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ABSTRACT

The mathematical model called the process-based strategy (or PBS) model  describes a situation 
wherein a particular end goal is obtained by undergoing an n-step process. As this describes some 
practical applications in real-life situations, it is of great interest to focus on other relevant and 
valid scenarios that treat the process as an iterative model. In this research study, we give an 
insightful extension of the results found in the paper “Success Probability of an n-Step Process 
with n Independent Step Probabilities.” More specifically, we extend the results of the paper by 
showing new applications of the PBS model pertaining to the concept of saturations as introduced 
in the paper. We consider various exposure scenarios and introduce the concept of prime agents 
acting as producers of new agents out of the success cases, which in turn also become catalysts 
for the succeeding cycles. In this sense, the PBS model becomes iterative. The interest is shifted 
to determining the number of prime agents that each cycle produces. Also discussed in this 
paper is the consideration of exposure scenarios where attrition is present. Lastly, the concept of 
critical points is also discussed, which examines conditions that determine whether the number 
of prime agents in the iterative PBS model will exponentially increase, remain constant, or be 
reduced to zero. It is perceived that the iterative PBS model can describe real-life situations 
such as multilevel marketing tactics and personnel training and development with the aim of 
using it for practical purpose of optimizing the results of such schemes.
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INTRODUCTION

Representing real-life situations through 
the use of mathematical structures is the very 
essence of mathematical models. Consider, 

for example, multilevel marketing schemes 
or even personnel training and development. 
These situations allow measurement of 
success rates as certain processes are done 
before achieving some goals, and of course, 



with the aim of maximizing product sales and 
people empowerment, these real-life scenarios 
can be modelled. 

In this study, we consider a practical 
representation of situations that aim to 
achieve an end by going through stages 
leading to the final goal. In [1], the process-
based strategy (PBS) model was tackled 
describing a situation wherein a particular 
end goal was obtained by undergoing an 
n-step process. The results of this paper are 
focused on the success probability of the n-step 
process on the assumption that the n-step 
probabilities are independent. As in the case 
of any mathematical model, the solution for 
the PBS is defined in terms of finding values 
for all the step probabilities that will yield 
the maximum probability of success of the 
last step and thus giving an optimal result 
for the end goal. This paper presents results 
pertaining to the concept of saturations and 
considers applications of the PBS model to 
various exposure scenarios.

THE PBS MODEL

Consider an element E (which may be a 
person, a company, or an entity) aiming to 
achieve an intended goal Xn by going through 
n successive steps. E achieves only Xi by going 
through steps 1, 2,…, i successfully while 
failing to go through the rest of the steps 
i + 1,…, n. The probability of successfully 
achieving the ith step Si is denoted by si so that 
the probability of success for the desired end 
output Xn is
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�� =  � ��

�

���
. 

 
It is assumed that the probability of the 
success of the events pertaining to all n steps 
is pairwise independent. The probability that 
achieving the goal will fail on the first step is 
 

�� = 1 �  ��. 
 

 
Figure 1. PBS model. The probability for a 
result ��, where i ≠ 0 or n, is the complement 
of the probability of step ���� times the 
product of the step probabilities from 1 to i. 
Thus, the probability of reaching goal �� is 
represented by 

 
�� = (1 � ����) ∏ ���

��� � � = 1�2��� � � � � 1. 
 

This leads to the formalization of the PBS 
model: 
 
Maximize        �� = ∏ ���

���  
 

Subject to � ≤  ��  ≤ 1    
 

Because the results discussed in [1] are 
useful in understanding the contents of this 
paper, we give a summary of these as a list: 
 

1. The increase in �� as a result of an 
increase in a probability value �� by 
an amount F (with �� +  F ≤ 1) is 
maximized when 

 
�� = ��� ���� ��� � � ���. 

 
2. An increase �� + F resulting to a 

decrease �� − F with i ≠  k produces 
the highest increase in the desired 
output ���� and is achieved when 
�� = min {��� ��� � ��} and 
�� = max {��� ��� � ��}.  
 

It is assumed that the probability of the 
success of the events pertaining to all n steps 
is pairwise independent. The probability that 
achieving the goal will fail on the first step is
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Figure 1. PBS model. The probability for a 
result Xi, where i ≠ 0 or n, is the complement 
of the probability of step Xi+1 times the product 
of the step probabilities from 1 to i. Thus, the 
probability of reaching goal Xi is represented 
by
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3.	 Suppose we can increase and/or 
decrease the probability values of sj by 
certain values such that
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3. Suppose we can increase and/or 
decrease the probability values of �� 
by certain values such that 
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where ����� is now the new success 
probability values. 

 
The new probability of success for 
our desired output ��, which is 
denoted by ����, will have the 
biggest increase if we choose to make 
each �� = �

� . 
 

The above results found in [1] support the 
formulation of the following algorithm that 
aims to maximize the increase in the values 
of �� for situations wherein values of �� are 
increased. 
 
Algorithm 
 
Suppose we can increase ∑ ���

��� = � where 
0 ≤ W ≤ n by an amount F by choosing to 
increase any combination of �� values such 
that 
 

� ����

�

���
= � � � 

 
where 0 ≤ F ≤ n − W. Then the new 
probability of success for our desired output 
��, which will be denoted by ����, will have 
the biggest increase if we choose to follow the 
step-by-step procedure: 
 
Step 1. List the probabilities ��� ��� � �� in 
nondecreasing order, say ��� ��� � ��. Thus,  
 

�� � �� � � � �� and ∑ ���
��� = �. 

 

Step 2.  If ���  � � � � , we let ��� =  ���
�  be 

the new value of ��, for � =  1� �� � � �. 
Otherwise, proceed to Step 3. 
 
Step 3. We have ��� � � � �. We determine 
the largest integer l satisfying  
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Clearly, l exists and 1 � � � �. We update the 
values of ��� ��� � � �� to 
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�  �   � = 1� �� � � �. 
 
On the other hand, for each � �  �, we retain 
the value of ��. 
 
When a success probability is treated as 
functions of a variable t (possibly 
representing time, money, or any quantity of 
resource), then it may be represented by a 
function f satisfying the following properties: 
 

1. ������ �(�) = 1 
2. �(0) = 0 
3. �(�) is monotone and 

nondecreasing, that is, �(�) <
�(�) whenever � � �. 

 
We call any function satisfying all three 
conditions as a success function. Some 
functions tackled in [1] are the following: 
reverse exponential, linear, radical (�(�) =
√�), and Gompertz. 
 
For now, our assumption in this scenario is 
that all elements of that population will be 
subject to the same probability success rate 
of each step in the PBS model. Our overall 
probability success rate in our PBS model is 
given by 
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In the discussions above, we have assumed 
that the n-step process is executed without a 
“doer.” We may think of this doer as a prime 
agent (or a catalyst) producing new agents 
out of the success cases who in turn will also 
become catalysts for the next cycles. In this 
sense, the PBS model becomes iterative. As 
an application of this model, one may think 
about a direct marketing strategy using 
trained channels to deliver goods and services. 
A company may train their prospective agents 
by undergoing a step-based program, and 
if they succeed, they become legit trainers 
themselves. This process, of course, becomes 
more efficient in trying to saturate a target 
population. Thus, in the iterative PBS model, 
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our interest is shifted to determining the 
number of prime agents (also as success 
cases) that each cycle produces. Moreover, 
since the target population is finite, the target 
saturation level (say, C) is achieved in a lesser 
number of cycles on the assumption that the 
effectiveness of the iterative process is not 
diminished. But what happens if attrition in 
present? The discussion below tackles these 
scenarios viewed as an iterative PBS model 
with or without attrition.

