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ABSTRACT

A spanning maximal planar subgraph (SMPS) T of a simple, finite, undirected graph G is a 
spanning subgraph of G that is also a maximal planar graph. In this paper, we introduce some 
methods of constructing complete 4-partite graphs , , ,w x y zK  with SMPS. We utilize these methods 
to the SMPS problem for complete tripartite graphs to generate complete 4-partite graphs with 
SMPS and provide some relationships between the cardinalities of the two graphs.
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INTRODUCTION

A graph is said to be a planar graph if there 
is a drawing of the graph on the plane such 
that there are no edge crossings. Otherwise, 
the graph is non-planar. For a given graph 

( ),G V E= , the aim of a graph planarization 
problem is to seek a subset F E⊆  with 
minimum cardinality such that the subgraph 
of H of  G  with edge set E\F is a planar graph. 
In other words, it is required to remove a 
minimum number of edges from G and obtain 
a planar graph. Such a problem belongs 
to the class of NP-hard problems (Liu & 

Geldmacher, 1977). This means that it is 
difficult to develop an algorithm efficient 
enough to solve the problem as the number of 
vertices of G increases. A special planar graph 
with the property that the addition of any 
edge joining two non-adjacent vertices results 
in a non-planar graph is called a maximal 
planar graph. A related problem to the graph 
planarization problem is to determine if it 
is possible to remove a minimum number 
of edges from G, resulting to a maximal 
planar graph T. Necessarily, the graph T is 
a spanning subgraph of G since none of the 
vertices were removed. It is because of these 
characteristics that we will refer to the graph 
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Figure 1.1. An SMPS of 2,2,2,2K

T as a spanning maximal planar subgraph or 
an “SMPS” of G, and finding this subgraph, 
if it exists, will be referred to as the SMPS 
problem. The SMPS problem was tackled by 
Gervacio et al. (2017) for complete tripartite 
graphs, where such graphs with an order 
greater than 6 were considered and it was 
identified which of these graphs have an 
SMPS. Now consider the complete 4-partite 
graph 2,2,2,2K . Figure 1.1 shows the existence 
of an SMPS for 2,2,2,2K , by deleting six edges 
and drawing the obtained graph such that 
all regions are emphasized to be triangular 
regions. The labels 1,2,3, and 4 refer to a 
vertex’s membership to the partite sets V1, V2, 
V3, and V4, respectively.

In this paper, we discuss some results 
to the SMPS problem for complete 4-partite 
graphs. Some methods of generating larger 
SMPS for the case of complete 4-partite graphs 
are presented here. These methods are applied 
to complete tripartite graphs , ,zKx y  with SMPS, 
resulting to SMPS of complete 4-partite graphs 

, , ,w zK ′ ′ ′x y . 

MATERIALS AND METHODS

We discuss in this section the required 
concepts in graph planarity to go through the 
outputs of this paper. These concepts include 
some properties of general planar graphs 
and maximal planar graphs. All graphs 

throughout the text are generated with the 
aid of GraphTeX 2.0 (Gervacio, 2008). We 
first define the graph under study formally, 
the complete k-partite graph. 

Definition 2.1. A k-partite graph ( ),G V E=  
is any graph with the characteristic that V 
may be partitioned into k non-empty subsets 

1 2, , ,V V V… k  such that there exists no edge 
E∈uv for which , V∈ iu v , where 1 i≤ ≤ k. If 

for every vertex V∈ iu  and V∈ jv , 1≤ < ≤i j k, 
there exists an edge E∈uv , then G is called a 
complete-partite graph.

The usual notation for a complete k-partite 
graph is 

1 2, , ,t t tK … k
, where V t=i i . The subscripts 

1 2, , ,t t t… k may also be arranged in ascending 
order, without loss of generality. This is 
assumed for convenience whenever the 
structure of this graph is studied. For k = 2 
and k = 3, there are special names: complete 
bipartite and complete tripartite, respectively. 
The standard method of drawing k-partite 
graphs is by grouping the vertices according 
to their membership to the partite sets. In the 
discussions, we will use the integers 1,2,3, and 
4 to denote the membership of a vertex to the 
partite sets V1, V2, V3, and V4, respectively. 

