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ABSTRACT

A new notion of graph labeling called zero ring labeling is realized by assigning distinct elements 
of a zero ring to the vertices of the graph such that the sum of the labels of adjacent vertices is 
not equal to the additive identity of the zero ring. The zero ring index of a graph G is the smallest 
positive integer 
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 for which  admits a zero ring labeling. Any zero ring labeling of  is optimal if it uses 
a zero ring consisting of   elements. It is known that any tree of order  has a zero ring 
index equal to . Considering that cactus graphs are interesting generalizations of trees, in 
this paper, we extend the optimal zero ring labeling scheme for trees to cactus graphs that 
leads us to establish that cactus graphs have also zero ring indices equal to their orders. 
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INTRODUCTION

The concept of the zero ring index of graphs 
is associated with a notion of vertex labeling 
for graphs called zero ring labeling, which was 
introduced by Acharya et al. (2015). This new 
labeling technique is a topic that links graph 
theory with abstract algebra.

A ring R in which the product of any two 
elements is 0, where 0 is the additive identity 

of R, is called a zero ring and is denoted by 
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have zero ring indices attaining the lower 
bound. These include the following: cycle 
graphs and the Petersen graph (Pranjali 
et al., 2014); complete graphs of order 2�� 
for some positive integer �� (Acharya et 
al., 2015); and fans, wheels, helms, gears, 
and friendship graphs (Reynera & 
Ruivivar, 2018).  Moreover, Reynera and 
Ruivivar (2017) proved that bipartite 
graphs, a class of graphs that include 
trees, have zero ring indices equal to their 
orders. In that paper, a scheme in 
obtaining an optimal zero ring labeling for 
any tree of order � using the zero ring 
�������  
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is presented. For a background on zero 
rings and related results, we refer to 
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The focus of this paper is to establish that 
cactus graphs also belong to the family of 
graphs with zero ring indices equal to 
their orders. This was done by extending 
the optimal zero ring labeling scheme for 
trees to cactus graphs. 
 
 

PRELIMINARIES 
 
For terminology and notation in graph 
theory not defined here, we refer to 
Chartrand and Zhang (2005).  
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which a particular vertex is designated as 
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obtained by applying the following 
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INTRODUCTION 
 
The concept of the zero ring index of 
graphs is associated with a notion of 
vertex labeling for graphs called zero ring 
labeling, which was introduced by 
Acharya et al. (2015). This new labeling 
technique is a topic that links graph 
theory with abstract algebra. 
 
A ring � in which the product of any two 
elements is 0, where 0 is the additive 
identity of  �, is called a zero ring and is 
denoted by ��. Let � � ��, �� be a graph 
with vertex set � � ������ and edge set 
�� �� ����, and let �� be a finite zero ring.  
An injective function �� ���� � �� is called 
a zero ring labeling of � if ���� �� ����� ��
0 for every edge ��� � ����. The zero ring 
index of � is the smallest positive integer 
���� such that there exists a zero ring �� 
of order ���� for which � admits a zero 
ring labeling. Any zero ring labeling 
�� ���� � �� of  � is said to be optimal if 
|��| � ����. If |����| � � and � � �������, 
then it is known that  �� � ���� � 2� 
(Acharya et al., 2015). 
 
Several classes of graphs were found to 
have zero ring indices attaining the lower 
bound. These include the following: cycle 
graphs and the Petersen graph (Pranjali 
et al., 2014); complete graphs of order 2�� 
for some positive integer �� (Acharya et 
al., 2015); and fans, wheels, helms, gears, 
and friendship graphs (Reynera & 
Ruivivar, 2018).  Moreover, Reynera and 
Ruivivar (2017) proved that bipartite 
graphs, a class of graphs that include 
trees, have zero ring indices equal to their 
orders. In that paper, a scheme in 
obtaining an optimal zero ring labeling for 
any tree of order � using the zero ring 
�������  
� ��0 0

0 0� , �
� ��
� ��� , … , �

� � � ��� � ��
� � � ��� � ���� 

is presented. For a background on zero 
rings and related results, we refer to 
Pranjali and Acharya (2014). 
 
The focus of this paper is to establish that 
cactus graphs also belong to the family of 
graphs with zero ring indices equal to 
their orders. This was done by extending 
the optimal zero ring labeling scheme for 
trees to cactus graphs. 
 
 

PRELIMINARIES 
 
For terminology and notation in graph 
theory not defined here, we refer to 
Chartrand and Zhang (2005).  
 
A connected graph without any cycle is 
called a tree. A rooted tree is a tree in 
which a particular vertex is designated as 
the root and every edge is directed away 
from the root. The level of a vertex � is the 
distance from the root to �.  The height of 
a rooted tree is the maximum level of its 
vertices.  In general, any tree � can be 
redrawn as a rooted tree by designating 
any one vertex of  � as the root. 
 
Given a tree � of order �, an optimal zero 
ring labeling of  � using ������� can be 
obtained by applying the following 
algorithm, which is based on the paper by 
Reynera and Ruivivar  (2017): 
 
Step 1. Redraw � as a rooted tree by 
designating any one vertex as the root. 

 
Step 2. Partition the vertices of  � into 
partite sets �� and �� as follows:   
 
All vertices of level � in �, where � is 
even, are placed in one set. This includes 
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odd, form another set.  
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We note that branches and chords are 
defined with respect to a given spanning tree. 
An edge that is a branch of one spanning tree 
T1 in a cactus graph G may be a chord with 
respect to another spanning tree T2.

The fact that every cactus graph has a 
spanning tree motivated us to extend the 
optimal zero ring labeling scheme for trees to 
cactus graphs. 

RESULTS AND DISCUSSION

We start with some results that are useful 
in establishing that any cactus graph has a 
zero ring index equal to its order. 
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INTRODUCTION 
 
The concept of the zero ring index of 
graphs is associated with a notion of 
vertex labeling for graphs called zero ring 
labeling, which was introduced by 
Acharya et al. (2015). This new labeling 
technique is a topic that links graph 
theory with abstract algebra. 
 