Scenario 1: No attrition of prime agents

Suppose there are v prime agents involved 
in an n-step process described by a PBS 
model with overall success probability xn. 
Moreover, let us say that the process targets 
a specific population with each prime agent 
being exposed to N elements of the population 
per cycle. Thus, we initially have v prime 
agents so that by the end of the first cycle, 
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to the n-step process for every cycle. 
Moreover, �� = �

��� describing the probability 
of 350 successful recruitment of sales 
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services. A company may train their 
prospective agents by undergoing a step-
based program, and if they succeed, they 
become legit trainers themselves. This 
process, of course, becomes more efficient in 
trying to saturate a target population. Thus, 
in the iterative PBS model, our interest is 
shifted to determining the number of prime 
agents (also as success cases) that each cycle 
produces. Moreover, since the target 
population is finite, the target saturation 
level (say, C) is achieved in a lesser number 
of cycles on the assumption that the 
effectiveness of the iterative process is not 
diminished. But what happens if attrition in 
present? The discussion below tackles these 
scenarios viewed as an iterative PBS model 
with or without attrition. 
 
Scenario 1: No attrition of prime agents 
 
Suppose there are v prime agents involved 
in an n-step process described by a PBS 
model with overall success probability ��.  
Moreover, let us say that the process targets 
a specific population with each prime agent 
being exposed to N elements of the 
population per cycle. Thus, we initially have 
v prime agents so that by the end of the first 
cycle, ���� new prime agents would have 
been produced so that a total of �(1 + ���) 
prime agents would be ready to catalyze the 
next cycle. By the second cycle, we will now 
have �(1 + ���)��� additional prime 
agents, which gives us �(1 + ���) + �(1 +
���)��� total number of prime agents by 
the second cycle or �(1 + ���)(1 + ���) =
�(1 + ���)�. Continuing this process gives 
us the number of prime agents by the end of 
the Tth cycle. 
 
Proposition 2. The total number of prime 
agents P obtained after the ��� cycle given a 
PBS model with overall success probability of 
��, v initial number of prime agents exposed 
to N elements of the population per cycle is 
given by the formula: 
 

� = �(1 + ���)�. 
 
Example 1. Network marketing is a method 
of selling wherein a company does not rely 
heavily on large-scale or small-scale 
advertising but is very much dependent on 
its sales force. The idea is that the sales 
personnel of a network marketing company 
recruits more sales personnel to the company 
to drive overall profit and sales. Let us say 
we have a network marketing company that 
started during the year 2018 with a sales 
force of only two people. Every sales 
personnel in this company goes out to sell the 
company’s product and recruit more people 
to join the company’s sales force. According 
to the company’s data, every single sales 
personnel of the company is able to try to sell 
to 700 people a year. Also, the chances of 
recruiting a person to join the sales team of 
the company is 1 out of 350 for all sales 
personnel. Suppose that this company has 
such a great track record that it never loses 
any of its recruited sales personnel and will 
continue to do so in the future. How many 
will be the sales force of the company by the 
year 2028? 
 
We can use Proposition 2 for this example 
since the elements of our population, when 
they successfully reach the end goal of our 
PBS model, become prime agents themselves 
(i.e., the people successfully recruited become 
bona fide sales personnel of the company). 
Here, we have v = 2 since this is the total 
number of prime agents that the company 
starts off with. The duration of each cycle is 
a year, and thus, we are taking � = 10 since 
we want to know the total number of prime 
agents by the year 2028. We have N = 700 
referring to the number of elements exposed 
to the n-step process for every cycle. 
Moreover, �� = �

��� describing the probability 
of 350 successful recruitment of sales 
personnel. We have 
 

�(1 + ���)� = 2(1 + 700( 1
350))�� 

. 
Continuing this process gives us the number 
of prime agents by the end of the T th cycle.

Proposition 2. The total number of prime 
agents P obtained after the  cycle given a PBS 
model with overall success probability of xn, v 
initial number of prime agents exposed to N 
elements of the population per cycle is given 
by the formula:
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services. A company may train their 
prospective agents by undergoing a step-
based program, and if they succeed, they 
become legit trainers themselves. This 
process, of course, becomes more efficient in 
trying to saturate a target population. Thus, 
in the iterative PBS model, our interest is 
shifted to determining the number of prime 
agents (also as success cases) that each cycle 
produces. Moreover, since the target 
population is finite, the target saturation 
level (say, C) is achieved in a lesser number 
of cycles on the assumption that the 
effectiveness of the iterative process is not 
diminished. But what happens if attrition in 
present? The discussion below tackles these 
scenarios viewed as an iterative PBS model 
with or without attrition. 
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in an n-step process described by a PBS 
model with overall success probability ��.  
Moreover, let us say that the process targets 
a specific population with each prime agent 
being exposed to N elements of the 
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v prime agents so that by the end of the first 
cycle, ���� new prime agents would have 
been produced so that a total of �(1 + ���) 
prime agents would be ready to catalyze the 
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have �(1 + ���)��� additional prime 
agents, which gives us �(1 + ���) + �(1 +
���)��� total number of prime agents by 
the second cycle or �(1 + ���)(1 + ���) =
�(1 + ���)�. Continuing this process gives 
us the number of prime agents by the end of 
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agents P obtained after the ��� cycle given a 
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��, v initial number of prime agents exposed 
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Example 1. Network marketing is a method 
of selling wherein a company does not rely 
heavily on large-scale or small-scale 
advertising but is very much dependent on 
its sales force. The idea is that the sales 
personnel of a network marketing company 
recruits more sales personnel to the company 
to drive overall profit and sales. Let us say 
we have a network marketing company that 
started during the year 2018 with a sales 
force of only two people. Every sales 
personnel in this company goes out to sell the 
company’s product and recruit more people 
to join the company’s sales force. According 
to the company’s data, every single sales 
personnel of the company is able to try to sell 
to 700 people a year. Also, the chances of 
recruiting a person to join the sales team of 
the company is 1 out of 350 for all sales 
personnel. Suppose that this company has 
such a great track record that it never loses 
any of its recruited sales personnel and will 
continue to do so in the future. How many 
will be the sales force of the company by the 
year 2028? 
 
We can use Proposition 2 for this example 
since the elements of our population, when 
they successfully reach the end goal of our 
PBS model, become prime agents themselves 
(i.e., the people successfully recruited become 
bona fide sales personnel of the company). 
Here, we have v = 2 since this is the total 
number of prime agents that the company 
starts off with. The duration of each cycle is 
a year, and thus, we are taking � = 10 since 
we want to know the total number of prime 
agents by the year 2028. We have N = 700 
referring to the number of elements exposed 
to the n-step process for every cycle. 
Moreover, �� = �
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services. A company may train their 
prospective agents by undergoing a step-
based program, and if they succeed, they 
become legit trainers themselves. This 
process, of course, becomes more efficient in 
trying to saturate a target population. Thus, 
in the iterative PBS model, our interest is 
shifted to determining the number of prime 
agents (also as success cases) that each cycle 
produces. Moreover, since the target 
population is finite, the target saturation 
level (say, C) is achieved in a lesser number 
of cycles on the assumption that the 
effectiveness of the iterative process is not 
diminished. But what happens if attrition in 
present? The discussion below tackles these 
scenarios viewed as an iterative PBS model 
with or without attrition. 
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in an n-step process described by a PBS 
model with overall success probability ��.  
Moreover, let us say that the process targets 
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been produced so that a total of �(1 + ���) 
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next cycle. By the second cycle, we will now 
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���)��� total number of prime agents by 
the second cycle or �(1 + ���)(1 + ���) =
�(1 + ���)�. Continuing this process gives 
us the number of prime agents by the end of 
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given by the formula: 
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(i.e., the people successfully recruited become 
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Here, we have v = 2 since this is the total 
number of prime agents that the company 
starts off with. The duration of each cycle is 
a year, and thus, we are taking � = 10 since 
we want to know the total number of prime 
agents by the year 2028. We have N = 700 
referring to the number of elements exposed 
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Moreover, �� = �
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services. A company may train their 
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level (say, C) is achieved in a lesser number 
of cycles on the assumption that the 
effectiveness of the iterative process is not 
diminished. But what happens if attrition in 
present? The discussion below tackles these 
scenarios viewed as an iterative PBS model 
with or without attrition. 
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model with overall success probability ��.  
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given by the formula: 
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company’s product and recruit more people 
to join the company’s sales force. According 
to the company’s data, every single sales 
personnel of the company is able to try to sell 
to 700 people a year. Also, the chances of 
recruiting a person to join the sales team of 
the company is 1 out of 350 for all sales 
personnel. Suppose that this company has 
such a great track record that it never loses 
any of its recruited sales personnel and will 
continue to do so in the future. How many 
will be the sales force of the company by the 
year 2028? 
 