When a planar graph is drawn on the 
plane without any edge-crossings, the plane 
is divided into non-overlapping, open regions. 
This includes an infinite exterior region.  
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Figure 2.1. Two drawings of a maximal planar graph.

Figure 2.2. A (a) tetrahedron, (b)octahedron, and (c)icosahedron projected onto a plane.

568 

569 

570 
571 
572 
573 
574 

575 
576 
577 
578 
579 

580 
581 
582 
583 
584 
585 

586 

587 
588 
589 

590 
591 

 
 

 

 

 

 

 
 

F

Fig

Figur

F

Figure 2.1. 

(a)   

gure 2.2. Pr
a
 

re 3.1. Two 

FI

Figure 1.1.

(a)        

Two drawin

             (b) 

rojections of
nd (c) icosah

adjacent re
verticesto 

IGURES

 

 
.An SMPS o

                   

ngs of a ma

                   

f a (a) tetrah
hedron onto

gions of  m
the common

of . 

          (b) 

ximal plana

      (c) 

hedron, (b) o
o a plane. 

modified by b
n edge. 

 

 

ar graph. 

 

octahedron,

 
by adding tw

 

wo  

568 

569 

570 
571 
572 
573 
574 

575 
576 
577 
578 
579 

580 
581 
582 
583 
584 
585 

586 

587 
588 
589 

590 
591 

 
 

 

 

 

 

 
 

F

Fig

Figur

F

Figure 2.1. 

(a)   

gure 2.2. Pr
a
 

re 3.1. Two 

FI

Figure 1.1.

(a)        

Two drawin

             (b) 

rojections of
nd (c) icosah

adjacent re
verticesto 

IGURES

 

 
.An SMPS o

                   

ngs of a ma

                   

f a (a) tetrah
hedron onto

gions of  m
the common

of . 

          (b) 

ximal plana

      (c) 

hedron, (b) o
o a plane. 

modified by b
n edge. 

 

 

ar graph. 

 

octahedron,

 
by adding tw

 

wo  

A well-known property of a planar graph was 
presented by Euler (1754), and his proof was 
later corrected by Legendre (1794). It states 
the relationship between the order, size, and 
the number of regions of any planar graph:

Theorem 2.2. If G is a connected planar graph 
with order n and size m and contains r regions, 
then n – m + r = 2.

If a planar graph G has the property that 
a non-planar graph G' is obtained from adding 
an edge to join two non-adjacent vertices of 
G, then G is referred to as a maximal planar 
graph. Maximal planar graphs can be drawn in 
such a way that the exterior region is bounded 
by a large triangle. Any region of a planar 
graph, in fact, can be the exterior region. This 
becomes evident if the graph is drawn on the 
sphere. Two drawings of a maximal planar 
graph are shown in the next figure. Figure 
2.1 (b) will be the desired way of drawing a 
maximal planar graph, as it emphasizes the 
property that each region is triangular. 

The statement below is a corollary to 
Theorem 2.2. It relates the number of edges 

and number of vertices in a maximal planar 
graph. It will be useful in establishing 
relationships between the cardinalities of 
complete tripartite graphs and complete 
4-partite graphs with SMPS:

Corollary 2.3. If G is a maximal planar graph 
with order n and size m, then m = 3n – 6.

A polyhedron is a 3-dimensional object 
whose boundary is a set of polygonal plane 
surfaces. Among the well-known polyhedra 
are the so-called five platonic solids: the 
tetrahedron, cube, octahedron, dodecahedron, 
and icosahedron. We will be interested only 
with the platonic solids whose boundary 
is composed of triangular surfaces—the 
tetrahedron, octahedron, and icosahedron. 
When each of these polyhedra is projected 
onto a plane, a map equivalent to a maximal 
planar graph is produced. The projections of 
these polyhedra are shown in Figure 2.2. 