A ring � in which the product of any two 
elements is 0, where 0 is the additive 
identity of  �, is called a zero ring and is 
denoted by ��. Let � � ��, �� be a graph 
with vertex set � � ������ and edge set 
�� �� ����, and let �� be a finite zero ring.  
An injective function �� ���� � �� is called 
a zero ring labeling of � if ���� �� ����� ��
0 for every edge ��� � ����. The zero ring 
index of � is the smallest positive integer 
���� such that there exists a zero ring �� 
of order ���� for which � admits a zero 
ring labeling. Any zero ring labeling 
�� ���� � �� of  � is said to be optimal if 
|��| � ����. If |����| � � and � � �������, 
then it is known that  �� � ���� � 2� 
(Acharya et al., 2015). 
 
Several classes of graphs were found to 
have zero ring indices attaining the lower 
bound. These include the following: cycle 
graphs and the Petersen graph (Pranjali 
et al., 2014); complete graphs of order 2�� 
for some positive integer �� (Acharya et 
al., 2015); and fans, wheels, helms, gears, 
and friendship graphs (Reynera & 
Ruivivar, 2018).  Moreover, Reynera and 
Ruivivar (2017) proved that bipartite 
graphs, a class of graphs that include 
trees, have zero ring indices equal to their 
orders. In that paper, a scheme in 
obtaining an optimal zero ring labeling for 
any tree of order � using the zero ring 
�������  
� ��0 0

0 0� , �
� ��
� ��� , … , �

� � � ��� � ��
� � � ��� � ���� 

is presented. For a background on zero 
rings and related results, we refer to 
Pranjali and Acharya (2014). 
 
The focus of this paper is to establish that 
cactus graphs also belong to the family of 
graphs with zero ring indices equal to 
their orders. This was done by extending 
the optimal zero ring labeling scheme for 
trees to cactus graphs. 
 
 

PRELIMINARIES 
 
For terminology and notation in graph 
theory not defined here, we refer to 
Chartrand and Zhang (2005).  
 
A connected graph without any cycle is 
called a tree. A rooted tree is a tree in 
which a particular vertex is designated as 
the root and every edge is directed away 
from the root. The level of a vertex � is the 
distance from the root to �.  The height of 
a rooted tree is the maximum level of its 
vertices.  In general, any tree � can be 
redrawn as a rooted tree by designating 
any one vertex of  � as the root. 
 
Given a tree � of order �, an optimal zero 
ring labeling of  � using ������� can be 
obtained by applying the following 
algorithm, which is based on the paper by 
Reynera and Ruivivar  (2017): 
 
Step 1. Redraw � as a rooted tree by 
designating any one vertex as the root. 

 
Step 2. Partition the vertices of  � into 
partite sets �� and �� as follows:   
 
All vertices of level � in �, where � is 
even, are placed in one set. This includes 
the root. The vertices of level �, where � is 
odd, form another set.  
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Proof: Consider the cycle �� � 	 �	��,
��, . . . , 	����, ��	�. Without loss of 
generality, let � � ������. Then, �� � � is 
the path graph �	��, ��, . . . , 	����	�. 
Choosing �� as a root, for some � �
0, �, . . . , � � �, we obtain a rooted tree of 
height equal to ���	�	�, � � � � �	�. In the 
rooted tree, note that 	��  is of level � � � 
and ���� is of level � � � � � � �. Thus,  

�� � �� � 	 �� � �� � � � ��� � �2� � � � ��, 
which is odd when � is even and is even 
when � is odd.     ∎ 
 
The following result shows the possibility 
of obtaining � distinct pairs of elements 
that are not negatives of each other from 
a subset of a zero ring. 

Lemma 3. Let �� be a zero ring of order 
�, where 0 is the additive identity. 
Suppose  ��, �, � � �� such that �� � ��� 
and the sets  ���, ���� for all � � � � � are 
pairwise disjoint. Consider the following 
subsets of  ��: 

i. � � 	 �	��, ��, . . ., ��, ���, ���, . . .,
����, where 2	 � � � 	 ����� � and � �
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ii. � � 	 �	�, ��, ��, . . ., ��, ���, ���, . . .,
���	�, where �	 � � � 	 ����� �, � � � 
and either � � �� or �� � �; and 
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���, . . ., �����	�, where �	 � � � � �
	����� �, � � � and either � � �� or 
�� � �. 

Then, in each of these subsets, we can 
form � pairwise disjoint sets of two 
elements that are not negatives of each 
other. 
 
Proof: In �, consider the pairs �	��, ������ 
for �	 � 	�	 � 	� � � and �	��, ���	�. We 
have formed � pairwise disjoint sets of 
two elements that are not negatives of 
each other. 
 
In �, we have ��, ��� when � � �. If �	 �
	2, then � � 	�	 � ��	�. Thus, the pairs of 
elements identified in � can also be 
considered in �.  
 
Lastly, in �, we take the pairs �0, ��	� and 
�	�, ���	� when � � 2. If �	 � �, then �0,
�	�, �	����, ����, and �	��, ������ for �	 �
	�	 � � � 2 are � pairwise disjoint sets of 
two elements that are not negatives of 
each other.         ∎ 
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PRELIMINARIES 
 
For terminology and notation in graph 
theory not defined here, we refer to 
Chartrand and Zhang (2005).  
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the root and every edge is directed away 
from the root. The level of a vertex � is the 
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, respectively. Then,
		 i.	

Proof: Consider a cactus graph � that 
contains at least two cycles. By definition, 
any two cycles in � have at most one 
common vertex. 
 
If the cycles in � are pairwise vertex 
disjoint, then the required spanning tree 
is obtained by deleting any edge in each 
cycle. 
 
