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ABSTRACT

A spanning maximal planar subgraph (SMPS) T of a simple, finite, undirected graph G is a
spanning subgraph of G that is also a maximal planar graph. In this paper, we introduce some

methods of constructing complete 4-partite graphs K

with SMPS. We utilize these methods

w,x,y,z

to the SMPS problem for complete tripartite graphs to generate complete 4-partite graphs with
SMPS and provide some relationships between the cardinalities of the two graphs.

Keywords: spanning maximal planar subgraph, complete 4-partite graph

INTRODUCTION

A graph is said to be a planar graph if there
is a drawing of the graph on the plane such
that there are no edge crossings. Otherwise,
the graph is non-planar. For a given graph
G=(V,E), the aim of a graph planarization
problem is to seek a subset FcE with
minimum cardinality such that the subgraph
of Hof G with edge set E\F is a planar graph.
In other words, it is required to remove a
minimum number of edges from G and obtain
a planar graph. Such a problem belongs
to the class of NP-hard problems (Liu &

Geldmacher, 1977). This means that it is
difficult to develop an algorithm efficient
enough to solve the problem as the number of
vertices of G increases. A special planar graph
with the property that the addition of any
edge joining two non-adjacent vertices results
in a non-planar graph is called a maximal
planar graph. A related problem to the graph
planarization problem is to determine if it
1s possible to remove a minimum number
of edges from G, resulting to a maximal
planar graph T. Necessarily, the graph T is
a spanning subgraph of G since none of the
vertices were removed. It is because of these
characteristics that we will refer to the graph
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T as a spanning maximal planar subgraph or
an “SMPS” of G, and finding this subgraph,
if it exists, will be referred to as the SMPS
problem. The SMPS problem was tackled by
Gervacio et al. (2017) for complete tripartite
graphs, where such graphs with an order
greater than 6 were considered and it was
identified which of these graphs have an
SMPS. Now consider the complete 4-partite
graph K, ,,,. Figure 1.1 shows the existence
of an SMPS for X, ,,,, by deleting six edges
and drawing the obtained graph such that
all regions are emphasized to be triangular
regions. The labels 1,2,3, and 4 refer to a
vertex’s membership to the partite sets V,, V,,
V,, and V,, respectively.

In this paper, we discuss some results
to the SMPS problem for complete 4-partite
graphs. Some methods of generating larger
SMPS for the case of complete 4-partite graphs
are presented here. These methods are applied
to complete tripartite graphs K | , with SMPS,
resulting to SMPS of complete 4-partite graphs
K

) ‘e
wLx,Y,Z

MATERIALS AND METHODS

We discuss in this section the required
concepts in graph planarity to go through the
outputs of this paper. These concepts include
some properties of general planar graphs
and maximal planar graphs. All graphs

throughout the text are generated with the
aid of GraphTeX 2.0 (Gervacio, 2008). We
first define the graph under study formally,
the complete k-partite graph.

Definition 2.1. A k-partite graph G=(V,E)
1s any graph with the characteristic that V
may be partitioned into £ non-empty subsets
V,,V,,...,V, such that there exists no edge
uvek for which w,veV,, where 1<i<k. If
for every vertex ueV; and veV,, 1<i<j<k,
there exists an edge uv ek, then G is called a
complete-partite graph.

The usual notation for a complete k-partite
graphisK, . ., where V;|=t;. The subscripts
t,,t,,...,t, may also be arranged in ascending
order, without loss of generality. This is
assumed for convenience whenever the
structure of this graph is studied. For &£ = 2
and k = 3, there are special names: complete
bipartite and complete tripartite, respectively.
The standard method of drawing k-partite
graphs is by grouping the vertices according
to their membership to the partite sets. In the
discussions, we will use the integers 1,2,3, and
4 to denote the membership of a vertex to the
partite sets V,, V,, V, and V,, respectively.

When a planar graph is drawn on the
plane without any edge-crossings, the plane
1s divided into non-overlapping, open regions.
This includes an infinite exterior region.

Figure 1.1. An SMPS of K, , , ,
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A well-known property of a planar graph was
presented by Euler (1754), and his proof was
later corrected by Legendre (1794). It states
the relationship between the order, size, and
the number of regions of any planar graph:

Theorem 2.2. If G is a connected planar graph
with order n and size m and contains r regions,
thenn—-—m+r=2.

If a planar graph G has the property that
anon-planar graph G'is obtained from adding
an edge to join two non-adjacent vertices of
G, then G is referred to as a maximal planar
graph. Maximal planar graphs can be drawn in
such a way that the exterior region is bounded
by a large triangle. Any region of a planar
graph, in fact, can be the exterior region. This
becomes evident if the graph is drawn on the
sphere. Two drawings of a maximal planar
graph are shown in the next figure. Figure
2.1 (b) will be the desired way of drawing a
maximal planar graph, as it emphasizes the
property that each region is triangular.