It is clear that the projections of a 
tetrahedron, octahedron, and icosahedron onto 
the plane are maximal planar graphs. These 
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wo  Figure 3.1. Two adjacent regions of T modified by adding two 
vertices to the common edge.

graphs may be utilized to construct larger 
maximal planar graphs and will be discussed 
in the main sections.

RESULTS AND DISCUSSION

Generating Spanning Maximal Planar 
Subgraphs

This section discusses a few methods of 
constructing larger SMPS, given an SMPS 
of some complete 4-partite graph , , ,w zK x y . In 
particular, these methods discuss how to 
add vertices and consequently add edges to 
preserve maximal planarity and obtain an 
SMPS of a complete 4-partite graph with 
higher order than the given SMPS. In each 
result, we show one case only, as the rest of 
the cases are treated in an analogous manner 
using the same modification process.

The first result deals with modifying an 
edge of an SMPS of a complete 4-partite graph 
by inserting two vertices. This modification 
was introduced in the paper of Gervacio et al. 
(2017) for complete tripartite graphs.

Proposition 3.1. If , , ,w zK x y  contains an SMPS, 
then each of 1, , , 1w zK + +x y , 1, , 1,w zK + +x y , 1, 1, ,w zK + +x y , 

, 1, , 1w zK + +x y , , 1, 1,w zK + +x y , and , , 1, 1w zK + +x y  contains 
an SMPS. 

Proof. Suppose that T is an SMPS of , , ,w zK x y . 
Consider two adjacent regions of T induced by 

the sets {a, b, c} and {a, b, d} with ab as the 
common edge. We show one case: if a ∈ V1 and  
b ∈ V2. Hence, c, d ∈ V3 ⋃ V4. Modify T into a new 
graph T' by inserting new vertices e ∈ V2 and f 
∈ V1 on the edge ab, thus deleting ab. Add the 
following edges to preserve maximal planarity: 
ae, ef, bf, ce, cf, de, df. Figure 3.1 illustrates how 
this modification of T, is carried out. 

Clearly, T' is a maximal planar graph. 
Further, T' is an SMPS of 1, 1, ,w zK + +x y  since one 
vertex was added each to the partite sets V1 
and V2. The other required graphs, , , 1, 1w zK + +x y , 

, 1, 1,w zK + +x y , and , , 1, 1w zK + +x y , are shown to have 
an SMPS by considering the other possible 
inclusions of a and b to V1, V2, V3, and V4. 

It was mentioned in the preliminaries 
that among the five platonic solids, the 
tetrahedron, octahedron, and icosahedron 
are in fact maximal planar graphs when 
they are projected onto a plane. The next 
results demonstrate how to modify a region 
by utilizing a tetrahedron, octahedron, or 
icosahedron and obtain an SMPS for a larger 
complete 4-partite graph.

Proposition 3.2. If , , ,w zK x y  contains an 
SMPS, then the following graphs also contain 
an SMPS: 1, , , 1w zK + +x y , , 1, , 1w zK + +x y , , , 1, 1w zK + +x y , and 

, , 1, 1w zK + +x y .

Proof. Consider a region  of  induced by a set 
of vertices {a, b, d}. We consider the case where  
a ∈ V2, b ∈ V3 and c ∈ V4. Let T' be the new graph 
obtained by modifying R thru the addition 
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of a new vertex, d ∈ V1, and attaching this 
new vertex to each of the boundary vertices 
a, b, and c. Clearly, T' is a maximal planar 
graph, since the triangular region R in T is 
modified into a tetrahedron in T'. The process 
is described in Figure 3.2. 

Proposition 3.3. If , , ,w zK x y  contains an  
SMPS, then the following graphs contain an 
SMPS: , , , 
and .