If �� and �� are two cycles in � having 
vertex � as their common vertex, delete 
an edge in �� that is incident with �. 
Since any cycle has at least three edges 
and �� has only two edges incident with �, 
there is an edge � of ��, which is not 
incident with �. We delete � in ��. On the 
other hand, if a cycle in � has no vertex in 
common with another cycle, we can delete 
any one edge in this cycle. The resulting 
graph is a spanning tree of �. Moreover, 
with respect to this spanning tree, any 
two chords of � are not incident with a 
common vertex.      ∎ 

The next result describes the absolute 
difference between the levels of the end 
vertices of a chord of a cycle when its 
spanning tree is redrawn as a rooted tree. 
 
Lemma 2. Let � � �� be an edge of the 
cycle ��. Suppose �� � � is redrawn as a 
rooted tree by designating any one vertex 
as the root such that � and � denote the 
levels of the vertices � and �, respectively. 
Then,  

i. �� � �� is odd when � is even; and 
ii. �� � �� is even when � is odd. 

Proof: Consider the cycle �� � 	 �	��,
��, . . . , 	����, ��	�. Without loss of 
generality, let � � ������. Then, �� � � is 
the path graph �	��, ��, . . . , 	����	�. 
Choosing �� as a root, for some � �
0, �, . . . , � � �, we obtain a rooted tree of 
height equal to ���	�	�, � � � � �	�. In the 
rooted tree, note that 	��  is of level � � � 
and ���� is of level � � � � � � �. Thus,  

�� � �� � 	 �� � �� � � � ��� � �2� � � � ��, 
which is odd when � is even and is even 
when � is odd.     ∎ 
 
The following result shows the possibility 
of obtaining � distinct pairs of elements 
that are not negatives of each other from 
a subset of a zero ring. 

Lemma 3. Let �� be a zero ring of order 
�, where 0 is the additive identity. 
Suppose  ��, �, � � �� such that �� � ��� 
and the sets  ���, ���� for all � � � � � are 
pairwise disjoint. Consider the following 
subsets of  ��: 

i. � � 	 �	��, ��, . . ., ��, ���, ���, . . .,
����, where 2	 � � � 	 ����� � and � �
5; 

ii. � � 	 �	�, ��, ��, . . ., ��, ���, ���, . . .,
���	�, where �	 � � � 	 ����� �, � � � 
and either � � �� or �� � �; and 

iii. � � 	 �	0, �, ��, ��, . . ., ����, ���,
���, . . ., �����	�, where �	 � � � � �
	����� �, � � � and either � � �� or 
�� � �. 

Then, in each of these subsets, we can 
form � pairwise disjoint sets of two 
elements that are not negatives of each 
other. 
 
Proof: In �, consider the pairs �	��, ������ 
for �	 � 	�	 � 	� � � and �	��, ���	�. We 
have formed � pairwise disjoint sets of 
two elements that are not negatives of 
each other. 
 
In �, we have ��, ��� when � � �. If �	 �
	2, then � � 	�	 � ��	�. Thus, the pairs of 
elements identified in � can also be 
considered in �.  
 
Lastly, in �, we take the pairs �0, ��	� and 
�	�, ���	� when � � 2. If �	 � �, then �0,
�	�, �	����, ����, and �	��, ������ for �	 �
	�	 � � � 2 are � pairwise disjoint sets of 
two elements that are not negatives of 
each other.         ∎ 
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INTRODUCTION 
 
The concept of the zero ring index of 
graphs is associated with a notion of 
vertex labeling for graphs called zero ring 
labeling, which was introduced by 
Acharya et al. (2015). This new labeling 
technique is a topic that links graph 
theory with abstract algebra. 
 
A ring � in which the product of any two 
elements is 0, where 0 is the additive 
identity of  �, is called a zero ring and is 
denoted by ��. Let � � ��, �� be a graph 
with vertex set � � ������ and edge set 
�� �� ����, and let �� be a finite zero ring.  
An injective function �� ���� � �� is called 
a zero ring labeling of � if ���� �� ����� ��
0 for every edge ��� � ����. The zero ring 
index of � is the smallest positive integer 
���� such that there exists a zero ring �� 
of order ���� for which � admits a zero 
ring labeling. Any zero ring labeling 
�� ���� � �� of  � is said to be optimal if 
|��| � ����. If |����| � � and � � �������, 
then it is known that  �� � ���� � 2� 
(Acharya et al., 2015). 
 
Several classes of graphs were found to 
have zero ring indices attaining the lower 
bound. These include the following: cycle 
graphs and the Petersen graph (Pranjali 
et al., 2014); complete graphs of order 2�� 
for some positive integer �� (Acharya et 
al., 2015); and fans, wheels, helms, gears, 
and friendship graphs (Reynera & 
Ruivivar, 2018).  Moreover, Reynera and 
Ruivivar (2017) proved that bipartite 
graphs, a class of graphs that include 
trees, have zero ring indices equal to their 
orders. In that paper, a scheme in 
obtaining an optimal zero ring labeling for 
any tree of order � using the zero ring 
�������  
� ��0 0
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� ��� , … , �
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is presented. For a background on zero 
rings and related results, we refer to 
Pranjali and Acharya (2014). 
 
The focus of this paper is to establish that 
cactus graphs also belong to the family of 
graphs with zero ring indices equal to 
their orders. This was done by extending 
the optimal zero ring labeling scheme for 
trees to cactus graphs. 
 
 

PRELIMINARIES 
 
For terminology and notation in graph 
theory not defined here, we refer to 
Chartrand and Zhang (2005).  
 
A connected graph without any cycle is 
called a tree. A rooted tree is a tree in 
which a particular vertex is designated as 
the root and every edge is directed away 
from the root. The level of a vertex � is the 
distance from the root to �.  The height of 
a rooted tree is the maximum level of its 
vertices.  In general, any tree � can be 
redrawn as a rooted tree by designating 
any one vertex of  � as the root. 
 
Given a tree � of order �, an optimal zero 
ring labeling of  � using ������� can be 
obtained by applying the following 
algorithm, which is based on the paper by 
Reynera and Ruivivar  (2017): 
 
Step 1. Redraw � as a rooted tree by 
designating any one vertex as the root. 

