐷 𝐷.

We recall the Bose–Mesner algebra of 𝐺𝐺.
For each integer 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖, let 𝐴𝐴𝑖𝑖 denote
the matrix in Mat𝑋𝑋(ℂ) with (𝑥𝑥𝑥𝑥𝑥𝑥 ­entry given
by

(𝐴𝐴𝑖𝑖)𝑥𝑥𝑥𝑥 = { 1 if 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  
0 if 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  𝜕 𝜕𝜕𝜕 (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  

The matrices 𝐴𝐴𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖 and 𝐴𝐴1 are called
the distance matrices and the adjacency ma­
trix of 𝐺𝐺, respectively. For simplicity, we de­
note 𝐴𝐴1 by 𝐴𝐴. We observe the following

𝐷𝐷
∑
𝑖𝑖𝑖𝑖

𝐴𝐴𝑖𝑖 = 𝐽𝐽𝐽

𝐴𝐴0 = 𝐼𝐼𝐼
𝐴𝐴𝑡𝑡

𝑖𝑖 = 𝐴𝐴𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖
𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖

𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗 =
𝐷𝐷

∑
ℎ=0

𝑝𝑝ℎ
𝑖𝑖𝑖𝑖𝐴𝐴ℎ (0≤  𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖

where 𝐼𝐼 and 𝐽𝐽 are the identity and the all­ones
matrices in Mat𝑋𝑋(ℂ), respectively. Because
𝑝𝑝ℎ

𝑖𝑖𝑖𝑖 = 𝑝𝑝ℎ
𝑗𝑗𝑗𝑗, it follows that 𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗 = 𝐴𝐴𝑗𝑗𝐴𝐴𝑖𝑖. We note

that {𝐴𝐴𝑖𝑖}𝐷𝐷
𝑖𝑖𝑖𝑖 is linearly independent and forms

a basis for the commutative subalgebra 𝑀𝑀 of
Mat𝑋𝑋(ℂ) known as the Bose–Mesner algebra
of 𝐺𝐺. The adjacency matrix 𝐴𝐴 generates 𝑀𝑀 .
Moreover,𝑀𝑀 has a second basis𝐸𝐸𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖
such that

𝐷𝐷
∑
𝑖𝑖𝑖𝑖

𝐸𝐸𝑖𝑖 = 𝐼𝐼𝐼

𝐸𝐸0 = |𝑋𝑋𝑋−1𝐽𝐽𝐽
𝐸𝐸𝑡𝑡

𝑖𝑖 = 𝐸𝐸𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖
𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖

𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖 (0≤  𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖
The matrices 𝐸𝐸0, 𝐸𝐸1, … , 𝐸𝐸𝐷𝐷 are called the
primitive idempotents of 𝐺𝐺. Because
{𝐸𝐸0, 𝐸𝐸1, … , 𝐸𝐸𝐷𝐷} forms a basis for 𝑀𝑀 , there
exist complex scalars 𝜃𝜃0, 𝜃𝜃1, … , 𝜃𝜃𝐷𝐷 such that

𝐴𝐴 𝐴
𝐷𝐷

∑
𝑖𝑖𝑖𝑖

𝜃𝜃𝑖𝑖𝐸𝐸𝑖𝑖.

Note that 𝐴𝐴𝐴𝐴𝑖𝑖 = 𝐸𝐸𝑖𝑖𝐴𝐴 𝐴𝐴𝐴 𝑖𝑖𝐸𝐸𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖
and the scalars {𝜃𝜃0, 𝜃𝜃1, … , 𝜃𝜃𝐷𝐷} are real. As 𝐴𝐴
generates 𝑀𝑀 , {𝜃𝜃0, 𝜃𝜃1, … , 𝜃𝜃𝐷𝐷} are pairwise dis­
tinct. The details of the assertions above can
be found in the paper by Bannai & Ito (1984).
We call 𝜃𝜃𝑖𝑖 the eigenvalue of𝐺𝐺 associated to the
matrix 𝐸𝐸𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖. The standard module
𝑉𝑉 decomposes into

𝑉𝑉 𝑉
𝐷𝐷

∑
𝑖𝑖𝑖𝑖

𝐸𝐸𝑖𝑖𝑉𝑉 (orthogonal direct sum).
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For each integer 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖, the space 𝐸𝐸𝑖𝑖𝑉𝑉
is the eigenspace of 𝐴𝐴 associated with eigen­
value 𝜃𝜃𝑖𝑖.

We recall the notion of 𝑄𝑄­polynomial prop­
erty. Let ∘ denote entrywise multiplication in
Mat𝑋𝑋(ℂ). Because 𝐴𝐴𝑖𝑖 ∘ 𝐴𝐴𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖 for all in­
tegers 𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖, the Bose–Mesner al­
gebra 𝑀𝑀 is closed under ∘. Hence, there exist
complex scalars 𝑞𝑞ℎ

𝑖𝑖𝑖𝑖 (0≤  ℎ, 𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖 such that

𝐸𝐸𝑖𝑖 ∘ 𝐸𝐸𝑗𝑗 = |𝑋𝑋𝑋−1
𝐷𝐷

∑
ℎ=0

𝑞𝑞ℎ
𝑖𝑖𝑖𝑖𝐸𝐸ℎ (0≤  𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖.