We can use Proposition 2 for this example 
since the elements of our population, when 
they successfully reach the end goal of our 
PBS model, become prime agents themselves 
(i.e., the people successfully recruited become 
bona fide sales personnel of the company). 
Here, we have v = 2 since this is the total 
number of prime agents that the company 
starts off with. The duration of each cycle is 
a year, and thus, we are taking � = 10 since 
we want to know the total number of prime 
agents by the year 2028. We have N = 700 
referring to the number of elements exposed 
to the n-step process for every cycle. 
Moreover, �� = �

��� describing the probability 
of 350 successful recruitment of sales 
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          = 2(1 + 2)�� 
      = 118, 089. 

 
Thus, we have a 118,089-strong sales force 
by the year 2028. 
 
Scenario 2:  Attrition of prime agents at 
a constant rate  
 
In this scenario, we assume that the change 
(increase or decrease) in the number of 
prime agents is constant. The initial 
number of prime agents is v. After the end 
of the first cycle, we will then have the v 
prime agents exposed to the target 
population with N elements so that we have 
an additional ���� prime agents. But an 
attrition of a certain rate R happens at the 
same time so that by the end of this first 
cycle, the number of prime agents becomes  
 

�
� + ����  or  � ��

� + ���� 
 
where 1 � � = 1��. By the second cycle, we 
will now have � ��

� + ���� ��� additional 
prime agents, which gives us a total number 
of 
 

� �1
� + ����

� +  � �1
� + ���� ���

= � �1
� + ����

�
 

 
prime agents. Replicating this process leads 
us to the conclusion that by the end of the 
third cycle there would be � ��

� + �����
 prime 

agents, and so on. Observe that in this case, 
the rate of change R in the number of prime 
agents is constant. 
 
Proposition 3. Given a PBS model with 
overall success probability of ��, with  v 
initial number of prime agents exposed to N 
elements of the population per cycle. When the 
attrition rate on the number of prime agents 

is � = 1 � �
� , then the total number of prime 

agents P obtained after the ��� cycle is 
 

� = � �1
� + ����

�
. 

 
As a remark, this scenario can also be 
described using the differential equation 
 

��
�� = �� 

 
where the initial number prime agents at 
time t = 0 is �� = � and with the constant 
�� = � ��

� + ����. Thus, at a given time t, 
the number of prime agents is  
 

� = ����. 
 

It is clear that this formula considers values 
of nonintegral values of time t, which is not 
the same as the discreteness of the value T 
as described in Proposition 3 referring to 
the number of cycles. 
 
Example 2. The concept of dystopian 
societies has recently been popularized in 
modern contemporary literature. One such 
society consists of a world ending by virtue of 
a zombie apocalypse. Zombies, in a lot of 
movies and fiction novels today, are known to 
be capable of reproducing their kind by 
infecting other human beings. Suppose a 
zombie outbreak triggers in a particular city. 
In this city, it was discovered on May 1, 2017, 
that 50 zombies had been on the loose, 
successfully infecting 20% of all human 
beings they come in close contact with. The 
city had been put on red alert since May 1, 
and as a result, a lot of the residents had 
been hiding and avoiding the zombies. 
Because of this information, these zombies 
only come into contact with people at a rate 
of two humans per week. Authorities of this 
city had also been able to secure a human-
friendly chemical poison that has a chance to 
kill 80% of all zombies after a week’s time. 

Thus, we have a 118,089-strong sales force by 
the year 2028.
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constant rate 
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agents is constant. The initial number of prime 
agents is v. After the end of the first cycle, we 
will then have the v prime agents exposed to 
the target population with N elements so that 
we have an additional 
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services. A company may train their 
prospective agents by undergoing a step-
based program, and if they succeed, they 
become legit trainers themselves. This 
process, of course, becomes more efficient in 
trying to saturate a target population. Thus, 
in the iterative PBS model, our interest is 
shifted to determining the number of prime 
agents (also as success cases) that each cycle 
produces. Moreover, since the target 
population is finite, the target saturation 
level (say, C) is achieved in a lesser number 
of cycles on the assumption that the 
effectiveness of the iterative process is not 
diminished. But what happens if attrition in 
present? The discussion below tackles these 
scenarios viewed as an iterative PBS model 
with or without attrition. 
 
Scenario 1: No attrition of prime agents 
 
Suppose there are v prime agents involved 
in an n-step process described by a PBS 
model with overall success probability ��.  
Moreover, let us say that the process targets 
a specific population with each prime agent 
being exposed to N elements of the 
population per cycle. Thus, we initially have 
v prime agents so that by the end of the first 
cycle, ���� new prime agents would have 
been produced so that a total of �(1 + ���) 
prime agents would be ready to catalyze the 
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agents, which gives us �(1 + ���) + �(1 +
���)��� total number of prime agents by 
the second cycle or �(1 + ���)(1 + ���) =
�(1 + ���)�. Continuing this process gives 
us the number of prime agents by the end of 
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Proposition 2. The total number of prime 
agents P obtained after the ��� cycle given a 
PBS model with overall success probability of 
��, v initial number of prime agents exposed 
to N elements of the population per cycle is 
given by the formula: 
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Example 1. Network marketing is a method 
of selling wherein a company does not rely 
heavily on large-scale or small-scale 
advertising but is very much dependent on 
its sales force. The idea is that the sales 
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personnel. Suppose that this company has 
such a great track record that it never loses 
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continue to do so in the future. How many 
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year 2028? 
 
We can use Proposition 2 for this example 
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(i.e., the people successfully recruited become 
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Here, we have v = 2 since this is the total 
number of prime agents that the company 
starts off with. The duration of each cycle is 
a year, and thus, we are taking � = 10 since 
we want to know the total number of prime 
agents by the year 2028. We have N = 700 
referring to the number of elements exposed 
to the n-step process for every cycle. 
Moreover, �� = �

��� describing the probability 
of 350 successful recruitment of sales 
personnel. We have 
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by the year 2028. 
 
Scenario 2:  Attrition of prime agents at 
a constant rate  
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us to the conclusion that by the end of the 
third cycle there would be � ��
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agents, and so on. Observe that in this case, 
the rate of change R in the number of prime 
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time t = 0 is �� = � and with the constant 
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� + ����. Thus, at a given time t, 
the number of prime agents is  
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It is clear that this formula considers values 
of nonintegral values of time t, which is not 
the same as the discreteness of the value T 
as described in Proposition 3 referring to 
the number of cycles. 
 
Example 2. The concept of dystopian 
societies has recently been popularized in 
modern contemporary literature. One such 
society consists of a world ending by virtue of 
a zombie apocalypse. Zombies, in a lot of 
movies and fiction novels today, are known to 
be capable of reproducing their kind by 
infecting other human beings. Suppose a 
zombie outbreak triggers in a particular city. 
In this city, it was discovered on May 1, 2017, 
that 50 zombies had been on the loose, 
successfully infecting 20% of all human 
beings they come in close contact with. The 
city had been put on red alert since May 1, 
and as a result, a lot of the residents had 
been hiding and avoiding the zombies. 
Because of this information, these zombies 
only come into contact with people at a rate 
of two humans per week. Authorities of this 
city had also been able to secure a human-
friendly chemical poison that has a chance to 
kill 80% of all zombies after a week’s time. 
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Thus, we have a 118,089-strong sales force 
by the year 2028. 
 