 
Step 2. Partition the vertices of  � into 
partite sets �� and �� as follows:   
 
All vertices of level � in �, where � is 
even, are placed in one set. This includes 
the root. The vertices of level �, where � is 
odd, form another set.  
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a subset of a zero ring. 
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�, where 0 is the additive identity. 
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INTRODUCTION 
 
The concept of the zero ring index of 
graphs is associated with a notion of 
vertex labeling for graphs called zero ring 
labeling, which was introduced by 
Acharya et al. (2015). This new labeling 
technique is a topic that links graph 
theory with abstract algebra. 
 
A ring � in which the product of any two 
elements is 0, where 0 is the additive 
identity of  �, is called a zero ring and is 
denoted by ��. Let � � ��, �� be a graph 
with vertex set � � ������ and edge set 
�� �� ����, and let �� be a finite zero ring.  
An injective function �� ���� � �� is called 
a zero ring labeling of � if ���� �� ����� ��
0 for every edge ��� � ����. The zero ring 
index of � is the smallest positive integer 
���� such that there exists a zero ring �� 
of order ���� for which � admits a zero 
ring labeling. Any zero ring labeling 
�� ���� � �� of  � is said to be optimal if 
|��| � ����. If |����| � � and � � �������, 
then it is known that  �� � ���� � 2� 
(Acharya et al., 2015). 
 
Several classes of graphs were found to 
have zero ring indices attaining the lower 
bound. These include the following: cycle 
graphs and the Petersen graph (Pranjali 
et al., 2014); complete graphs of order 2�� 
for some positive integer �� (Acharya et 
al., 2015); and fans, wheels, helms, gears, 
and friendship graphs (Reynera & 
Ruivivar, 2018).  Moreover, Reynera and 
Ruivivar (2017) proved that bipartite 
graphs, a class of graphs that include 
trees, have zero ring indices equal to their 
orders. In that paper, a scheme in 
obtaining an optimal zero ring labeling for 
any tree of order � using the zero ring 
�������  
� ��0 0
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is presented. For a background on zero 
rings and related results, we refer to 
Pranjali and Acharya (2014). 
 
The focus of this paper is to establish that 
cactus graphs also belong to the family of 
graphs with zero ring indices equal to 
their orders. This was done by extending 
the optimal zero ring labeling scheme for 
trees to cactus graphs. 
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For terminology and notation in graph 
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from the root. The level of a vertex � is the 
distance from the root to �.  The height of 
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0, �, . . . , � � �, we obtain a rooted tree of 
height equal to ���	�	�, � � � � �	�. In the 
rooted tree, note that 	��  is of level � � � 
and ���� is of level � � � � � � �. Thus,  

�� � �� � 	 �� � �� � � � ��� � �2� � � � ��, 
which is odd when � is even and is even 
when � is odd.     ∎ 
 
The following result shows the possibility 
of obtaining � distinct pairs of elements 
that are not negatives of each other from 
a subset of a zero ring. 

Lemma 3. Let �� be a zero ring of order 
�, where 0 is the additive identity. 
Suppose  ��, �, � � �� such that �� � ��� 
and the sets  ���, ���� for all � � � � � are 
pairwise disjoint. Consider the following 
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INTRODUCTION 
 
The concept of the zero ring index of 
graphs is associated with a notion of 
vertex labeling for graphs called zero ring 
labeling, which was introduced by 
Acharya et al. (2015). This new labeling 
technique is a topic that links graph 
theory with abstract algebra. 
 
A ring � in which the product of any two 
elements is 0, where 0 is the additive 
identity of  �, is called a zero ring and is 
denoted by ��. Let � � ��, �� be a graph 
with vertex set � � ������ and edge set 
�� �� ����, and let �� be a finite zero ring.  
An injective function �� ���� � �� is called 
a zero ring labeling of � if ���� �� ����� ��
0 for every edge ��� � ����. The zero ring 
index of � is the smallest positive integer 
���� such that there exists a zero ring �� 
of order ���� for which � admits a zero 
ring labeling. Any zero ring labeling 
�� ���� � �� of  � is said to be optimal if 
|��| � ����. If |����| � � and � � �������, 
then it is known that  �� � ���� � 2� 
(Acharya et al., 2015). 
 
Several classes of graphs were found to 
have zero ring indices attaining the lower 
bound. These include the following: cycle 
graphs and the Petersen graph (Pranjali 
et al., 2014); complete graphs of order 2�� 
for some positive integer �� (Acharya et 
al., 2015); and fans, wheels, helms, gears, 
and friendship graphs (Reynera & 
Ruivivar, 2018).  Moreover, Reynera and 
Ruivivar (2017) proved that bipartite 
graphs, a class of graphs that include 
trees, have zero ring indices equal to their 
orders. In that paper, a scheme in 
obtaining an optimal zero ring labeling for 
any tree of order � using the zero ring 
�������  
� ��0 0
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is presented. For a background on zero 
rings and related results, we refer to 
Pranjali and Acharya (2014). 
 
The focus of this paper is to establish that 
cactus graphs also belong to the family of 
graphs with zero ring indices equal to 
their orders. This was done by extending 
the optimal zero ring labeling scheme for 
trees to cactus graphs. 
 
 

PRELIMINARIES 
 
For terminology and notation in graph 
theory not defined here, we refer to 
Chartrand and Zhang (2005).  
 
A connected graph without any cycle is 
called a tree. A rooted tree is a tree in 
which a particular vertex is designated as 
the root and every edge is directed away 
from the root. The level of a vertex � is the 
distance from the root to �.  The height of 
a rooted tree is the maximum level of its 
vertices.  In general, any tree � can be 
redrawn as a rooted tree by designating 
any one vertex of  � as the root. 
 
Given a tree � of order �, an optimal zero 
ring labeling of  � using ������� can be 
obtained by applying the following 
algorithm, which is based on the paper by 
Reynera and Ruivivar  (2017): 
 
Step 1. Redraw � as a rooted tree by 
designating any one vertex as the root. 