Note that the scalars 𝑞𝑞ℎ
𝑖𝑖𝑖𝑖 are real and nonneg­

ative for 0≤  𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖 (Brouwer et al., 1989).
We say that 𝐺𝐺 is 𝑄𝑄­polynomial (with respect
to a given ordering 𝐸𝐸0, 𝐸𝐸1, … , 𝐸𝐸𝐷𝐷) whenever
for all distinct integers ℎ,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗       ,
𝑞𝑞ℎ

1𝑗𝑗 = 0 if and only if |ℎ − 𝑗𝑗𝑗 𝑗 𝑗.

For the rest of the section, we assume 𝐺𝐺 is
𝑄𝑄­polynomial with respect to a given ordering
𝐸𝐸0, 𝐸𝐸1, … , 𝐸𝐸𝐷𝐷 of primitive idempotents. We
recall the dual Bose–Mesner algebra of 𝐺𝐺. Fix
a vertex 𝑥𝑥 𝑥 𝑥𝑥 and call it base vertex. For
each integer 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖, let 𝐸𝐸∗

𝑖𝑖 = 𝐸𝐸∗
𝑖𝑖 (𝑥𝑥𝑥

denote the diagonal matrix in Mat𝑋𝑋(ℂ) with
(𝑦𝑦𝑦 𝑦𝑦𝑦­entry given by

(𝐸𝐸∗
𝑖𝑖 )𝑦𝑦𝑦𝑦 = { 1 if 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  

0 if 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕    (𝑦𝑦 𝑦𝑦𝑦𝑦 𝑦

Thematrices𝐸𝐸∗
0, 𝐸𝐸∗

1, … , 𝐸𝐸∗
𝐷𝐷 are called the dual

primitive idempotents of 𝐺𝐺 with respect to the
base vertex 𝑥𝑥. For convenience, we define
𝐸𝐸∗

𝑖𝑖 = 0 for any integer 𝑖𝑖 𝑖𝑖𝑖 𝑖 𝑖 or 𝑖𝑖 𝑖 𝑖𝑖𝑖. Fur­
thermore,

𝐷𝐷
∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖 = 𝐼𝐼𝐼

𝐸𝐸∗𝑡𝑡
𝑖𝑖 = 𝐸𝐸∗

𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖
𝐸𝐸∗

𝑖𝑖 = 𝐸𝐸∗
𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖 𝐸𝐸∗

𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖𝐸𝐸∗
𝑖𝑖 (0≤  𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖

The set {𝐸𝐸∗
𝑖𝑖 }𝐷𝐷

𝑖𝑖𝑖𝑖 is linearly independent and
forms a basis for a commutative subalgebra
𝑀𝑀∗ = 𝑀𝑀∗(𝑥𝑥𝑥 of Mat𝑋𝑋(ℂ) known as the dual
Bose–Mesner algebra of 𝐺𝐺 with respect to the
base vertex 𝑥𝑥. For each integer 0≤  𝑖𝑖 𝑖 𝑖𝑖,

let 𝐴𝐴∗
𝑖𝑖 = 𝐴𝐴∗

𝑖𝑖(𝑥𝑥𝑥 denote the diagonal matrix in
Mat𝑋𝑋(ℂ) with (𝑦𝑦𝑦 𝑦𝑦𝑦­entry given by

(𝐴𝐴∗
𝑖𝑖)𝑦𝑦𝑦𝑦 = |𝑋𝑋𝑋𝑋𝑋𝑋𝑖𝑖)𝑥𝑥𝑥𝑥 (𝑦𝑦 𝑦𝑦𝑦𝑦 .

The set {𝐴𝐴∗
𝑖𝑖}𝐷𝐷

𝑖𝑖𝑖𝑖 forms a second basis for 𝑀𝑀∗

(Terwilliger, 1992). Moreover,

𝐷𝐷
∑
𝑖𝑖𝑖𝑖

𝐴𝐴∗
𝑖𝑖 = |𝑋𝑋𝑋𝑋𝑋∗

0,

𝐴𝐴∗
0 = 𝐼𝐼𝐼

𝐴𝐴∗𝑡𝑡
𝑖𝑖 = 𝐴𝐴∗

𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖
𝐴𝐴∗

𝑖𝑖 = 𝐴𝐴∗
𝑖𝑖 (0≤  𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖

The matrices 𝐴𝐴∗
0, 𝐴𝐴∗

1, … , 𝐴𝐴∗
𝐷𝐷 and 𝐴𝐴∗

1 are called
the dual distancematrices and dual adjacency
matrix of 𝐺𝐺 with respect to the base vertex 𝑥𝑥,
respectively. For simplicity, we denote 𝐴𝐴∗

1 by
𝐴𝐴∗. The matrix 𝐴𝐴∗ generates 𝑀𝑀∗ (Terwilliger,
1992; Lemma 3.11).