Scenario 2:  Attrition of prime agents at 
a constant rate  
 
In this scenario, we assume that the change 
(increase or decrease) in the number of 
prime agents is constant. The initial 
number of prime agents is v. After the end 
of the first cycle, we will then have the v 
prime agents exposed to the target 
population with N elements so that we have 
an additional ���� prime agents. But an 
attrition of a certain rate R happens at the 
same time so that by the end of this first 
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societies has recently been popularized in 
modern contemporary literature. One such 
society consists of a world ending by virtue of 
a zombie apocalypse. Zombies, in a lot of 
movies and fiction novels today, are known to 
be capable of reproducing their kind by 
infecting other human beings. Suppose a 
zombie outbreak triggers in a particular city. 
In this city, it was discovered on May 1, 2017, 
that 50 zombies had been on the loose, 
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beings they come in close contact with. The 
city had been put on red alert since May 1, 
and as a result, a lot of the residents had 
been hiding and avoiding the zombies. 
Because of this information, these zombies 
only come into contact with people at a rate 
of two humans per week. Authorities of this 
city had also been able to secure a human-
friendly chemical poison that has a chance to 
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In this example, we can assume that a 
zombie follows a PBS model with success 
probability xn = 0.20 exposed to N = 2 people 
per cycle. Also, a zombie is considered a 
prime agent since the people that the zombie 
successfully infects also become a zombie. We 
can use Proposition 3 since the chemical poison 
released into the city yields an attrition of 80% 
of our zombies per cycle. Since 80% of zombies 
are successfully killed by the chemical, then 
we are left with 20% of the zombies only after 
each cycle resulting to a = 2. We want to know 
if the attrition of the zombies because of the 
chemical poison will be faster than the rate of 
zombies successfully infecting people. Thus,
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Since � = �

� < 1, then for � � 1, we will 
always have fewer zombies every after cycle. 
So this method of eliminating the zombies 
will reduce their total number per week. 
Now, we want to know how many weeks until 
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Thus, by the fifth week, we are sure that the 
total number of zombies would have dropped 
to less than five. 
 
Scenario 3:  Attrition of “a” prime agents 
per cycle  
 
Consider the case wherein at the end of each 
cycle the total number of prime agents is 
reduced by a number “�.” With v initial prime 
agents, we see that by the end of the first 
cycle, the number of prime agents is  
 

�(1) = � + ���� � � = �(1 + ���) � �. 
 

At the end of the second cycle, we have 
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By the third cycle, we have 
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� �(��� + 2)]��� � � 

 
     = �(1 + ���)� � �((���)� + 3��� + 3). 
 
Recognizing a pattern in our computation 
leads us to the following. 
 
Theorem 4. The total number of prime 
agents obtained after the ��� cycle given that 
for each cycle the number of prime agents 
gets reduced by � agents is 
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Proof.  We prove this by induction. When � =
1, we see that the formula clearly holds.  
 
Let us assume that by the mth cycle, that is, 
when � = �, the number of prime agents is 
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Example 3. Social media has taken the world 
by storm over the past two decades. Many 
popular platforms have emerged, among the 
likes of which are Twitter, Tumblr, and 
Snapchat. The most popular social media 
platform arguably to have ever emerged is 
Facebook. As of March 31, 2018, Facebook 
has over 2.19 billion users worldwide [3]. 
Social media decentralizes the power of 
information from big media companies and 
gives them towards the masses. Information 
is disseminated to the masses as easily as 
possible, especially when a large number of 
users click on the “share” function on 
Facebook. When a piece of information is 
shared by multiple users and is seen by at 
least a hundred thousand people, we label 
this as a piece of information that has gone 
“viral.” 
 
Suppose a certain piece of classified 
information from a company has been shared 
by five users. For each user who shares the 
information, 200 of the user’s contacts get to 
see the information for the next 3 hours. 
Assume that the users have mutually 
exclusive sets of friends on social media and 
that the total number of Facebook friends 
one person has is at least a hundred 
thousand. For every 200 people who see this 
information share, let us say that 4 people 
share the information, which then exposes 
the company’s information to another set of 
200 new people for the next 3 hours as well. 
 
A piece of information is considered as viral 
if it is seen by at least a hundred thousand 
users, while a post is considered extremely 
viral if it is viewed by more than a million 
people. 
 
Given the situation above, how long before 
this information becomes viral and 
extremely viral? 
 
Using Theorem 4, we can assume that a 
Facebook user follows a PBS model with � =
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Now, we want to show that the formula holds 
when i = m + 1. By the end of the (m + 1)th 
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Example 3. Social media has taken the world 
by storm over the past two decades. Many 
popular platforms have emerged, among the 
likes of which are Twitter, Tumblr, and 
Snapchat. The most popular social media 
platform arguably to have ever emerged is 
Facebook. As of March 31, 2018, Facebook 
has over 2.19 billion users worldwide [3]. 
Social media decentralizes the power of 
information from big media companies and 
gives them towards the masses. Information 
is disseminated to the masses as easily as 
possible, especially when a large number of 
users click on the “share” function on 
Facebook. When a piece of information is 
shared by multiple users and is seen by at 
least a hundred thousand people, we label 
this as a piece of information that has gone 
“viral.” 
 
Suppose a certain piece of classified 
information from a company has been shared 
by five users. For each user who shares the 
information, 200 of the user’s contacts get to 
see the information for the next 3 hours. 
Assume that the users have mutually 
exclusive sets of friends on social media and 
that the total number of Facebook friends 
one person has is at least a hundred 
thousand. For every 200 people who see this 
information share, let us say that 4 people 
share the information, which then exposes 
the company’s information to another set of 
200 new people for the next 3 hours as well. 
 
A piece of information is considered as viral 
if it is seen by at least a hundred thousand 
users, while a post is considered extremely 
viral if it is viewed by more than a million 
people. 
 
Given the situation above, how long before 
this information becomes viral and 
extremely viral? 
 
Using Theorem 4, we can assume that a 
Facebook user follows a PBS model with � =
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Given the situation above, how long before 
this information becomes viral and extremely 
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Using Theorem 4, we can assume that 
a Facebook user follows a PBS model with  
N = 200 the number of people who get exposed 
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200 the number of people who get exposed 
with success probability �� = �

��� = 0.02, 
where success happens when a Facebook 
friend of the user shares the information as 
well. The five Facebook users are considered 
as prime agents since when a Facebook 
friend of theirs shares the information, the 
friend who shares this information also turns 
out to be a prime agent. A piece of 
information would have been seen by 
100,000 users already if the number of prime 
agents who share the information is 500 
because �(200) = 100,000. Now, solving for T 
when � = 5, we obtain 
 

�(1 + ���)� = 5�1 + 200(0.02)�� > 500 
                                            (1 + 4)� > 100 

� > �� (100)
�� (5) ≈ 2.�� (����� � ������) 

 
Since each cycle is every 3 hours, the post 
will become viral after approximately 8.58 
hours or after 9 hours. 
 
Now, a piece of information would have been 
seen by 1,000,000 users already if the 
number of prime agents that share the 
information is 5,000 because �(200) =
1,000,000. Now, to solve for the time before 
the post becomes extremely viral, we put 
 

(1 + ���)� = 5(1 + 200(0.02))� > 5,000 
 
yielding  
 

� > �� (1,000)
�� (5) ≈ 4.29. 

 
Thus, the post will become extremely viral 
after 4.29*(3) hours ≈ 12.87 hours or after 
13 hours. 
 
Having learned of this scenario, the company 
decides to act quickly minutes after the 
information was shared. Since only five 
people yet have shared the information for 
the first few minutes when the information 
was leaked, the company decides to act 

immediately after the first cycle. The 
company taps their public relations team and 
decides to give incentives to the people who 
have already shared the information. The 
team is able to contact 19 people every 3 
hours to put down the social media post 
before it becomes viral. The incentives work 
100% of the time, and the users indeed delete 
the information they shared from their walls. 
At this rate, will the company be able to 
prevent the information from becoming 
viral? 
 
We see that with the policy that the company 
enforced, there is now an attrition of 19 
prime agents that prevent the information 
from spreading on Facebook. Thus, by 
Theorem 4, we have 
 

�(�) = 5(5)� − 19 � �� �
� − 1� (4)(�−�)�

�

�=1
. 

 
From this, we see that the values of �(�) for 
the 3rd, 4th, and 5th cycles are 36, 161, and 786 
and the corresponding views in social media 
are 7,200, 32,200, and 157,200, respectively. 
 