 
Step 2. Partition the vertices of  � into 
partite sets �� and �� as follows:   
 
All vertices of level � in �, where � is 
even, are placed in one set. This includes 
the root. The vertices of level �, where � is 
odd, form another set.  
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important to note that among all cactus 
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We now prove the main theorem. It is 
important to note that among all cactus 
graphs of order �	 � 3, only the cycle �� 
has zero ring index not equal to its order. 
 
Theorem 4. For any cactus graph � of 
order � � 3, ���� � �. 
 
Proof: Let � be a cactus graph of order �. 
We consider two cases for �. 
 
Case 1. If � has no odd cycles, then � is 
bipartite. It follows from the result of 
Reynera and Ruivivar (2017) that ���� �
�. In this case, an optimal zero ring 
labeling of a spanning tree � of � using 
����	��� is also a zero ring labeling of �. 
This is because a chord coming from an 
even cycle of  � joins a vertex in �� with a 
vertex in �� as implied by Lemma 2. 
 
Case 2. If � contains the odd cycles ��, 
��, ..., ��, where �	 � 	�, obtain a spanning 
tree � of � by removing one edge, say 
�� � ����, from each ��, � � � � �, such 
that the  sets ���� ��� are pairwise disjoint. 
This is possible by Lemma 1. 
 
Our aim is to extend the optimal zero ring 
labeling scheme for � to the cactus graph 
� with odd cycles. 
 
Perform Steps 1 to 3 in the given labeling 
scheme for trees to the spanning tree � of 
� to determine the sets of labels �� and �� 
for the vertices in the partite sets �� and 
��, respectively, of the vertex set of  �. 
  
By the way the vertices of  � are classified 
into �� and �� in Step 2, it follows from 
Lemma 2 that the difference of the levels 
of �� and ��, � � � � �, in the 
corresponding rooted tree of  � is even. 
This means that either  ��� �� � ��  or 
��� �� � ��. Thus, an arbitrary assignment 
of labels from �� (or ��� to the vertices in 
�� (or ��) may lead to the labels of  �� and 
�� being negatives of each other. To avoid 

this, we modify Step 4 in the labeling 
scheme for trees as generalized to a cactus 
graph � with odd cycles.  
 
In assigning labels to the vertices of �, we 
consider three subcases. 
 
Subcase 2.1. Suppose |��| 	� � and |��| 	�
	3. Then, �� � ���� and �� �
���� ��� � � �����. Here, the rooted tree 
corresponding to the spanning tree � of � 
has a height of 1, and hence, all cycles in 
� are of length 3. The lone vertex in �� is 
labeled as ��. Using Lemma 3, every pair 
of vertices in �� that forms a chord can be 
labeled by two elements of �� whose sum 
is not equal to ��. The unused elements of 
�� are used to label the remaining vertices 
in  ��. 
 
Subcase 2.2. Suppose			|��| 	� 	 |��| 	� 	� 
and the vertices in �� do not form a chord 
from an odd cycle when  |��| � 	�.  
 
If |��| � |��| � �, then �� � 	 �	��� ��� and 
�� � 	 �	��� ���. Moreover, if |��| � � and 
|��| � 3, then �� � 	 �	��� ����� and �� �
���� ��� ��� � � �����. Even though the sum 
of the labels of the vertices in �� is ��, 
they are nonadjacent vertices in �	 
because they do not form a chord from an 
odd cycle. In assigning labels to the 
vertices of � that are contained in partite 
sets with at least three elements, we first 
assign elements of  �� (or ��� that are not 
negatives of each other as labels of the 
vertices ��� �� � �� (or ��� of a chord from 
an odd cycle in �. This is possible by 
Lemma 3. The unused elements of  �� (or 
��� may then be arbitrarily assigned as 
labels to the remaining vertices in  �� (or 
����   
 
Subcase 2.3.  Suppose |��| � �, |��| 	� 	3  
and the vertices in �� form a chord from 
an odd cycle. Without loss of generality, 
let  ��� �� 	� 	��.  
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INTRODUCTION 
 
The concept of the zero ring index of 
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is presented. For a background on zero 
rings and related results, we refer to 
Pranjali and Acharya (2014). 
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For terminology and notation in graph 
theory not defined here, we refer to 
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Perform Steps 1 to 3 in the given labeling 
scheme for trees to the spanning tree � of 
� to determine the sets of labels �� and �� 
for the vertices in the partite sets �� and 
��, respectively, of the vertex set of  �. 
  
By the way the vertices of  � are classified 
into �� and �� in Step 2, it follows from 
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�� (or ��) may lead to the labels of  �� and 
�� being negatives of each other. To avoid 

this, we modify Step 4 in the labeling 
scheme for trees as generalized to a cactus 
graph � with odd cycles.  
 
In assigning labels to the vertices of �, we 
consider three subcases. 
 
Subcase 2.1. Suppose |��| 	� � and |��| 	�
	3. Then, �� � ���� and �� �
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corresponding to the spanning tree � of � 
has a height of 1, and hence, all cycles in 
� are of length 3. The lone vertex in �� is 
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 would be A0. So, 
for this case, Step 3 must also be modified, in 
addition to Step 4. That is, we modify L1 and L2 

by interchanging 

From Step 3, we have �� � 	 �	��, ����� 
and �� � 	 �	��, ��, ��, . . ., ����	�. In this 
case, the sum of the labels of �� and �� 
would be ��. So, for this case, Step 3 must 
also be modified, in addition to Step 4. 
That is, we modify �� and �� by 
interchanging ���� with  ��. We thus 
obtain ��∗ � 	 �	��, ��	� and ��∗ � 	 �	��, ��, . . .,����	� as new sets of labels for the vertices 
in �� and ��, respectively.  
  