Proof. Let T be an SMPS of a complete 4-partite 
graph , , ,w zK x y , and consider a region R induced 
by the set of vertices {a, b, c} where a ∈ V1,  
b ∈ V2, and c ∈ V3. Modify R in the maximal 
planar graph T into new graph T', by adding 
three vertices in its interior, say d, e, f, together 
with the following edges: ae, af, bd, bf, cd, ce, de, 
ef, and df. That is, modify R into an octahedron. 
Therefore, the new graph T' is a maximal planar 
graph since an octahedron is also a maximal 
planar graph. Further, since T' is a 4-partite 

graph, the vertices , and  must each belong to 
a partite set. One such possible configuration 
is given by d ∈ V1, e ∈ V2, and f ∈ V3. Hence, 
this configuration generates an SMPS T', 
of the complete 4-partite graph . 
Refer to Figure 3.3 for an illustration of this 
modification.

The other possible configurations for 
the inclusions of d, e and f to V1, V2, V3, and 
V4 lead to the other required graphs with  
SMPS.In particular, the configurations  
(i) d ∈ V1, e ∈ V2, f ∈ V4 (ii) d ∈ V4, e ∈ V2, f ∈ V3  and  
(iii) d ∈ V1, e ∈ V4, f ∈ V3 imply that , 

, and , respectively, 
contain an SMPS. The other cases where the 
set {a, b, c} has other configurations as to 
membership to the four partite sets are treated 
analogously, with the same modification 
process. 

The following lemma is required in proving 
the next result. It is proven by first showing 
that for the nine interior vertices of an 
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icosahedron, the partite sets V1, V2, and V3 can 
have at most two vertices each. Afterwards, 
it can be shown by contradiction that none 
among these three partite sets can have a 
cardinality of 1 when counting is restricted to 
the nine interior vertices. It can therefore be 
concluded that for the nine interior vertices, 
three must be in V4. 

Lemma 3.4. If G is an icosahedron whose 
exterior vertices belong to partite sets V1, 
V2, and V3, then its nine interior vertices are 
partitioned such that two vertices are in each 
of V1, V2  and V3 and three vertices are in the 
partite set V4.

Proposition 3.5. If G contains an SMPS, 
then the following graphs contain an SMPS: 

, , , and 
. 

Proof. Let , , ,w zK x y  be an SMPS of a complete 
4-partite graph. We observe a region R in T that 
is induced by the vertices a1 ∈ V1, a2 ∈ V2  and 
a3 ∈ V3. Modify T into a new graph T' having 
the following vertex and edge sets:

is a 4-partite graph, the vertices �, �, and 287 
� must each belong to a partite set. One 288 
such possible configuration is given 289 
by� ∈ ��, � ∈ ��, and � ∈ ��. Hence, this 290 
configuration generates an SMPS ��, of 291 
the complete 4-partite graph 292 
����,���,���,�. Refer to Figure 3.3 for an 293 
illustration of this modification. 294 
 295 

Figure 3.3. Modifying a region of � 296 
intoan octahedron. 297 

 298 
The other possible configurations for the 299 
membership of �, �,and � to ��, ��, ��, and 300 
�� lead to the other required graphs with 301 
SMPS.Inparticular, the configurations (i) 302 
� ∈ ��, � ∈ ��, � ∈ ��,(ii) � ∈ ��, � ∈ ��, � ∈ ��, 303 
and (iii) � ∈ ��, � ∈ ��, � ∈ �� imply that 304 
����,���,�,���, ��,���,���,���, and 305 
����,�,���,���, respectively, contain an 306 
SMPS.The other cases where the set 307 
{�, �, �} has other configurations as to 308 
membership to the four partite sets are 309 
treated analogously, with the same 310 
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SMPS. In this section, we present a corollary 
stating that an SMPS of a complete 4-partite 
graph , , ,w zK x y  can also be constructed from an 
SMPS of a complete tripartite graph with the 
application of the previous results.