Thus, from here we see that the company’s 
effort in trying to prevent the social media 
post from going viral is not enough. If we look 
at � = 1, we see that if the public relations 
department of the company had just been a 
little bit more aggressive and increased the 
total number of contacts to 25 for the first 3 
hours, then they would have stopped the post 
from being viral on the first cycle alone. 
 
Scenario 4: Attrition of agents after k 
cycles 
 
In this scenario, we look at the case when 
there is an attrition of the total number of 
agents at the end of the mth cycle and so on. 
With initial v prime agents by the end of the 
��� cycle, the number of prime agents would 
total to �(1 + ���)�. Consider the scenario 
where the total number of prime agents 
during the mth cycle gets reduced by the total 

, where 
success happens when a Facebook friend of 
the user shares the information as well. The 
five Facebook users are considered as prime 
agents since when a Facebook friend of theirs 
shares the information, the friend who shares 
this information also turns out to be a prime 
agent. A piece of information would have been 
seen by 100,000 users already if the number 
of prime agents who share the information is 
500 because v (200) = 100,000. Now, solving 
for T when v = 5, we obtain

 
 

9

200 the number of people who get exposed 
with success probability �� = �

��� = 0.02, 
where success happens when a Facebook 
friend of the user shares the information as 
well. The five Facebook users are considered 
as prime agents since when a Facebook 
friend of theirs shares the information, the 
friend who shares this information also turns 
out to be a prime agent. A piece of 
information would have been seen by 
100,000 users already if the number of prime 
agents who share the information is 500 
because �(200) = 100,000. Now, solving for T 
when � = 5, we obtain 
 

�(1 + ���)� = 5�1 + 200(0.02)�� > 500 
                                            (1 + 4)� > 100 

� > �� (100)
�� (5) ≈ 2.�� (����� � ������) 

 
Since each cycle is every 3 hours, the post 
will become viral after approximately 8.58 
hours or after 9 hours. 
 
Now, a piece of information would have been 
seen by 1,000,000 users already if the 
number of prime agents that share the 
information is 5,000 because �(200) =
1,000,000. Now, to solve for the time before 
the post becomes extremely viral, we put 
 

(1 + ���)� = 5(1 + 200(0.02))� > 5,000 
 
yielding  
 

� > �� (1,000)
�� (5) ≈ 4.29. 

 
Thus, the post will become extremely viral 
after 4.29*(3) hours ≈ 12.87 hours or after 
13 hours. 
 
Having learned of this scenario, the company 
decides to act quickly minutes after the 
information was shared. Since only five 
people yet have shared the information for 
the first few minutes when the information 
was leaked, the company decides to act 

immediately after the first cycle. The 
company taps their public relations team and 
decides to give incentives to the people who 
have already shared the information. The 
team is able to contact 19 people every 3 
hours to put down the social media post 
before it becomes viral. The incentives work 
100% of the time, and the users indeed delete 
the information they shared from their walls. 
At this rate, will the company be able to 
prevent the information from becoming 
viral? 
 
We see that with the policy that the company 
enforced, there is now an attrition of 19 
prime agents that prevent the information 
from spreading on Facebook. Thus, by 
Theorem 4, we have 
 

�(�) = 5(5)� − 19 � �� �
� − 1� (4)(�−�)�

�

�=1
. 

 
From this, we see that the values of �(�) for 
the 3rd, 4th, and 5th cycles are 36, 161, and 786 
and the corresponding views in social media 
are 7,200, 32,200, and 157,200, respectively. 
 
Thus, from here we see that the company’s 
effort in trying to prevent the social media 
post from going viral is not enough. If we look 
at � = 1, we see that if the public relations 
department of the company had just been a 
little bit more aggressive and increased the 
total number of contacts to 25 for the first 3 
hours, then they would have stopped the post 
from being viral on the first cycle alone. 
 
Scenario 4: Attrition of agents after k 
cycles 
 
In this scenario, we look at the case when 
there is an attrition of the total number of 
agents at the end of the mth cycle and so on. 
With initial v prime agents by the end of the 
��� cycle, the number of prime agents would 
total to �(1 + ���)�. Consider the scenario 
where the total number of prime agents 
during the mth cycle gets reduced by the total 



52 VOLUME 12 (2019)MANILA JOURNAL OF SCIENCE

Since each cycle is every 3 hours, the post 
will become viral after approximately 8.58 
hours or after 9 hours.

Now, a piece of information would have 
been seen by 1,000,000 users already if 
the number of prime agents that share 
the information is 5,000 because v (200) = 
1,000,000. Now, to solve for the time before the 
post becomes extremely viral, we put
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Thus, the post will become extremely viral 
after 4.29*(3) hours ≈ 12.87 hours or after 13 
hours.

Having learned of this scenario, the 
company decides to act quickly minutes after 
the information was shared. Since only five 
people yet have shared the information for the 
first few minutes when the information was 
leaked, the company decides to act immediately 
after the first cycle. The company taps their 
public relations team and decides to give 
incentives to the people who have already 
shared the information. The team is able to 
contact 19 people every 3 hours to put down the 
social media post before it becomes viral. The 
incentives work 100% of the time, and the users 
indeed delete the information they shared from 
their walls. At this rate, will the company be able 
to prevent the information from becoming viral?

We see that with the policy that the 
company enforced, there is now an attrition of 
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immediately after the first cycle. The 
company taps their public relations team and 
decides to give incentives to the people who 
have already shared the information. The 
team is able to contact 19 people every 3 
hours to put down the social media post 
before it becomes viral. The incentives work 
100% of the time, and the users indeed delete 
the information they shared from their walls. 
At this rate, will the company be able to 
prevent the information from becoming 
viral? 
 
We see that with the policy that the company 
enforced, there is now an attrition of 19 
prime agents that prevent the information 
from spreading on Facebook. Thus, by 
Theorem 4, we have 
 

�(�) = 5(5)� − 19 � �� �
� − 1� (4)(�−�)�

�

�=1
. 

 
From this, we see that the values of �(�) for 
the 3rd, 4th, and 5th cycles are 36, 161, and 786 
and the corresponding views in social media 
are 7,200, 32,200, and 157,200, respectively. 
 
Thus, from here we see that the company’s 
effort in trying to prevent the social media 
post from going viral is not enough. If we look 
at � = 1, we see that if the public relations 
department of the company had just been a 
little bit more aggressive and increased the 
total number of contacts to 25 for the first 3 
hours, then they would have stopped the post 
from being viral on the first cycle alone. 
 
Scenario 4: Attrition of agents after k 
cycles 
 
In this scenario, we look at the case when 
there is an attrition of the total number of 
agents at the end of the mth cycle and so on. 
With initial v prime agents by the end of the 
��� cycle, the number of prime agents would 
total to �(1 + ���)�. Consider the scenario 
where the total number of prime agents 
during the mth cycle gets reduced by the total 

From this, we see that the values of  for 
the 3rd, 4th, and 5th cycles are 36, 161, and 786 
and the corresponding views in social media 
are 7,200, 32,200, and 157,200, respectively.

Thus, from here we see that the company’s 
effort in trying to prevent the social media post 
from going viral is not enough. If we look at , 
we see that if the public relations department 
of the company had just been a little bit more 
aggressive and increased the total number of 
contacts to 25 for the first 3 hours, then they 
would have stopped the post from being viral 
on the first cycle alone.

Scenario 4: Attrition of agents after  
k cycles

In this scenario, we look at the case when 
there is an attrition of the total number of 
agents at the end of the mth cycle and so on. 
With initial v prime agents by the end of the kth 

cycle, the number of prime agents would total 
to 
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200 the number of people who get exposed 
with success probability �� = �

��� = 0.02, 
where success happens when a Facebook 
friend of the user shares the information as 
well. The five Facebook users are considered 
as prime agents since when a Facebook 
friend of theirs shares the information, the 
friend who shares this information also turns 
out to be a prime agent. A piece of 
information would have been seen by 
100,000 users already if the number of prime 
agents who share the information is 500 
because �(200) = 100,000. Now, solving for T 
when � = 5, we obtain 
 

�(1 + ���)� = 5�1 + 200(0.02)�� > 500 
                                            (1 + 4)� > 100 

� > �� (100)
�� (5) ≈ 2.�� (����� � ������) 
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information is 5,000 because �(200) =
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� > �� (1,000)
�� (5) ≈ 4.29. 