Since � has at least five vertices and 
���� � �, the rooted tree �� that 
corresponds to the spanning tree � of � 
has a height of 2, 3, or 4. Let us 
specifically identify the vertices ��, �� 	∈
	�� in the different forms of  ��. 

i. �� has a height of 2 such that only  �� 
and �� are vertices of level 1 and 
satisfies exactly one of the 
following: 

a. There is no vertex of level 2 
adjacent to �� and at least two 
vertices of level 2 are adjacent to ��. 

b. Each �� and �� is adjacent to at 
least one vertex of level 2. 

ii. �� has a height of 3 such that �� is the 
only vertex of level 1 and �� is the 
only vertex of level 3.  

iii. �� has a height of 3 with �� 
designated as the root, �� is the 
only vertex of level 2, there is at 
least one vertex of level 3 adjacent 
to ��, and there are at least two 
vertices of level 1 adjacent to ��. 

iv. �� has a height of 3 with �� 
designated as the root, �� is the 
only vertex of level 2, there is only 
one vertex of level 1 adjacent to ��, 
and there are at least two vertices 
of level 3 adjacent to ��. 

v. �� has a height of 4 with only  �� at 
level 1, only  �� is of level 3, there is 
at least one vertex of level 2 
adjacent to ��, and there is at least 
one vertex of level 4 adjacent to ��. 

In all the above nonisomorphic forms of 
��, we label �� by �� and �� by ��. In this 

way, the sum of the labels of the vertices  
�� and �� is not equal to ��. 
 
Next, we find a vertex 	�	 ∈ 	�� in which we 
could assign the label ���� such that ��� 
is neither a branch of  � nor a chord from 
an even cycle of �. Otherwise, the sum of 
the labels of  �� and � may possibly be 
�� � ���� � ��. We will show that this can 
be done in each of the five cases from (i) to 
(v). 
 
In (i.a) and (i.b), we choose � to be any one 
vertex of level 2 that is adjacent to ��.  In 
(ii) and (v), we take � to be the root of ��. 
In (iii), note that there are at least two 
vertices of level 1 that are adjacent to the 
root ��. Since ��, which is of level 2, can 
be adjacent to only one vertex of level 1, it 
follows that � can be chosen to be any 
vertex of level 1 that is not adjacent to ��. 
Lastly, in (iv), � is chosen to be any vertex 
of level 3. It can be verified that ��� is 
neither a branch of  � nor a chord of � 
from an even cycle. The way the vertices 
��, ��, and � are chosen in all 
nonisomorphic forms of  �� is shown in 
Figure 2. 
 
For the other chords of � coming from odd 
cycles that are incident with vertices in 
��, we note that we can pick two elements 
of ��∗ 	�	�����	�  that are not negatives of 
each other as labels to vertices �� and ��, 
�	 � 	�	 � 	�. If there are still unlabelled 
vertices in ��, then we can arbitrarily use 
the remaining elements of ��∗  to label 
these vertices. 

The resulting labeling is an optimal zero 
ring labeling of any cactus graph � of 
order � � �, since ��������� 	� 	�. 
Therefore,  ���� � �.     ∎ 
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INTRODUCTION 
 
The concept of the zero ring index of 
graphs is associated with a notion of 
vertex labeling for graphs called zero ring 
labeling, which was introduced by 
Acharya et al. (2015). This new labeling 
technique is a topic that links graph 
theory with abstract algebra. 
 
A ring � in which the product of any two 
elements is 0, where 0 is the additive 
identity of  �, is called a zero ring and is 
denoted by ��. Let � � ��, �� be a graph 
with vertex set � � ������ and edge set 
�� �� ����, and let �� be a finite zero ring.  
An injective function �� ���� � �� is called 
a zero ring labeling of � if ���� �� ����� ��
0 for every edge ��� � ����. The zero ring 
index of � is the smallest positive integer 
���� such that there exists a zero ring �� 
of order ���� for which � admits a zero 
ring labeling. Any zero ring labeling 
�� ���� � �� of  � is said to be optimal if 
|��| � ����. If |����| � � and � � �������, 
then it is known that  �� � ���� � 2� 
(Acharya et al., 2015). 
 
Several classes of graphs were found to 
have zero ring indices attaining the lower 
bound. These include the following: cycle 
graphs and the Petersen graph (Pranjali 
et al., 2014); complete graphs of order 2�� 
for some positive integer �� (Acharya et 
al., 2015); and fans, wheels, helms, gears, 
and friendship graphs (Reynera & 
Ruivivar, 2018).  Moreover, Reynera and 
Ruivivar (2017) proved that bipartite 
graphs, a class of graphs that include 
trees, have zero ring indices equal to their 
orders. In that paper, a scheme in 
obtaining an optimal zero ring labeling for 
any tree of order � using the zero ring 
�������  
� ��0 0

0 0� , �
� ��
� ��� , … , �

� � � ��� � ��
� � � ��� � ���� 

is presented. For a background on zero 
rings and related results, we refer to 
Pranjali and Acharya (2014). 
 
The focus of this paper is to establish that 
cactus graphs also belong to the family of 
graphs with zero ring indices equal to 
their orders. This was done by extending 
the optimal zero ring labeling scheme for 
trees to cactus graphs. 
 
 

PRELIMINARIES 
 
For terminology and notation in graph 
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a rooted tree is the maximum level of its 
vertices.  In general, any tree � can be 
redrawn as a rooted tree by designating 
any one vertex of  � as the root. 
 
Given a tree � of order �, an optimal zero 
ring labeling of  � using ������� can be 
obtained by applying the following 
algorithm, which is based on the paper by 
Reynera and Ruivivar  (2017): 
 
Step 1. Redraw � as a rooted tree by 
designating any one vertex as the root. 
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respectively. 

Since G has at least five vertices and 

We now prove the main theorem. It is 
important to note that among all cactus 
graphs of order �	 � 3, only the cycle �� 
has zero ring index not equal to its order. 
 
Theorem 4. For any cactus graph � of 
order � � 3, ���� � �. 
 
Proof: Let � be a cactus graph of order �. 
We consider two cases for �. 
 
Case 1. If � has no odd cycles, then � is 
bipartite. It follows from the result of 
Reynera and Ruivivar (2017) that ���� �
�. In this case, an optimal zero ring 
labeling of a spanning tree � of � using 
����	��� is also a zero ring labeling of �. 
This is because a chord coming from an 
even cycle of  � joins a vertex in �� with a 
vertex in �� as implied by Lemma 2. 
 