The statement below is a corollary to
Theorem 2.2. It relates the number of edges

and number of vertices in a maximal planar
graph. It will be useful in establishing
relationships between the cardinalities of
complete tripartite graphs and complete
4-partite graphs with SMPS:

Corollary 2.3. If G is a maximal planar graph
with order n and size m, then m=3n- 6.

A polyhedron is a 3-dimensional object
whose boundary is a set of polygonal plane
surfaces. Among the well-known polyhedra
are the so-called five platonic solids: the
tetrahedron, cube, octahedron, dodecahedron,
and icosahedron. We will be interested only
with the platonic solids whose boundary
1s composed of triangular surfaces—the
tetrahedron, octahedron, and icosahedron.
When each of these polyhedra is projected
onto a plane, a map equivalent to a maximal
planar graph is produced. The projections of
these polyhedra are shown in Figure 2.2.

It is clear that the projections of a
tetrahedron, octahedron, and icosahedron onto
the plane are maximal planar graphs. These

Figure 2.1. Two drawings of a maximal planar graph.

(a) (b)

(©)

Figure 2.2. A (a) tetrahedron, (b)octahedron, and (c)icosahedron projected onto a plane.
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graphs may be utilized to construct larger
maximal planar graphs and will be discussed
in the main sections.

RESULTS AND DISCUSSION

Generating Spanning Maximal Planar
Subgraphs

This section discusses a few methods of
constructing larger SMPS, given an SMPS
of some complete 4-partite graph K,y In
particular, these methods discuss how to
add vertices and consequently add edges to
preserve maximal planarity and obtain an
SMPS of a complete 4-partite graph with
higher order than the given SMPS. In each
result, we show one case only, as the rest of
the cases are treated in an analogous manner
using the same modification process.

The first result deals with modifying an
edge of an SMPS of a complete 4-partite graph
by inserting two vertices. This modification
was introduced in the paper of Gervacio et al.
(2017) for complete tripartite graphs.

contains an SMPS,

KW+1,x+1,y,z’
, contains

Proposition 3.1. If K,
then each of K K

w+l,x,y,z+1° w+l,x,y+1,z°
Kw,x+1,y,z+1 ’ K

and K
an SMPS.

w,x+1,y+1,z° w,x,y+1,z+

Proof. Suppose that T is an SMPS of K, .
Consider two adjacent regions of T induced by

[

b

the sets {a, b, c} and {a, b, d} with ab as the
common edge. We show one case: if a € V, and
b e V,. Hence, c,d € V,U V,. Modify Tinto a new
graph T’ by inserting new vertices e € V, and f
€ V, on the edge ab, thus deleting ab. Add the
following edges to preserve maximal planarity:
ae, ef, bf, ce, cf, de, df. Figure 3.1 illustrates how
this modification of T, is carried out.

Clearly, T' is a maximal planar graph.
Further, T"is an SMPS of K, , ., , , Since one
vertex was added each to the partite sets V,
and V,. The other required graphs, K
Kw,x+1,y+1,z’ and K
an SMPS by considering the other possible
inclusions of a and b to V, V,, V,, and V,.

It was mentioned in the preliminaries
that among the five platonic solids, the
tetrahedron, octahedron, and icosahedron
are in fact maximal planar graphs when
they are projected onto a plane. The next
results demonstrate how to modify a region
by utilizing a tetrahedron, octahedron, or
icosahedron and obtain an SMPS for a larger
complete 4-partite graph.

w,x,y+1,z+1?

are shown to have

w,x,y+1,z+1?

Proposition 3.2. If K, contains an
SMPS, then the following graphs also contain
an SMPS: K K K and
K

w+l,x,y,z° w,x+1,y,z w,x,y+1,z?

w,x,y+1,z+1°

Proof. Consider a region of induced by a set
of vertices {a, b, d}. We consider the case where
aeV,beVyandc e V,. Let T'be the new graph
obtained by modifying R thru the addition

Figure 3.1. Two adjacent regions of T modified by adding two
vertices to the common edge.
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of a new vertex, d € V,, and attaching this
new vertex to each of the boundary vertices
a, b, and c. Clearly, T' is a maximal planar
graph, since the triangular region R in T is
modified into a tetrahedron in T'. The process
is described in Figure 3.2.