 
Thus, the post will become extremely viral 
after 4.29*(3) hours ≈ 12.87 hours or after 
13 hours. 
 
Having learned of this scenario, the company 
decides to act quickly minutes after the 
information was shared. Since only five 
people yet have shared the information for 
the first few minutes when the information 
was leaked, the company decides to act 

immediately after the first cycle. The 
company taps their public relations team and 
decides to give incentives to the people who 
have already shared the information. The 
team is able to contact 19 people every 3 
hours to put down the social media post 
before it becomes viral. The incentives work 
100% of the time, and the users indeed delete 
the information they shared from their walls. 
At this rate, will the company be able to 
prevent the information from becoming 
viral? 
 
We see that with the policy that the company 
enforced, there is now an attrition of 19 
prime agents that prevent the information 
from spreading on Facebook. Thus, by 
Theorem 4, we have 
 

�(�) = 5(5)� − 19 � �� �
� − 1� (4)(�−�)�

�

�=1
. 

 
From this, we see that the values of �(�) for 
the 3rd, 4th, and 5th cycles are 36, 161, and 786 
and the corresponding views in social media 
are 7,200, 32,200, and 157,200, respectively. 
 
Thus, from here we see that the company’s 
effort in trying to prevent the social media 
post from going viral is not enough. If we look 
at � = 1, we see that if the public relations 
department of the company had just been a 
little bit more aggressive and increased the 
total number of contacts to 25 for the first 3 
hours, then they would have stopped the post 
from being viral on the first cycle alone. 
 
Scenario 4: Attrition of agents after k 
cycles 
 
In this scenario, we look at the case when 
there is an attrition of the total number of 
agents at the end of the mth cycle and so on. 
With initial v prime agents by the end of the 
��� cycle, the number of prime agents would 
total to �(1 + ���)�. Consider the scenario 
where the total number of prime agents 
during the mth cycle gets reduced by the total 

. Consider the scenario where 
the total number of prime agents during the 
mth cycle gets reduced by the total number of 
prime agents during the (m – k + 1)th scenario. 
Thus, we have P(k) as
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
 

giving the number of prime agents.

This means that at the end of the (k + 1)th 
cycle, the total number of prime agents 
becomes
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
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As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
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+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
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�

���
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� � �(1 + ���)(��������)(−1)��

�����

���
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�
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�−�+1
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+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 
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0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
 

As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2kth and 3kth cycles are
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
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− (2� + 1)�(1 + ���)(��)

+ �� + 1
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respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
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�
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+ ���)(�−��)(−1)��� ��� − 
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�����

���
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�−�+1
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+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 
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− �� − � + 1
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+ �� − 2� + 2
2 � �(1
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�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
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As we continue this process, it can be shown 
that the total number of prime agents at the 
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respectively. 
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�

���
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when � � � + 1.  
 
In order to obtain the number of prime 
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following sum representing �(� + 1): 
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number of prime agents during the (� − � +
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giving the number of prime agents. 
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assume that for � � �, we have  
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Thus, we show that the formula also works 
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As we continue this process, it can be shown 
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end of the 2��� and ���� cycles are 
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+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
 

and
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
 

respectively.
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Theorem 5. The total number of prime agents 
obtained after the  cycle where all prime agents 
have a lifespan of k cycles is
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
 

Proof. For i = 1, we see that the formula works.

Now, for our inductive hypothesis, we 
assume that for i = m, we have 
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
 

Thus, we show that the formula also works 
when i = m + 1. 

In order to obtain the number of prime 
agents for i = m + 1, we simplify the following 
sum representing P(m + 1): 
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
 

to
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
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number of prime agents during the (� − � +
1)th scenario. Thus, we have �(�) as 
 

�(�) � �(1 + ���)� − � 
 
giving the number of prime agents. 
 
This means that at the end of the (� + 1)�� 
cycle, the total number of prime agents 
becomes 
 

�(� + 1) � �(1 + ���)� − �
+ ��(1 + ���)� − �����
− �(1 + ���) 

 
 � �(1 + ���)(���) − 2�(1 + ���) 
 
As we continue this process, it can be shown 
that the total number of prime agents at the 
end of the 2��� and ���� cycles are 
 
�(2�) � �(1 + ���)(��) − (� + 1)�(1 + ���)�

+ � 
 
and 
 

�(��) � �(1 + ���)(��)

− (2� + 1)�(1 + ���)(��)

+ �� + 1
2 � �(1 + ���)(�) − �� 

 
respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
� � �(1 + ���)(����)(−1)�� .

�

���
 

 
Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
 

�(�) � � ��� − (� − 1)�
� � �(1

�

���
+ ���)(����)(−1)�� . 

 
Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
 

� ��� − (� − 1)�
� � �(1 + ���)(����)(−1)��

�

���

+ �� ��� − (� − 1)�
� � �(1

�

��0

+ ���)(�−��)(−1)��� ��� − 

 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���

− � ��� − � + 1 − (� − 1)�
� � �(1

�−�+1

��0

+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 

 
��

0 � �(1 + ���)(���)

− �� − � + 1
1 � �(1

+ ���)(�����)

+ �� − 2� + 2
2 � �(1

+ ���)(������)   + 
�� − � + 1

0 � �(1 + ���)(�����)

− �� − 2� + 2
2 � �(1

+ ���)(�−2�+1) + ⋯ 
 

Simplifying this further, we obtain

 
 

10

number of prime agents during the (� − � +
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that the total number of prime agents at the 
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+ � 
 
and 
 

�(��) � �(1 + ���)(��)
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respectively. 
 
Theorem 5. The total number of prime 
agents obtained after the ��� cycle where all 
prime agents have a lifespan of k cycles is 
 

�(�) � � ��� − (� − 1)�
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Proof.  For � � 1, we see that the formula 
works. 
 
Now, for our inductive hypothesis, we 
assume that for � � �, we have  
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Thus, we show that the formula also works 
when � � � + 1.  
 
In order to obtain the number of prime 
agents for � � � + 1, we simplify the 
following sum representing �(� + 1): 
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 � ��� − � + 1 − (� − 1)�
� � �(1 + ���)(��������)(−1)��

�����

���
 

 
to 
 

� ��� − (� − 1)�
� � �(1 + ���)(������)(−1)��

�

���
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+ ���)(�−�+1−��)(−1)��. 
 
Simplifying this further, we obtain 
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= � ��� + 1 − (� − 1)�
� � �(1

���

���
+ ���)(������)(−1)��, 

 
as desired. 
 
Example 4. Below is a table comparison 
between the total number of prime agents 
per cycle for Scenario 1 and Scenario 4. For 
this, we take  � = �, � = �0, �� = 0.02, and 
� = � (attrition after k cycles). 
 

Total Number of Prime Agents 
After ith Cycle 

i Scenario 1 Scenario 4 
(k = 3) 

0  5   5  
1  10   10  
2  20   20  
3  40   35  
4  80   60  
5  160   100  
6  320   165  
7  640   270  
8  1,280   440  
9  2,560   715  

10  5,120   1,160  
 
In this illustrative example, we see the effect 
of the attrition as described in Scenario 4 and 
when this is compared to the expected 
number of prime agents based on Scenario 1. 
A reduction in this number by about 77% is 
observed. Clearly, this kind of attrition slows 
down the process of creating more prime 
agents significantly. 
 

B. Critical Values of the Iterative 
PBS Model 

 
Given the nature of iterative PBS models and 
taking attrition into account, it would be 
interesting and useful to know at what given 
conditions will the number of prime agents of 
an iterative PBS model exponentially 

increase, remain constant, or be reduced to 
zero.  
 
Clearly, given a PBS model with an overall 
success probability of �� = 0, the initial 
number of prime agents remains the same 
for any cycle. The following theorem shows 
that this scenario can also happen if the 
attrition rate is equal to the product of the 
population N and the success probability ��.  
 