Case 2. If � contains the odd cycles ��, 
��, ..., ��, where �	 � 	�, obtain a spanning 
tree � of � by removing one edge, say 
�� � ����, from each ��, � � � � �, such 
that the  sets ���� ��� are pairwise disjoint. 
This is possible by Lemma 1. 
 
Our aim is to extend the optimal zero ring 
labeling scheme for � to the cactus graph 
� with odd cycles. 
 
Perform Steps 1 to 3 in the given labeling 
scheme for trees to the spanning tree � of 
� to determine the sets of labels �� and �� 
for the vertices in the partite sets �� and 
��, respectively, of the vertex set of  �. 
  
By the way the vertices of  � are classified 
into �� and �� in Step 2, it follows from 
Lemma 2 that the difference of the levels 
of �� and ��, � � � � �, in the 
corresponding rooted tree of  � is even. 
This means that either  ��� �� � ��  or 
��� �� � ��. Thus, an arbitrary assignment 
of labels from �� (or ��� to the vertices in 
�� (or ��) may lead to the labels of  �� and 
�� being negatives of each other. To avoid 

this, we modify Step 4 in the labeling 
scheme for trees as generalized to a cactus 
graph � with odd cycles.  
 
In assigning labels to the vertices of �, we 
consider three subcases. 
 
Subcase 2.1. Suppose |��| 	� � and |��| 	�
	3. Then, �� � ���� and �� �
���� ��� � � �����. Here, the rooted tree 
corresponding to the spanning tree � of � 
has a height of 1, and hence, all cycles in 
� are of length 3. The lone vertex in �� is 
labeled as ��. Using Lemma 3, every pair 
of vertices in �� that forms a chord can be 
labeled by two elements of �� whose sum 
is not equal to ��. The unused elements of 
�� are used to label the remaining vertices 
in  ��. 
 
Subcase 2.2. Suppose			|��| 	� 	 |��| 	� 	� 
and the vertices in �� do not form a chord 
from an odd cycle when  |��| � 	�.  
 
If |��| � |��| � �, then �� � 	 �	��� ��� and 
�� � 	 �	��� ���. Moreover, if |��| � � and 
|��| � 3, then �� � 	 �	��� ����� and �� �
���� ��� ��� � � �����. Even though the sum 
of the labels of the vertices in �� is ��, 
they are nonadjacent vertices in �	 
because they do not form a chord from an 
odd cycle. In assigning labels to the 
vertices of � that are contained in partite 
sets with at least three elements, we first 
assign elements of  �� (or ��� that are not 
negatives of each other as labels of the 
vertices ��� �� � �� (or ��� of a chord from 
an odd cycle in �. This is possible by 
Lemma 3. The unused elements of  �� (or 
��� may then be arbitrarily assigned as 
labels to the remaining vertices in  �� (or 
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Subcase 2.3.  Suppose |��| � �, |��| 	� 	3  
and the vertices in �� form a chord from 
an odd cycle. Without loss of generality, 
let  ��� �� 	� 	��.  
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We now prove the main theorem. It is 
important to note that among all cactus 
graphs of order �	 � 3, only the cycle �� 
has zero ring index not equal to its order. 
 
Theorem 4. For any cactus graph � of 
order � � 3, ���� � �. 
 
Proof: Let � be a cactus graph of order �. 
We consider two cases for �. 
 
Case 1. If � has no odd cycles, then � is 
bipartite. It follows from the result of 
Reynera and Ruivivar (2017) that ���� �
�. In this case, an optimal zero ring 
labeling of a spanning tree � of � using 
����	��� is also a zero ring labeling of �. 
This is because a chord coming from an 
even cycle of  � joins a vertex in �� with a 
vertex in �� as implied by Lemma 2. 
 
Case 2. If � contains the odd cycles ��, 
��, ..., ��, where �	 � 	�, obtain a spanning 
tree � of � by removing one edge, say 
�� � ����, from each ��, � � � � �, such 
that the  sets ���� ��� are pairwise disjoint. 
This is possible by Lemma 1. 
 
Our aim is to extend the optimal zero ring 
labeling scheme for � to the cactus graph 
� with odd cycles. 
 
Perform Steps 1 to 3 in the given labeling 
scheme for trees to the spanning tree � of 
� to determine the sets of labels �� and �� 
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��, respectively, of the vertex set of  �. 
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is not equal to A0.

Next, we find a vertex 

From Step 3, we have �� � 	 �	��, ����� 
and �� � 	 �	��, ��, ��, . . ., ����	�. In this 
case, the sum of the labels of �� and �� 
would be ��. So, for this case, Step 3 must 
also be modified, in addition to Step 4. 
That is, we modify �� and �� by 
interchanging ���� with  ��. We thus 
obtain ��∗ � 	 �	��, ��	� and ��∗ � 	 �	��, ��, . . .,����	� as new sets of labels for the vertices 
in �� and ��, respectively.  
  
Since � has at least five vertices and 
���� � �, the rooted tree �� that 
corresponds to the spanning tree � of � 
has a height of 2, 3, or 4. Let us 
specifically identify the vertices ��, �� 	∈
	�� in the different forms of  ��. 

i. �� has a height of 2 such that only  �� 
and �� are vertices of level 1 and 
satisfies exactly one of the 
following: 

a. There is no vertex of level 2 
adjacent to �� and at least two 
vertices of level 2 are adjacent to ��. 

b. Each �� and �� is adjacent to at 
least one vertex of level 2. 

ii. �� has a height of 3 such that �� is the 
only vertex of level 1 and �� is the 
only vertex of level 3.  

iii. �� has a height of 3 with �� 
designated as the root, �� is the 
only vertex of level 2, there is at 
least one vertex of level 3 adjacent 
to ��, and there are at least two 
vertices of level 1 adjacent to ��. 

iv. �� has a height of 3 with �� 
designated as the root, �� is the 
only vertex of level 2, there is only 
one vertex of level 1 adjacent to ��, 
and there are at least two vertices 
of level 3 adjacent to ��. 

v. �� has a height of 4 with only  �� at 
level 1, only  �� is of level 3, there is 
at least one vertex of level 2 
adjacent to ��, and there is at least 
one vertex of level 4 adjacent to ��. 