We now recall the Terwilliger algebra of𝐺𝐺.
Let 𝑇𝑇 𝑇 𝑇𝑇 𝑇𝑇𝑇𝑇 be the subalgebra of Mat𝑋𝑋(ℂ)
that is generated by 𝑀𝑀 and 𝑀𝑀∗. We call 𝑇𝑇 the
Terwilliger algebra of 𝐺𝐺 with respect to the
base vertex 𝑥𝑥. As 𝑀𝑀 is generated by 𝐴𝐴 and 𝑀𝑀∗

is generated by {𝐸𝐸∗
𝑖𝑖 }𝐷𝐷

𝑖𝑖𝑖𝑖, 𝑇𝑇 is generated by 𝐴𝐴
and {𝐸𝐸∗

𝑖𝑖 }𝐷𝐷
𝑖𝑖𝑖𝑖.

We recall the notion of 𝑇𝑇 ­modules. Let 𝑊𝑊
denote a subspace of the standard module 𝑉𝑉 .
For each 𝐵𝐵 𝐵 Mat𝑋𝑋(ℂ), we define

𝐵𝐵𝐵𝐵𝐵𝐵  𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵 𝐵𝐵𝐵𝐵  𝐵 𝐵𝐵𝐵

If 𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵 for all 𝐵𝐵 𝐵𝐵𝐵  then we say that 𝑊𝑊
is a 𝑇𝑇 ­module. Moreover, if 𝑊𝑊 𝑊𝑊  and 𝑊𝑊 con­
tains no other 𝑇𝑇 ­modules other than 0 and 𝑊𝑊
then 𝑊𝑊 is said to be an irreducible 𝑇𝑇 ­module.
We note that if 𝑊𝑊 is a 𝑇𝑇 ­module, then its or­
thogonal complement 𝑊𝑊 ⟂ given by

𝑊𝑊 ⟂ = {𝑣𝑣 𝑣𝑣𝑣𝑣   𝑣𝑣𝑣𝑣𝑣𝑣 𝑣 𝑣𝑣  for every 𝑤𝑤𝑤𝑤𝑤𝑤 

is also a 𝑇𝑇 ­module. In particular, if 𝑊𝑊 is a 𝑇𝑇 ­
module that contains the 𝑇𝑇 ­module 𝑊𝑊 ′, then
the subspace (𝑊𝑊 ′)⟂∩𝑊𝑊 is also a 𝑇𝑇 ­module and
we have

𝑊𝑊 𝑊 𝑊𝑊 ′ ⊕ ((𝑊𝑊 ′)⟂ ∩ 𝑊𝑊𝑊 𝑊
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Accordingly, any nonzero 𝑇𝑇 ­module (e.g., the
standard module 𝑉𝑉 ) is an orthogonal direct
sum of irreducible 𝑇𝑇 ­modules.

Now, let 𝑊𝑊 be an irreducible 𝑇𝑇 ­module.
Then, 𝑊𝑊 decomposes into

𝑊𝑊 𝑊
𝐷𝐷

∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖 𝑊𝑊 (orthogonal direct sum).

Define 𝑊𝑊𝑠𝑠 = {𝑖𝑖 𝑖 𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖∗
𝑖𝑖 𝑊𝑊 𝑊 𝑊𝑊. We

call the scalars |𝑊𝑊𝑠𝑠| − 1 and min (𝑊𝑊𝑠𝑠) the di­
ameter of 𝑊𝑊 and endpoint of 𝑊𝑊 , respectively.
Now, define 𝑊𝑊𝑠𝑠′ = {𝑖𝑖 𝑖 𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑊𝑊 𝑊 𝑊𝑊.
We call the scalars |𝑊𝑊𝑠𝑠′|−1 and min (𝑊𝑊𝑠𝑠′) the
dual­diameter of 𝑊𝑊 and dual­endpoint of 𝑊𝑊 ,
respectively.

Let 𝑊𝑊 and 𝑊𝑊 ′ denote 𝑇𝑇 ­modules. By a 𝑇𝑇 ­
module isomorphism from 𝑊𝑊 to 𝑊𝑊 ′, we mean
a vector space isomorphism 𝜎𝜎 𝜎𝜎𝜎  𝜎 𝜎𝜎 ′ such
that

(𝜎𝜎𝜎𝜎 𝜎 𝜎𝜎𝜎𝜎𝜎𝜎𝜎 𝜎𝜎

for all 𝐵𝐵 𝐵 𝐵𝐵 and all 𝑤𝑤𝑤𝑤𝑤   . If such an iso­
morphism exists, then 𝑊𝑊 and 𝑊𝑊 ′ are said to
be isomorphic 𝑇𝑇 ­modules.

We recall a subalgebra of the Terwilliger
algebra known as the quantum adjacency al­
gebra. To describe this algebra, we define the
matrices 𝐿𝐿 𝐿 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐹𝐹 𝐹 𝐹𝐹𝐹𝐹𝐹𝐹, and 𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅
by

𝐿𝐿 𝐿
𝐷𝐷

∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴∗

𝑖𝑖 , 𝐹𝐹 𝐹
𝐷𝐷

∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖 𝐴𝐴𝐴𝐴∗

𝑖𝑖 ,

𝑅𝑅 𝑅
𝐷𝐷𝐷𝐷
∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴∗

𝑖𝑖 .