Corollary 4.1. Suppose that the complete 
tripartite graph  contains an SMPS. Then, the 
following complete 4-partite graphs contain 
an SMPS:

  (i) , , ,w zK x y
 (ii) 
(iii) 

where z1+ z2 + z3 + z4 = 3z, z4 ≥ 1 and z ≤ 2w + 
2x + 2y – 4.

Proof. Suppose that , , ,w zK x y  is a complete 
tripartite graph with an SMPS T. Since T is a 
maximal planar graph, from Theorem 2.2, the 
equation n – m + r = 2 is satisfied by T, where 
n, m, and r are the order, size, and number, 
respectively, of regions in T. By Corollary 2.3, 
we have

r = m – n + 2 = (3n – 6) – n + 2 = 2n – 4

so that r = 2w + 2x + 2y – 4, since the order 
of T is n = w + x + y. This number of regions 
is considered for each of the graphs in (i), (ii), 
and (iii).

(i) Let {a, b, c} be a set of vertices in T 
that induce a region. Since a,b and c 
are adjacent to one another, assume 
without loss of generality that a ∈ V1, 
b ∈ V2, and c ∈ V3. Modify T into a new 
graph U with the following vertex and 
edge sets: V(U) = V(T) � {d} and E(U) = 
E(T) � {ad,bd,cd}, where the new vertex d 
belongs to a new partite set V4. Thus, U is 
a 4-partite graph. Further, it is a maximal 
planar graph since the triangular region 
induced by {a, b, c} was modified into a 
tetrahedron. In particular, U is an SMPS 

of . Now note that T contains  
r = 2w + 2x + 2y – 4 regions, and each of 
these regions are induced by vertices in 
V1, V2, and V3. Hence, the process of adding 
a vertex to a region as in Proposition 3.2 
can be performed at most 2w + 2x + 2y – 4 
times. Therefore, an SMPS, say T' of the 
complete 4-partite graph , , ,w zK x y  can be 
generated from T if z ≤ 2w + 2x + 2y – 4.

(ii) Consider a region induced by {v1, v2, v3} in 
T. Let the vertices a, b, and c be added to 
this region as in the process described in 
the proof of Proposition 3.3. That is, let U 
be the 4-partite graph obtained from  T 
using the following vertex and edge sets:
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by �,where �, �, and �arethe order, size, 411 
and number, respectively, of regions in �. 412 
By Corollary 2.3, we have 413 
 414 
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 415 
so that � � �� � �� � �� � �, since the 416 
order of � is � � � � � � �� This number of 417 
regions is considered for each of the 418 
graphs in (i), (ii), and (iii). 419 
 420 

(i) Let {�, �, �} be a set of vertices in � that 421 
induce a region. Since �, �, and � are 422 
adjacent to one another, assume without 423 
loss of generality that � � ��, � � ��, and 424 
� � ��. Modify � into a new graph � with 425 
the following vertex and edge sets: 426 
�(�) � �(�) ∪ {�} and �(�) � �(�) ∪427 
{��, ��, ��}, where the new vertex � 428 
belongs to a new partite set ��. Thus,� is 429 
a 4-partite graph. Further, it is a maximal 430 
planar graph since the triangular region 431 
induced by {�, �, �}was modified into a 432 
tetrahedron. In particular, � is an SMPS 433 
of ��,�,�,�. Now note that � contains 434 
� � �� � �� � �� � � regions, and each of 435 
these regions are induced by vertices in 436 
��, ��, and ��. Hence, the process of 437 
adding a vertex to a region as in 438 
Proposition 3.2 can be performed at most 439 
�� � �� � �� � � times. Therefore, an 440 
SMPS, say �� of the complete 4-partite 441 
graph ��,�,�,�,can be generated from � if 442 
� � �� � �� � �� � �. 443 
 444 
(ii)Consider a region induced by {��, ��, ��} 445 
in �. Let the vertices �, �, and � be added 446 
to this region as in the process described 447 
in the proof of Proposition 3.3. That is, let 448 
� be the 4-partite graph obtained from � 449 
using the following vertex and edge sets: 450 
 451 