Proposition 3.3. If K, contains an
SMPS, then the following graphs contain an
SMPS: K K K
and K

w+l,x+1,y+1,2° w+1,x+1,y,z+1° w+1,x,y+1,z+1°

w,x+1,y+1,z+1°

Proof. Let The an SMPS of a complete 4-partite
graph X, . ., and consider a region R induced
by the set of vertices {a, b, c} where a € V|,
b € V,, and ¢ € V,. Modify R in the maximal
planar graph T into new graph T’, by adding
three vertices in its interior, say d, e, f, together
with the following edges: ae, af, bd, bf, cd, ce, de,
ef, and df. That is, modify R into an octahedron.
Therefore, the new graph T'is a maximal planar
graph since an octahedron is also a maximal
planar graph. Further, since T'is a 4-partite

3

graph, the vertices , and must each belong to
a partite set. One such possible configuration
is given by d € V,, e € V,, and f € V,. Hence,
this configuration generates an SMPS T,
of the complete 4-partite graph K., .1 .1,
Refer to Figure 3.3 for an illustration of this
modification.

The other possible configurations for
the inclusions of d, e and f to V,, V,, V,, and
V,lead to the other required graphs with
SMPS.In particular, the configurations
WDdeV,eeV, feV,G)deV,ecV, feV,and

(i) deV,eeV, fe V,imply that K
Kw,x+1,y+1,z+l’ and K

contain an SMPS. The other cases where the
set {a, b, c} has other configurations as to
membership to the four partite sets are treated
analogously, with the same modification
process.

The following lemma is required in proving
the next result. It is proven by first showing
that for the nine interior vertices of an

w+1l,x+1,y,z+1°

wilxye1ze10 TESPectively,

3

Figure 3.2. Modifying a region of T into a tetrahedron.

[ )

Figure 3.3. Modifying a region of T'into an octahedron.
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icosahedron, the partite sets V,, V,, and V; can
have at most two vertices each. Afterwards,
it can be shown by contradiction that none
among these three partite sets can have a
cardinality of 1 when counting is restricted to
the nine interior vertices. It can therefore be
concluded that for the nine interior vertices,
three must be in V,.

Lemma 3.4. If G is an icosahedron whose
exterior vertices belong to partite sets V,,
V,, and V;, then its nine interior vertices are
partitioned such that two vertices are in each
of V,, V, and V, and three vertices are in the
partite set V,.

Proposition 3.5. If G contains an SMPS,
then the following graphs contain an SMPS:

Kw+2,x+2,y+2,z+3’ w+2,x+2,y+3,z+2° Kw+2,x+3,y+2,z+2’ and
Kw+3,x+2,y+2,z+2'
Proof. Let K,, ., be an SMPS of a complete

4-partite graph. We observe a region R in T that
1s induced by the vertices a, € V;, a, € V, and
a, € V,. Modify T into a new graph T' having
the following vertex and edge sets:

V(T")
= V(T) U {by,c1,by,C3,b3,C3,0a4, by, . }E(T")

E(T")
= E(T) U{ajay,a,by,a,cq,a5C4,a;b3,
Ay by, azby, azby, azay, byiby, bybs, bscy,
Caby, baay, ayby, b1y, bycy, b3cy, bscy, Chcy,
bycy,byc3, a3, bic3,C3C7, €21, C1C3}

that is, add the vertices b,, c;, to V,, where
1 <i <3, and add the vertices a,, b,, ¢, to V,,
then add the edges enumerated above to form
an icosahedron. The figure below shows the
resulting icosahedron after this modification.

Thus, T'is a maximal planar graph, since
the triangular region R in T was modified into
an icosahedron, which i1s a maximal planar
graph. Furthermore, the nine interior vertices
belonging to the set {b,, c;, b,, c,, bs, ¢3, b,, c,}
are partitioned such that two vertices are in
each of V,, V,, and V, and three vertices are
in V,, from Lemma 3.4. Hence, it follows that
the new graph T'is an SMPS of K,

The other required graphs K, ., .., .3,.
Kiyi2xi3ys2,20280AK,, 5.5 000, pare all shown to
have SMPS by considering the other possible
configurations of the exterior vertices a,, a,,
and a, as to their inclusions to the four partite
sets and using an analogous argumentation.

w+2,x+2,y+2,z+3°

Generating Larger SMPS From
Complete Tripartite Graphs

The methods of adding vertices presented
in the previous section could be utilized to
produce other results for the SMPS problem
of complete 4-partite graphs. In Gervacio
et al. (2017), it was shown that there are
complete tripartite graphs that contain SMPS.
In particular, for complete tripartite graphs
with order at most 9, the graphs K, , ;, K, , ,,
K,;3 and K, ,, are the only ones having an

a

Figure 3.3. The resulting icosahedron in T".
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SMPS. In this section, we present a corollary
stating that an SMPS of a complete 4-partite
graph K, can also be constructed from an

SMPS of a complete tripartite graph with the
application of the previous results.