We refer to 𝐿𝐿, 𝐹𝐹 , and 𝑅𝑅 as the lowering ma­
trix, flat matrix, and raising matrix, respec­
tively. We observe that 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿      because
matrices 𝐴𝐴 and {𝐸𝐸∗

𝑖𝑖 }𝐷𝐷
𝑖𝑖𝑖𝑖 are generators of 𝑇𝑇 .

Let 𝑄𝑄 𝑄 𝑄𝑄𝑄𝑄𝑄𝑄 be the subalgebra of 𝑇𝑇 that
is generated by 𝐿𝐿, 𝐹𝐹 , and 𝑅𝑅. We call 𝑄𝑄 the
quantum adjacency algebra of 𝐺𝐺 with respect
to the base vertex 𝑥𝑥. Because 𝐸𝐸∗

𝑗𝑗𝐴𝐴𝐴𝐴∗
𝑘𝑘 =0  if

|𝑗𝑗 𝑗 𝑗𝑗𝑗 𝑗 𝑗, it follows that
𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

= (
𝐷𝐷

∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖 )𝐴𝐴𝐴

𝐷𝐷
∑
𝑗𝑗𝑗𝑗

𝐸𝐸∗
𝑗𝑗)

=
𝐷𝐷

∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴∗

𝑖𝑖 +
𝐷𝐷

∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖 𝐴𝐴𝐴𝐴∗

𝑖𝑖

+
𝐷𝐷𝐷𝐷
∑
𝑖𝑖𝑖𝑖

𝐸𝐸∗
𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴∗

𝑖𝑖 .

Therefore,
𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴      (1)

Equation (1) is called the quantum decompo­
sition of the adjacency matrix 𝐴𝐴 with respect
to the base vertex 𝑥𝑥. We note that 𝑀𝑀 is prop­
erly contained in 𝑄𝑄 as 𝑀𝑀 is generated by 𝐴𝐴
and 𝐴𝐴 𝐴𝐴𝐴 . Moreover, we observe that

𝐿𝐿 = 𝐿𝐿, 𝐹𝐹 = 𝐹𝐹 , 𝑅𝑅 = 𝑅𝑅,
𝐹𝐹 𝑡𝑡 = 𝐹𝐹 , 𝑅𝑅𝑡𝑡 = 𝐿𝐿,

𝐿𝐿𝐿𝐿∗
𝑖𝑖 𝑉𝑉 𝑉 𝑉𝑉∗

𝑖𝑖𝑖𝑖𝑉𝑉 , 𝐹𝐹𝐹𝐹∗
𝑖𝑖 𝑉𝑉 𝑉 𝑉𝑉∗

𝑖𝑖 𝑉𝑉 ,
𝑅𝑅𝑅𝑅∗

𝑖𝑖 𝑉𝑉 𝑉 𝑉𝑉∗
𝑖𝑖𝑖𝑖𝑉𝑉 .

We define 𝑄𝑄­modules, irreducible 𝑄𝑄­modules,
and 𝑄𝑄­module isomorphism as analogous to
that of 𝑇𝑇 ­modules, irreducible 𝑇𝑇 ­modules, and
𝑇𝑇 ­module isomorphism. Observe that every
𝑇𝑇 ­module turns into a 𝑄𝑄­module by restrict­
ing the action of 𝑇𝑇 to 𝑄𝑄.

It is interesting to see if there exists a
pair of non­isomorphic irreducible 𝑇𝑇 ­modules
that are isomorphic irreducible 𝑄𝑄­modules.
We show such a pair exists in the case of
the Shrikhande graph. The discussion is or­
ganized as follows: In Section 2, we review
some important concepts and results concern­
ing irreducible 𝑇𝑇 ­modules and 𝑄𝑄­modules. In
Section 3, we recall some properties of the
Shrikhande graph and associated irreducible
𝑇𝑇 ­modules. In Section 4, we prove the main
result of this paper. In Section 5, we discuss
further directions for research.

1 Irreducible 𝑇𝑇 ­modules and
𝑄𝑄­modules

As mentioned before, every 𝑇𝑇 ­module turns
into a 𝑄𝑄­module by restricting the action
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of 𝑇𝑇 to 𝑄𝑄. Thus, every pair of isomorphic
𝑇𝑇 ­modules must be a pair of isomorphic 𝑄𝑄­
modules. However, the converse is not true in
general. Terwilliger & Zitnik (2019) consid­
ered arbitrary distance­regular graphs and
gave a necessary and sufficient condition for a
pair of non­isomorphic irreducible 𝑇𝑇 ­modules
to be isomorphic irreducible 𝑄𝑄­modules. In
this section, we review the results of Ter­
williger & Zitnik (2019).

Throughout the section, we have the fol­
lowing assumptions: Let 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺 𝐺𝐺𝐺 denote a
distance­regular graph with diameter 𝐷𝐷 and
adjacency matrix 𝐴𝐴. Let 𝑉𝑉 denote the stan­
dard module. For a fixed vertex 𝑥𝑥 𝑥 𝑥𝑥, write
𝑇𝑇 𝑇 𝑇𝑇 𝑇𝑇𝑇𝑇 and 𝐸𝐸∗

𝑖𝑖 = 𝐸𝐸∗
𝑖𝑖 (𝑥𝑥𝑥𝑥 𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑥.