�(�) � �(�) ∪ {�, �, �} 
�(�) � �(�) ∪ {���, ���, ���, ���, 

                                 ���, ���, ��, ��, ��} 
 452 
Since the vertices �, �, and � are adjacent 453 
to each other in � and � is a 4-partite 454 
graph, there is exactly one vertex in 455 
{�, �, �}, say �, belonging to a new partite 456 
set ��. Thus, � and � belong to �� ∪ ��, 457 
�� ∪ ��, or �� ∪ ��. Hence,� is an SMPS of 458 
����,���,�,�, ����,�,���,�, or ��,���,���,�, 459 
respectively. Similar as in (i), this process 460 
of adding three vertices to a region may be 461 
performed at most � � �� � �� � �� � � 462 
times. Moreover, since three vertices are 463 
added to the interior of each of the � 464 
regions, an SMPS ��, of the complete 4-465 

 Since the vertices a, b, and c are adjacent 
to each other in U and U is a 4-partite 
graph, there is exactly one vertex in {a, b, c}, 
say a, belonging to a new partite set V4. 
Thus, b and c belong to V1 � V2, V1 � V3, or 
V2 � V3. Hence, U is an SMPS of , 

,  or ,  respectively. 
Similar as in (i), this process of adding 
three vertices to a region may be performed 
at most z = 2w + 2x + 2y – 4 times. 
Moreover, since three vertices are added 
to the interior of each of the z regions, an 
SMPS T', of the complete 4-partite graph 
of the form  may be generated 
from T where z1+ z2 + z3 + z4 = 3z, z4 ≥ 1,  
and z ≤ 2w + 2x + 2y – 4.

(iii) We follow the process described in the 
proof of Proposition 3.5. Modify the SMPS 
T of , , ,w zK x y into a 4-partite graph U, by 
adding nine vertices in the interior of a 
region induced by {a, b, c} and adding the 
necessary edges to form an icosahedron 
whose vertices belong to partite sets V1, 
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V2, V3 , and V4. Since a, b, and c are vertices 
in V1 � V2 � V3, Lemma 3.4 implies that 
two vertices were added to each of V1, V2, 
and V3, while three vertices were added 
to V4. Thus, U is an SMPS of the complete 
4-partite graph . Similar as in 
(i) and (ii), this process may be performed 
at most z = 2w + 2x + 2y – 4 times. Since 
there is only one possible configuration as 
to the inclusion of the nine vertices to V1, V2, 
V3 , and V4 in the resulting z icosahedrons, 
the complete 4-partite graph  
contains an SMPS if z ≤ 2w + 2x + 2y – 4. 

CONCLUSION

In this paper, we have shown that given 
an SMPS of some complete 4-partite graph, 
a larger SMPS may be constructed for a 
complete 4-partite graph with higher order. 
These methods include inserting two vertices 
in an edge of an SMPS T or modifying a 
region of T into a tetrahedron, octahedron, 
or icosahedron, whose vertices have a correct 
configuration following a 4-partite graph. 
These modifications may be applied to 
complete tripartite graphs to construct SMPS 
for the case of complete 4-partite graphs, 
which results to relationships between the 
cardinalities of these two graphs. Based on 
what was shown in this paper, it is clear that 
from an SMPS of a complete k-partite graph, 
one can construct an SMPS of a complete 
q-partite graph, k < q, by a sequence of adding 
vertices and edges to preserve maximal 
planarity. It would be interesting to find 
more relationships between the partite sets 
of these graphs, similar to the relationships 
found between complete tripartite graphs and 
complete 4-partite graphs.
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