Corollary 4.1. Suppose that the complete
tripartite graph contains an SMPS. Then, the
following complete 4-partite graphs contain
an SMPS:

@) K
(i) K
(iii) K

W,X,Y,z
W2z, X+2y,Y+Z3,2,

w+22,x+22,y+22,32

where z,+ z,+ z,+ z,= 3z,z,> 1 and z< 2w +
2x + 2y — 4.

Proof. Suppose that K, is a complete
tripartite graph with an SMPS T. Since Tis a
maximal planar graph, from Theorem 2.2, the
equation n —m + r = 2 1s satisfied by T, where
n, m, and r are the order, size, and number,
respectively, of regions in T. By Corollary 2.3,
we have

r=m-n+2=Bn-6)-n+2=2n-4

so that r = 2w + 2x + 2y — 4, since the order
of Tis n = w + x + y. This number of regions
is considered for each of the graphs in (1), (i1),
and (iii).

(1) Let {a, b, c} be a set of vertices in T
that induce a region. Since a,b and c¢
are adjacent to one another, assume
without loss of generality that a € V,,
b € V,, and c € V;. Modify T into a new
graph U with the following vertex and
edge sets: V(U) = V(T) U {d} and E(U) =
E(T) U {ad bd,cd}, where the new vertex d
belongs to a new partite set V,. Thus, Uis
a 4-partite graph. Further, it is a maximal
planar graph since the triangular region
induced by {a, b, c} was modified into a
tetrahedron. In particular, U is an SMPS

of K, ,,1. Now note that T contains
r=2w + 2x + 2y — 4 regions, and each of
these regions are induced by vertices in
V,, V,, and V. Hence, the process of adding
a vertex to a region as in Proposition 3.2
can be performed at most 2w + 2x + 2y — 4
times. Therefore, an SMPS, say T’ of the
complete 4-partite graph K can be

w,x,y,z

generated from T if z< 2w+ 2x + 2y — 4.

(i1) Consider a region induced by {v,, v,, v;} in
T. Let the vertices a, b, and ¢ be added to
this region as in the process described in
the proof of Proposition 3.3. That is, let U
be the 4-partite graph obtained from T
using the following vertex and edge sets:

VU)=v(T)u{ab,c}
E(U) = E(T) U {av,, bvy, bv,, cv,,
avs, cvsz,ab, bc, ac}

Since the vertices a, b, and ¢ are adjacent
to each other in U and U is a 4-partite
graph, there is exactly one vertex in {a, b, c},
say a, belonging to a new partite set V,.
Thus, b and ¢ belong to V, U V,, V, U V,, or
V, U V,. Hence, Uis an SMPS of K., .1 .1,
Ky yi11, OF Kopip11, respectively.
Similar as in (i), this process of adding
three vertices to a region may be performed
at most z = 2w + 2x + 2y — 4 times.
Moreover, since three vertices are added
to the interior of each of the z regions, an
SMPS T, of the complete 4-partite graph
oftheformK,,, .., .., , maybe generated
from T where z,+ z,+ z,+ z,= 3z, z, > 1,
and z< 2w+ 2x + 2y — 4.

(1) We follow the process described in the
proof of Proposition 3.5. Modify the SMPS
T Owa,x,y into a 4-partite graph U, by
adding nine vertices in the interior of a
region induced by {a, b, c} and adding the
necessary edges to form an icosahedron

whose vertices belong to partite sets V,,
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V,,V,, and V,. Since a, b, and c are vertices
in V, U V,U V,, Lemma 3.4 implies that
two vertices were added to each of V,, V,,
and V,, while three vertices were added
to V,. Thus, Uis an SMPS of the complete
4-partite graph K,,,, .., ,.,3 Similar as in
(1) and (i1), this process may be performed
at most z= 2w + 2x + 2y — 4 times. Since
there is only one possible configuration as
to the inclusion of the nine vertices to V,, V,,
V;, and V, in the resulting z icosahedrons,
the complete 4-partite graph K, ., ., .5, 3,
contains an SMPS if z< 2w + 2x + 2y — 4.

CONCLUSION

In this paper, we have shown that given
an SMPS of some complete 4-partite graph,
a larger SMPS may be constructed for a
complete 4-partite graph with higher order.
These methods include inserting two vertices
in an edge of an SMPS T or modifying a
region of T into a tetrahedron, octahedron,
or icosahedron, whose vertices have a correct
configuration following a 4-partite graph.
These modifications may be applied to
complete tripartite graphs to construct SMPS
for the case of complete 4-partite graphs,
which results to relationships between the
cardinalities of these two graphs. Based on
what was shown in this paper, it is clear that
from an SMPS of a complete k-partite graph,
one can construct an SMPS of a complete
g-partite graph, k< g, by a sequence of adding
vertices and edges to preserve maximal
planarity. It would be interesting to find
more relationships between the partite sets
of these graphs, similar to the relationships
found between complete tripartite graphs and
complete 4-partite graphs.
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