Proposition 1.1 (Terwilliger & Zitnik, 2019;
Proposition 6.3)
Let 𝑊𝑊 𝑊 𝑊𝑊 denote an irreducible 𝑇𝑇 ­module.
Then, 𝑊𝑊 is an irreducible 𝑄𝑄­module.

Definition 1.1 (Terwilliger & Zitnik, 2019;
Definitions 8.1 and 8.3)
Let 𝑊𝑊 and 𝑊𝑊 ′ denote irreducible 𝑇𝑇 ­modules
with endpoints 𝜇𝜇 and 𝜇𝜇′, respectively. Let
𝜏𝜏 𝜏𝜏𝜏 ′ − 𝜇𝜇. By a quasi­isomorphism of 𝑇𝑇 ­
modules from 𝑊𝑊 to 𝑊𝑊 ′, we mean a ℂ­linear
bijection 𝜎𝜎 𝜎 𝜎𝜎 𝜎 𝜎𝜎 ′ such that for all 𝑤𝑤 𝑤𝑤𝑤
and all 𝑖𝑖𝑖  𝑖,

(𝜎𝜎𝜎𝜎 𝜎 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 
(𝜎𝜎𝜎𝜎 𝜎 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 
(𝜎𝜎𝜎𝜎𝜎𝜎𝜎  𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 

(𝜎𝜎𝜎𝜎∗
𝑖𝑖 − 𝐸𝐸∗

𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝜎𝜎𝜎  𝜎

If a quasi­isomorphism from 𝑊𝑊 to 𝑊𝑊 ′ exists,
then we say 𝑊𝑊 and 𝑊𝑊 ′ are quasi­isomorphic
irreducible 𝑇𝑇 ­modules.

It turns out that a pair of quasi­isomorphic
irreducible 𝑇𝑇 ­modules constitutes a pair of
isomorphic irreducible 𝑄𝑄­modules. However,
some quasi­isomorphic irreducible 𝑇𝑇 ­modules
are actually isomorphic 𝑇𝑇 ­modules. The
proposition below gives a necessary and suf­
ficient condition for a pair of non­isomorphic
irreducible 𝑇𝑇 ­modules to be a pair of isomor­
phic irreducible 𝑄𝑄­modules.

Proposition 1.2 (Terwilliger & Zitnik, 2019;
Lemma 8.4 and Proposition 8.6)
Let 𝑊𝑊 and 𝑊𝑊 ′ denote irreducible 𝑇𝑇 ­modules
with endpoints 𝜇𝜇 and 𝜇𝜇′, respectively. Then
for a ℂ­linear map 𝜎𝜎 𝜎 𝜎𝜎 𝜎 𝜎𝜎 ′, we have the
following:

(i) Assume 𝜇𝜇 𝜇 𝜇𝜇′.
Then 𝜎𝜎 is a quasi­isomorphism of 𝑇𝑇 ­
modules from 𝑊𝑊 to 𝑊𝑊 ′ if and only if 𝜎𝜎
is an isomorphism of 𝑇𝑇 ­modules from 𝑊𝑊
to 𝑊𝑊 ′.

(ii) Assume 𝜇𝜇 𝜇 𝜇𝜇′.
Then 𝜎𝜎 is a quasi­isomorphism of 𝑇𝑇 ­
modules from 𝑊𝑊 to 𝑊𝑊 ′ if and only if 𝜎𝜎
is an isomorphism of 𝑄𝑄­modules from 𝑊𝑊
to 𝑊𝑊 ′.

We end this section with the proposition
below. With this result, it suffices to show
existence of a pair of quasi­isomorphic irre­
ducible 𝑇𝑇 ­modules with different endpoints to
prove that 𝑄𝑄 is a proper subalgebra of 𝑇𝑇 .

Proposition 1.3 (Terwilliger & Zitnik, 2019;
Theorem 9.1)
The following (i)–(iv) are equivalent:

(i) 𝑄𝑄 𝑄𝑄𝑄  ;

(ii) 𝑄𝑄 is properly contained in 𝑇𝑇 ;

(iii) there exists a pair of non­isomorphic ir­
reducible 𝑇𝑇 ­modules that are isomorphic
as 𝑄𝑄­modules;

(iv) there exists a pair of quasi­isomorphic ir­
reducible 𝑇𝑇 ­modules that have different
endpoints.