Theorem 6. Given a PBS model with overall 
success probability of �� and � initial number 
of prime agents getting exposed to � elements 
of the population per cycle with attrition rate 
� = 1 − �

� . Then, the number of prime agents 
remains constant at v at any cycle  � > 0 if  
��� = ���

� . 
 
Proof. Using Proposition 3, the number of 
prime agents after T cycles with the 
condition  ��� = ���

�  is 
 

� = � �1
� + ����

�
= � �1

� + 1 − 1
��

�
= �. 

 
As a consequence of Theorem 6, we state the 
following. 
 
Corollary 7. Given a PBS model with 
constant attrition rate � = 1 − �

�, then the 
number of prime agents  
 

i. Continually grows divergently  if 
��� > ���

� ; and 
ii. Converges to 0 if ��� < ���

� . 
 
Theorem 8. Given a PBS model where for 
each cycle the number of prime agents gets 
reduced by � agents, the number of prime 
agents at any cycle � remains constant if � =
����. 
 
Proof.  Using Theorem 4, the number of 
prime agents at cycle T is described by the 
equation 

as desired.

Example 4. Below is a table comparison 
between the total number of prime agents 
per cycle for Scenario 1 and Scenario 4. For 
this, we take v = 5, N = 50, xn = 0.02, and k = 3 
(attrition after k cycles).

Total Number of Prime Agents  
After ith Cycle

i Scenario 1 Scenario 4  
(k = 3)

0  5  5 
1  10  10 
2  20  20 
3  40  35 
4  80  60 
5  160  100 
6  320  165 
7  640  270 
8  1,280  440 
9  2,560  715 

10  5,120  1,160 

In this illustrative example, we see the 
effect of the attrition as described in Scenario 
4 and when this is compared to the expected 
number of prime agents based on Scenario 1. 
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A reduction in this number by about 77% is 
observed. Clearly, this kind of attrition slows 
down the process of creating more prime 
agents significantly.

CRITICAL VALUES OF THE 
ITERATIVE PBS MODEL

Given the nature of iterative PBS models 
and taking attrition into account, it would be 
interesting and useful to know at what given 
conditions will the number of prime agents of 
an iterative PBS model exponentially increase, 
remain constant, or be reduced to zero. 

Clearly, given a PBS model with an overall 
success probability of xn = 0, the initial number 
of prime agents remains the same for any 
cycle. The following theorem shows that this 
scenario can also happen if the attrition rate 
is equal to the product of the population N and 
the success probability xn. 

Theorem 6. Given a PBS model with overall 
success probability of xn and  initial number 
of prime agents getting exposed to  elements 
of the population per cycle with attrition rate 
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= � ��� + 1 − (� − 1)�
� � �(1

���

���
+ ���)(������)(−1)��, 

 
as desired. 
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this, we take  � = �, � = �0, �� = 0.02, and 
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5  160   100  
6  320   165  
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9  2,560   715  

10  5,120   1,160  
 
In this illustrative example, we see the effect 
of the attrition as described in Scenario 4 and 
when this is compared to the expected 
number of prime agents based on Scenario 1. 
A reduction in this number by about 77% is 
observed. Clearly, this kind of attrition slows 
down the process of creating more prime 
agents significantly. 
 

B. Critical Values of the Iterative 
PBS Model 

 
Given the nature of iterative PBS models and 
taking attrition into account, it would be 
interesting and useful to know at what given 
conditions will the number of prime agents of 
an iterative PBS model exponentially 

increase, remain constant, or be reduced to 
zero.  
 
Clearly, given a PBS model with an overall 
success probability of �� = 0, the initial 
number of prime agents remains the same 
for any cycle. The following theorem shows 
that this scenario can also happen if the 
attrition rate is equal to the product of the 
population N and the success probability ��.  
 
Theorem 6. Given a PBS model with overall 
success probability of �� and � initial number 
of prime agents getting exposed to � elements 
of the population per cycle with attrition rate 
� = 1 − �

� . Then, the number of prime agents 
remains constant at v at any cycle  � > 0 if  
��� = ���

� . 
 
Proof. Using Proposition 3, the number of 
prime agents after T cycles with the 
condition  ��� = ���

�  is 
 

� = � �1
� + ����

�
= � �1

� + 1 − 1
��

�
= �. 

 
As a consequence of Theorem 6, we state the 
following. 
 
Corollary 7. Given a PBS model with 
constant attrition rate � = 1 − �

�, then the 
number of prime agents  
 

i. Continually grows divergently  if 
��� > ���

� ; and 
ii. Converges to 0 if ��� < ���

� . 
 
Theorem 8. Given a PBS model where for 
each cycle the number of prime agents gets 
reduced by � agents, the number of prime 
agents at any cycle � remains constant if � =
����. 
 
Proof.  Using Theorem 4, the number of 
prime agents at cycle T is described by the 
equation 

. Then, the number of prime agents 
remains constant at v at any cycle T > 0 if 
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= � ��� + 1 − (� − 1)�
� � �(1

���

���
+ ���)(������)(−1)��, 

 
as desired. 
 
Example 4. Below is a table comparison 
between the total number of prime agents 
per cycle for Scenario 1 and Scenario 4. For 
this, we take  � = �, � = �0, �� = 0.02, and 
� = � (attrition after k cycles). 
 

Total Number of Prime Agents 
After ith Cycle 

i Scenario 1 Scenario 4 
(k = 3) 
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1  10   10  
2  20   20  
3  40   35  
4  80   60  
5  160   100  
6  320   165  
7  640   270  
8  1,280   440  
9  2,560   715  

10  5,120   1,160  
 
In this illustrative example, we see the effect 
of the attrition as described in Scenario 4 and 
when this is compared to the expected 
number of prime agents based on Scenario 1. 
A reduction in this number by about 77% is 
observed. Clearly, this kind of attrition slows 
down the process of creating more prime 
agents significantly. 
 

B. Critical Values of the Iterative 
PBS Model 

 
Given the nature of iterative PBS models and 
taking attrition into account, it would be 
interesting and useful to know at what given 
conditions will the number of prime agents of 
an iterative PBS model exponentially 

increase, remain constant, or be reduced to 
zero.  
 
Clearly, given a PBS model with an overall 
success probability of �� = 0, the initial 
number of prime agents remains the same 
for any cycle. The following theorem shows 
that this scenario can also happen if the 
attrition rate is equal to the product of the 
population N and the success probability ��.  
 
Theorem 6. Given a PBS model with overall 
success probability of �� and � initial number 
of prime agents getting exposed to � elements 
of the population per cycle with attrition rate 
� = 1 − �

� . Then, the number of prime agents 
remains constant at v at any cycle  � > 0 if  
��� = ���

� . 
 
Proof. Using Proposition 3, the number of 
prime agents after T cycles with the 
condition  ��� = ���

�  is 
 

� = � �1
� + ����

�
= � �1

� + 1 − 1
��

�
= �. 

 
As a consequence of Theorem 6, we state the 
following. 
 
Corollary 7. Given a PBS model with 
constant attrition rate � = 1 − �

�, then the 
number of prime agents  
 

i. Continually grows divergently  if 
��� > ���

� ; and 
ii. Converges to 0 if ��� < ���

� . 
 
Theorem 8. Given a PBS model where for 
each cycle the number of prime agents gets 
reduced by � agents, the number of prime 
agents at any cycle � remains constant if � =
����. 
 
Proof.  Using Theorem 4, the number of 
prime agents at cycle T is described by the 
equation 

. 

Proof. Using Proposition 3, the number of 
prime agents after T cycles with the condition   
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= � ��� + 1 − (� − 1)�
� � �(1

���

���
+ ���)(������)(−1)��, 

 
as desired. 
 
Example 4. Below is a table comparison 
between the total number of prime agents 
per cycle for Scenario 1 and Scenario 4. For 
this, we take  � = �, � = �0, �� = 0.02, and 
� = � (attrition after k cycles). 
 

Total Number of Prime Agents 
After ith Cycle 

i Scenario 1 Scenario 4 
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In this illustrative example, we see the effect 
of the attrition as described in Scenario 4 and 
when this is compared to the expected 
number of prime agents based on Scenario 1. 
A reduction in this number by about 77% is 
observed. Clearly, this kind of attrition slows 
down the process of creating more prime 
agents significantly. 
 