2 Shrikhande Graph and its
Irreducible 𝑇𝑇 ­modules

We now focus on a certain 𝑄𝑄­polynomial
distance­regular graph known as the
Shrikhande graph. In this section, we recall
some important concepts that are related to
the Shrikhande graph and we mention some
of its algebraic properties.
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Consider the set 𝑋𝑋 of all cyclic permuta­
tions of the codewords 000000, 110000, 010111,
and 011011. We define an adjacency relation
on 𝑋𝑋 by assigning 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎 are adjacent if
and only if 𝑎𝑎 and 𝑏𝑏 differ in exactly two co­
ordinates. The resulting graph is called the
Shrikhande graph 𝑆𝑆. Note that 𝑆𝑆 has 16 ver­
tices and each vertex is adjacent to six other
vertices. It can be verified that 𝑆𝑆 is distance­
regular with diameter 𝐷𝐷 𝐷 𝐷 and has inter­
section numbers

𝑏𝑏𝑖𝑖 = 6 − 3𝑖𝑖𝑖
𝑐𝑐𝑖𝑖 = 𝑖𝑖𝑖

for each integer 0 ≤ 𝑖𝑖 𝑖𝑖 . The graph 𝑆𝑆 be­
longs to the family of distance­regular graphs
with classical parameters (see Brouwer et
al., 1989 for definition). Because distance­
regular graphs with classical parameters are
𝑄𝑄­polynomial (see Brouwer et al., 1989), it
follows that 𝑆𝑆 is a 𝑄𝑄­polynomial distance­
regular graph.

We now recall the irreducible 𝑇𝑇 ­modules for
the Shrikhande graph 𝑆𝑆, which can be found
in Tanabe’s (1997) paper.

Proposition 2.1 (Tanabe, 1997; Proposition
1)
Let 𝑆𝑆 denote the Shrikhande graph with adja­
cency matrix 𝐴𝐴. For a fixed vertex 𝑥𝑥 of 𝑆𝑆, write
𝑇𝑇 𝑇 𝑇𝑇 𝑇𝑇𝑇𝑇 and 𝐸𝐸∗

𝑖𝑖 = 𝐸𝐸∗
𝑖𝑖 (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥     . Then

the standard module ℂ16 is isomorphic to a di­
rect sum of the irreducible 𝑇𝑇 ­modules 𝑈𝑈0, 𝑈𝑈1,
𝑈𝑈2, 𝑈𝑈3, 𝑈𝑈4, and 𝑈𝑈5. In particular,

ℂ16 ≅ 𝑈𝑈0 ⊕ 𝑈𝑈⊕2
1 ⊕ 𝑈𝑈⊕2

2 ⊕ 𝑈𝑈3 ⊕ 𝑈𝑈4 ⊕ 𝑈𝑈⊕3
5 .

The irreducible 𝑇𝑇 ­modules 𝑈𝑈0, 𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3, 𝑈𝑈4,
and 𝑈𝑈5 are described as follows:

• 𝑈𝑈0 has a basis {a0,a1,a2} such that a𝑖𝑖 is
in 𝐸𝐸∗

𝑖𝑖 ℂ16 for each 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    and

𝐴𝐴a0 = 0a0 + a1 + 0a2,
𝐴𝐴a1 = 6a0 + 2a1 + 2a2,
𝐴𝐴a2 = 0a0 + 3a1 + 4a2.

• 𝑈𝑈1 has a basis {b1,b2} such that b𝑖𝑖 is in
𝐸𝐸∗

𝑖𝑖 ℂ16 for each 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   and

𝐴𝐴b1 = −b1 + b2,
𝐴𝐴b2 = 3b1 + b2.

• 𝑈𝑈2 has a basis {c1, c2} such that c𝑖𝑖 is in
𝐸𝐸∗

𝑖𝑖 ℂ16 for each 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   and

𝐴𝐴c1 = c1 + 3c2,
𝐴𝐴c2 = c1 − c2.

• 𝑈𝑈3 has a basis {d1} such that d1 ∈ 𝐸𝐸∗
1ℂ16

and
𝐴𝐴d1 = −2d1.

• 𝑈𝑈4 has a basis {e2} such that e2 ∈ 𝐸𝐸∗
2ℂ16

and
𝐴𝐴e2 =2 e2.

• 𝑈𝑈5 has a basis {f2} such that f2 ∈ 𝐸𝐸∗
2ℂ16

and
𝐴𝐴f2 = −2f2.

The set {𝑈𝑈0, 𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3, 𝑈𝑈4, 𝑈𝑈5} forms a
complete set of pairwise non­isomorphic irre­
ducible 𝑇𝑇 ­modules on 𝑉𝑉 . As 𝑇𝑇 is semisimple
and ℂ is algebraically closed, we have

dim 𝑇𝑇 𝑇 𝑇dim 𝑈𝑈0)2 + (dim 𝑈𝑈1)2 + (dim 𝑈𝑈2)2

+ (dim 𝑈𝑈3)2 + (dim 𝑈𝑈4)2 + (dim 𝑈𝑈5)2

= 9 + 4 + 4 + 1 + 1 + 1
=2 0

by Artin–Wedderburn Theorem on finite­
dimensional semisimple algebras over alge­
braically closed fields (see Pierce, 1982 for de­
tails).

3 Main Result
For the rest of the paper, we make the
following assumptions: Let 𝑆𝑆 denote the
Shrikhande graph with adjacency matrix 𝐴𝐴.
Let 𝑀𝑀 denote the Bose–Mesner algebra of 𝑆𝑆.
For a fixed vertex 𝑥𝑥 of 𝑆𝑆, write 𝑇𝑇 𝑇 𝑇𝑇 𝑇𝑇𝑇𝑇 and
𝐸𝐸∗

𝑖𝑖 = 𝐸𝐸∗
𝑖𝑖 (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥     . In addition, we write

𝐿𝐿 𝐿 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐹𝐹 𝐹 𝐹𝐹𝐹𝐹𝐹𝐹, 𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅, and 𝑄𝑄 𝑄 𝑄𝑄𝑄𝑄𝑄𝑄.
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Theorem 3.1 With reference to the assump­
tions above, we have 𝑄𝑄 𝑄 𝑄𝑄 .

Proof. It suffices to show there exists a pair of
quasi­isomorphic irreducible 𝑇𝑇 ­modules with
unequal endpoints. Let 𝑈𝑈3 and 𝑈𝑈5 be as in
Proposition 2.1. Observe that 𝑈𝑈3 and 𝑈𝑈5 have
endpoints 1 and 2, respectively.

Now define the ℂ­linear map 𝜎𝜎 𝜎 𝜎𝜎3 → 𝑈𝑈5
such that 𝜎𝜎𝜎d1) = f2. By Proposition 2.1, the
vectors d1 and f2 are eigenvectors for 𝐴𝐴 asso­
ciated with eigenvalue −2. As d1 ∈ 𝐸𝐸∗

1ℂ16 and
f2 ∈ 𝐸𝐸∗

2ℂ16, the matrices 𝐿𝐿 and 𝑅𝑅 act as 0 on
each of the vectors d1 and f2. On the other
hand, 𝐹𝐹 acts as the scalar −2 on each of the
vectors d1 and f2 because 𝐴𝐴 𝐴𝐴𝐴  𝐴 𝐴𝐴 𝐴 𝐴𝐴.
Hence, we have

(𝜎𝜎𝜎𝜎𝜎𝜎𝜎  𝜎𝜎𝜎 𝜎𝜎d1 = 0,
(𝜎𝜎𝜎𝜎𝜎𝜎𝜎  𝜎𝜎𝜎 𝜎𝜎d1 = 0,
(𝜎𝜎𝜎𝜎𝜎𝜎𝜎  𝜎𝜎𝜎 𝜎𝜎d1 = 0

for every 𝑐𝑐𝑐𝑐  . Next, we show that the equa­
tion (𝜎𝜎𝜎𝜎∗

𝑖𝑖 − 𝐸𝐸∗
𝑖𝑖𝑖𝑖𝜎𝜎𝜎 𝜎𝜎d1 = 0 holds for every in­

teger 𝑖𝑖. Recall that 𝐸𝐸∗
𝑖𝑖 = 0 for all integers

𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖  𝑖. Observe that

(𝜎𝜎𝜎𝜎∗
−1 − 𝐸𝐸∗

0𝜎𝜎𝜎 𝜎𝜎d1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗
−1d1) − 𝐸𝐸∗

0f2) = 0,
(𝜎𝜎𝜎𝜎∗

0 − 𝐸𝐸∗
1𝜎𝜎𝜎 𝜎𝜎d1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗

0d1) − 𝐸𝐸∗
1f2) = 0,

(𝜎𝜎𝜎𝜎∗
1 − 𝐸𝐸∗

2𝜎𝜎𝜎 𝜎𝜎d1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗
1d1) − 𝐸𝐸∗

2f2) = 0,
(𝜎𝜎𝜎𝜎∗

2 − 𝐸𝐸∗
3𝜎𝜎𝜎 𝜎𝜎d1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗

2d1) − 𝐸𝐸∗
3f2) = 0.

This completes the proof that 𝜎𝜎 is a quasi­
isomorphism from 𝑈𝑈3 to 𝑈𝑈5. We have 𝑄𝑄 𝑄 𝑄𝑄
by Proposition 1.3. �

Because 𝑄𝑄 𝑄 𝑄𝑄 , we have the following im­
mediate consequence of Theorem 3.1.

Corollary 3.1 With reference to assumptions
above, write 𝐴𝐴∗ = 𝐴𝐴∗(𝑥𝑥𝑥 for the dual­adjacency
matrix of 𝑆𝑆 and write 𝑀𝑀∗ = 𝑀𝑀∗(𝑥𝑥𝑥 for the
dual­Bose–Mesner algebra of 𝑆𝑆. Then we have
the following:

(i) dim 𝑄𝑄 𝑄 dim 𝑇𝑇 ;

(ii) 𝑀𝑀 𝑀 𝑀𝑀 𝑀 𝑀𝑀 ;

(iii) 𝐴𝐴∗ ∉ 𝑄𝑄.

Proof. The first statement is obvious. To
prove the second statement, recall that 𝑀𝑀 is
generated by 𝐴𝐴, and 𝐴𝐴 𝐴𝐴𝐴 . As 𝐴𝐴 is sym­
metric but 𝑅𝑅 is not, it follows that 𝑀𝑀 is prop­
erly contained in 𝑄𝑄. To prove the last state­
ment, recall that 𝑀𝑀∗ is generated by 𝐴𝐴∗. Con­
sequently, 𝑇𝑇 is generated by both 𝐴𝐴 and 𝐴𝐴∗. If
𝐴𝐴∗ ∈ 𝑄𝑄, then 𝑄𝑄 𝑄 𝑄𝑄 which contradicts Theo­
rem 3.1. �

We end this section with a corollary on the
dimension of 𝑄𝑄.