B. Critical Values of the Iterative 
PBS Model 

 
Given the nature of iterative PBS models and 
taking attrition into account, it would be 
interesting and useful to know at what given 
conditions will the number of prime agents of 
an iterative PBS model exponentially 

increase, remain constant, or be reduced to 
zero.  
 
Clearly, given a PBS model with an overall 
success probability of �� = 0, the initial 
number of prime agents remains the same 
for any cycle. The following theorem shows 
that this scenario can also happen if the 
attrition rate is equal to the product of the 
population N and the success probability ��.  
 
Theorem 6. Given a PBS model with overall 
success probability of �� and � initial number 
of prime agents getting exposed to � elements 
of the population per cycle with attrition rate 
� = 1 − �

� . Then, the number of prime agents 
remains constant at v at any cycle  � > 0 if  
��� = ���

� . 
 
Proof. Using Proposition 3, the number of 
prime agents after T cycles with the 
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�  is 
 

� = � �1
� + ����

�
= � �1

� + 1 − 1
��

�
= �. 

 
As a consequence of Theorem 6, we state the 
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Corollary 7. Given a PBS model with 
constant attrition rate � = 1 − �

�, then the 
number of prime agents  
 

i. Continually grows divergently  if 
��� > ���

� ; and 
ii. Converges to 0 if ��� < ���

� . 
 
Theorem 8. Given a PBS model where for 
each cycle the number of prime agents gets 
reduced by � agents, the number of prime 
agents at any cycle � remains constant if � =
����. 
 
Proof.  Using Theorem 4, the number of 
prime agents at cycle T is described by the 
equation 

 is
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as desired. 
 
Example 4. Below is a table comparison 
between the total number of prime agents 
per cycle for Scenario 1 and Scenario 4. For 
this, we take  � = �, � = �0, �� = 0.02, and 
� = � (attrition after k cycles). 
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In this illustrative example, we see the effect 
of the attrition as described in Scenario 4 and 
when this is compared to the expected 
number of prime agents based on Scenario 1. 
A reduction in this number by about 77% is 
observed. Clearly, this kind of attrition slows 
down the process of creating more prime 
agents significantly. 
 

B. Critical Values of the Iterative 
PBS Model 

 
Given the nature of iterative PBS models and 
taking attrition into account, it would be 
interesting and useful to know at what given 
conditions will the number of prime agents of 
an iterative PBS model exponentially 

increase, remain constant, or be reduced to 
zero.  
 
Clearly, given a PBS model with an overall 
success probability of �� = 0, the initial 
number of prime agents remains the same 
for any cycle. The following theorem shows 
that this scenario can also happen if the 
attrition rate is equal to the product of the 
population N and the success probability ��.  
 
Theorem 6. Given a PBS model with overall 
success probability of �� and � initial number 
of prime agents getting exposed to � elements 
of the population per cycle with attrition rate 
� = 1 − �

� . Then, the number of prime agents 
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As a consequence of Theorem 6, we state the 
following.
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as desired. 
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between the total number of prime agents 
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this, we take  � = �, � = �0, �� = 0.02, and 
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In this illustrative example, we see the effect 
of the attrition as described in Scenario 4 and 
when this is compared to the expected 
number of prime agents based on Scenario 1. 
A reduction in this number by about 77% is 
observed. Clearly, this kind of attrition slows 
down the process of creating more prime 
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In this illustrative example, we see the effect 
of the attrition as described in Scenario 4 and 
when this is compared to the expected 
number of prime agents based on Scenario 1. 
A reduction in this number by about 77% is 
observed. Clearly, this kind of attrition slows 
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Using these expansions in (3), we obtain the 
initial value v. 
 

Corollary 9. Given a PBS model where for 
each cycle the number of prime agents gets 
reduced by � agents, the number of prime 
agents, then the number of prime agents  
 

i. Continually grows divergently  if � �
 ����; and 

ii. Converges to 0 if � � ����. 
 
This tells us that if the attrition per cycle � 
is equal to the total number of added prime 
agents ���� then the total number of prime 
agents will be the same for all cycles. Now, 
if the attrition per cycle is greater than the 
total number of added prime agents per 
cycle, then the total number of prime agents 
will converge to zero. Also, if the attrition 
per cycle is less than the total number of 
added prime agents per cycle, then the total 
number of prime agents will continue to 
grow in the succeeding cycles. 
 

C. Summary and Conclusion 
 

In this paper, we tackled an extension of the 
results discussed in [1] by considering some 
iterative scenarios of the PBS model. It is 
perceived that there are more relevant and 
valid scenarios that can be described using 
this iterative model. Since these are 
intended to describe the success of an n-step 
process that is applicable in many real-life 
situations (e.g., multilevel marketing 
tactics, personnel training and 
development), there is practicality in using 
it to optimize the results of such schemes.  
Future research work related to PBS models 
may be focused on exploring other possible 
attrition scenarios so that corresponding 
critical values for each case may also be 
tackled. Questions like “What alterations 
can be done on the success probability 
values in order to make up for the attritions 
encountered?” or “For what range of values 
will the success probability hold to be 
immune for the eventual elimination of 
prime agents in the population?” would also 
be interesting to answer. 

By considering the condition if 
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PBS Model 

 
Given the nature of iterative PBS models and 
taking attrition into account, it would be 
interesting and useful to know at what given 
conditions will the number of prime agents of 
an iterative PBS model exponentially 

increase, remain constant, or be reduced to 
zero.  
 
Clearly, given a PBS model with an overall 
success probability of �� = 0, the initial 
number of prime agents remains the same 
for any cycle. The following theorem shows 
that this scenario can also happen if the 
attrition rate is equal to the product of the 
population N and the success probability ��.  
 
Theorem 6. Given a PBS model with overall 
success probability of �� and � initial number 
of prime agents getting exposed to � elements 
of the population per cycle with attrition rate 
� = 1 − �

� . Then, the number of prime agents 
remains constant at v at any cycle  � > 0 if  
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Proof. Using Proposition 3, the number of 
prime agents after T cycles with the 
condition  ��� = ���
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As a consequence of Theorem 6, we state the 
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Corollary 7. Given a PBS model with 
constant attrition rate � = 1 − �

�, then the 
number of prime agents  
 

i. Continually grows divergently  if 
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ii. Converges to 0 if ��� < ���
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Theorem 8. Given a PBS model where for 
each cycle the number of prime agents gets 
reduced by � agents, the number of prime 
agents at any cycle � remains constant if � =
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prime agents at cycle T is described by the 
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this iterative model. Since these are 
intended to describe the success of an n-step 
process that is applicable in many real-life 
situations (e.g., multilevel marketing 
tactics, personnel training and 
development), there is practicality in using 
it to optimize the results of such schemes.  
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critical values for each case may also be 
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prime agents in the population?” would also 
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This tells us that if the attrition per cycle  
is equal to the total number of added prime 
agents  then the total number of prime agents 
will be the same for all cycles. Now, if the 
attrition per cycle is greater than the total 
number of added prime agents per cycle, then 
the total number of prime agents will converge 
to zero. Also, if the attrition per cycle is less 
than the total number of added prime agents 
per cycle, then the total number of prime 
agents will continue to grow in the succeeding 
cycles.

SUMMARY AND CONCLUSION

In this paper, we tackled an extension of 
the results discussed in [1] by considering 
some iterative scenarios of the PBS model. 
It is perceived that there are more relevant 
and valid scenarios that can be described 
using this iterative model. Since these are 

intended to describe the success of an n-step 
process that is applicable in many real-life 
situations (e.g., multilevel marketing tactics, 
personnel training and development), there 
is practicality in using it to optimize the 
results of such schemes. Future research 
work related to PBS models may be focused 
on exploring other possible attrition scenarios 
so that corresponding critical values for each 
case may also be tackled. Questions like 
“What alterations can be done on the success 
probability values in order to make up for the 
attritions encountered?” or “For what range 
of values will the success probability hold to 
be immune for the eventual elimination of 
prime agents in the population?” would also 
be interesting to answer.
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