Corollary 3.2 With reference to the assump­
tion above, we have the following:

(i) The set {𝑈𝑈0, 𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3, 𝑈𝑈4} forms a com­
plete set of pairwise non­isomorphic irre­
ducible 𝑄𝑄­modules in the standard mod­
ule ℂ16;

(ii) dim 𝑄𝑄 𝑄𝑄 𝑄;
where 𝑈𝑈0, 𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3, and 𝑈𝑈4 are the irreducible
𝑇𝑇 ­modules described in Proposition 2.1.

Proof. By Proposition 1.1, the irreducible 𝑇𝑇 ­
modules 𝑈𝑈0, 𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3, 𝑈𝑈4, and 𝑈𝑈5 are also ir­
reducible 𝑄𝑄­modules. It was shown in the
proof of Theorem 3.1 that 𝑈𝑈3 and 𝑈𝑈5 are quasi­
isomorphic irreducible 𝑇𝑇 ­modules that have
different endpoints. By Proposition 1.3, the
pair 𝑈𝑈3 and 𝑈𝑈5 are isomorphic irreducible 𝑄𝑄­
modules.

Observe that 𝑈𝑈3 and 𝑈𝑈4 are non­
isomorphic 𝑄𝑄­modules because 𝐴𝐴 𝐴𝐴𝐴  acts dif­
ferently on 𝑈𝑈3 and 𝑈𝑈4. Next, note that 𝑈𝑈1 and
𝑈𝑈2 are non­isomorphic irreducible 𝑇𝑇 ­modules
with the same endpoint. Suppose 𝑈𝑈1 and 𝑈𝑈2
are quasi­isomorphic. By Proposition 1.2, 𝑈𝑈1
and 𝑈𝑈2 are isomorphic as 𝑇𝑇 ­modules. This
results in a contradiction. Thus, 𝑈𝑈1 and 𝑈𝑈2
are not quasi­isomorphic. By Proposition 1.2,
𝑈𝑈1 and 𝑈𝑈2 are non­isomorphic irreducible 𝑄𝑄­
modules.

With the argument above and differ­
ences in dimension, we have shown that
{𝑈𝑈0, 𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3, 𝑈𝑈4} is a complete set of pair­
wise non­isomorphic irreducible 𝑄𝑄­modules.
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As 𝑄𝑄 is semisimple and the field ℂ is alge­
braically closed, we have

dim 𝑄𝑄 𝑄 𝑄dim 𝑈𝑈0)2 + (dim 𝑈𝑈1)2 + (dim 𝑈𝑈2)2

+ (dim 𝑈𝑈3)2 + (dim, 𝑈𝑈4)2

= 9 + 4 + 4 + 1 + 1,
= 19,

by Artin–Wedderburn Theorem on finite­
dimensional semisimple algebras over alge­
braically closed fields (see Pierce, 1982 for de­
tails). �

4 Further Directions
By a Lie algebra over ℂ, we mean a vector
space 𝔏𝔏 over ℂ with a Lie bracket operation
[ , ] ∶ 𝔏𝔏 𝔏 𝔏𝔏 𝔏 𝔏𝔏 such that

i) [ , ] is bilinear,

ii) [𝑥𝑥𝑥 𝑥𝑥𝑥𝑥  𝑥 for all 𝑥𝑥 𝑥 𝑥𝑥, and

iii) [𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥  𝑥 for all
𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥.

The last condition is called the Jacobi identity.
One of the classical Lie algebras is 𝔰𝔰𝔰𝔰2(ℂ). It
is a three­dimensional vector space with basis
{𝑒𝑒𝑒 𝑒𝑒𝑒 𝑒𝑒 satisfying the relations

[𝑒𝑒𝑒 𝑒𝑒𝑒𝑒  𝑒𝑒𝑒 𝑒𝑒 𝑒𝑒𝑒𝑒  𝑒𝑒𝑒𝑒𝑒 and [ℎ, 𝑒𝑒𝑒𝑒  𝑒𝑒𝑒𝑒

Let 𝔏𝔏 and 𝔏𝔏′ denote Lie algebras over ℂ. By
a Lie algebra homomorphism, we mean a vec­
tor space homomorphism 𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙   ′ such that
𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙   𝜙𝜙𝜙𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙𝜙 for all 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥.

An associative unital algebra 𝔄𝔄 over ℂ
(e.g., Terwilliger algebra 𝑇𝑇 or quantum ad­
jacency algebra 𝑄𝑄) may be viewed as a Lie
algebra by defining [𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢 for all
𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢 . We say that a Lie algebra 𝔏𝔏 is em­
bedded into an associative unital algebra 𝔄𝔄
if there exists a nontrivial Lie algebra homo­
morphism 𝜙𝜙 𝜙𝜙𝜙𝜙𝜙𝜙   .

As a next step, we explore possible embed­
dings of classical Lie algebras such as 𝔰𝔰𝔰𝔰2(ℂ)
into 𝑄𝑄.
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