In all the above nonisomorphic forms of 
��, we label �� by �� and �� by ��. In this 

way, the sum of the labels of the vertices  
�� and �� is not equal to ��. 
 
Next, we find a vertex 	�	 ∈ 	�� in which we 
could assign the label ���� such that ��� 
is neither a branch of  � nor a chord from 
an even cycle of �. Otherwise, the sum of 
the labels of  �� and � may possibly be 
�� � ���� � ��. We will show that this can 
be done in each of the five cases from (i) to 
(v). 
 
In (i.a) and (i.b), we choose � to be any one 
vertex of level 2 that is adjacent to ��.  In 
(ii) and (v), we take � to be the root of ��. 
In (iii), note that there are at least two 
vertices of level 1 that are adjacent to the 
root ��. Since ��, which is of level 2, can 
be adjacent to only one vertex of level 1, it 
follows that � can be chosen to be any 
vertex of level 1 that is not adjacent to ��. 
Lastly, in (iv), � is chosen to be any vertex 
of level 3. It can be verified that ��� is 
neither a branch of  � nor a chord of � 
from an even cycle. The way the vertices 
��, ��, and � are chosen in all 
nonisomorphic forms of  �� is shown in 
Figure 2. 
 
For the other chords of � coming from odd 
cycles that are incident with vertices in 
��, we note that we can pick two elements 
of ��∗ 	�	�����	�  that are not negatives of 
each other as labels to vertices �� and ��, 
�	 � 	�	 � 	�. If there are still unlabelled 
vertices in ��, then we can arbitrarily use 
the remaining elements of ��∗  to label 
these vertices. 

The resulting labeling is an optimal zero 
ring labeling of any cactus graph � of 
order � � �, since ��������� 	� 	�. 
Therefore,  ���� � �.     ∎ 
 
 
 

 in which we 
could assign the label 

From Step 3, we have �� � 	 �	��, ����� 
and �� � 	 �	��, ��, ��, . . ., ����	�. In this 
case, the sum of the labels of �� and �� 
would be ��. So, for this case, Step 3 must 
also be modified, in addition to Step 4. 
That is, we modify �� and �� by 
interchanging ���� with  ��. We thus 
obtain ��∗ � 	 �	��, ��	� and ��∗ � 	 �	��, ��, . . .,����	� as new sets of labels for the vertices 
in �� and ��, respectively.  
  
Since � has at least five vertices and 
���� � �, the rooted tree �� that 
corresponds to the spanning tree � of � 
has a height of 2, 3, or 4. Let us 
specifically identify the vertices ��, �� 	∈
	�� in the different forms of  ��. 

i. �� has a height of 2 such that only  �� 
and �� are vertices of level 1 and 
satisfies exactly one of the 
following: 

a. There is no vertex of level 2 
adjacent to �� and at least two 
vertices of level 2 are adjacent to ��. 

b. Each �� and �� is adjacent to at 
least one vertex of level 2. 

ii. �� has a height of 3 such that �� is the 
only vertex of level 1 and �� is the 
only vertex of level 3.  

iii. �� has a height of 3 with �� 
designated as the root, �� is the 
only vertex of level 2, there is at 
least one vertex of level 3 adjacent 
to ��, and there are at least two 
vertices of level 1 adjacent to ��. 

iv. �� has a height of 3 with �� 
designated as the root, �� is the 
only vertex of level 2, there is only 
one vertex of level 1 adjacent to ��, 
and there are at least two vertices 
of level 3 adjacent to ��. 

v. �� has a height of 4 with only  �� at 
level 1, only  �� is of level 3, there is 
at least one vertex of level 2 
adjacent to ��, and there is at least 
one vertex of level 4 adjacent to ��. 

In all the above nonisomorphic forms of 
��, we label �� by �� and �� by ��. In this 

way, the sum of the labels of the vertices  
�� and �� is not equal to ��. 
 
Next, we find a vertex 	�	 ∈ 	�� in which we 
could assign the label ���� such that ��� 
is neither a branch of  � nor a chord from 
an even cycle of �. Otherwise, the sum of 
the labels of  �� and � may possibly be 
�� � ���� � ��. We will show that this can 
be done in each of the five cases from (i) to 
(v). 
 
In (i.a) and (i.b), we choose � to be any one 
vertex of level 2 that is adjacent to ��.  In 
(ii) and (v), we take � to be the root of ��. 
In (iii), note that there are at least two 
vertices of level 1 that are adjacent to the 
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of level 3. It can be verified that ��� is 
neither a branch of  � nor a chord of � 
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Figure 2. 
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We now prove the main theorem. It is 
important to note that among all cactus 
graphs of order �	 � 3, only the cycle �� 
has zero ring index not equal to its order. 
 
Theorem 4. For any cactus graph � of 
order � � 3, ���� � �. 
 
Proof: Let � be a cactus graph of order �. 
We consider two cases for �. 
 
Case 1. If � has no odd cycles, then � is 
bipartite. It follows from the result of 
Reynera and Ruivivar (2017) that ���� �
�. In this case, an optimal zero ring 
labeling of a spanning tree � of � using 
����	��� is also a zero ring labeling of �. 
This is because a chord coming from an 
even cycle of  � joins a vertex in �� with a 
vertex in �� as implied by Lemma 2. 
 
Case 2. If � contains the odd cycles ��, 
��, ..., ��, where �	 � 	�, obtain a spanning 
tree � of � by removing one edge, say 
�� � ����, from each ��, � � � � �, such 
that the  sets ���� ��� are pairwise disjoint. 
This is possible by Lemma 1. 
 
Our aim is to extend the optimal zero ring 
labeling scheme for � to the cactus graph 
� with odd cycles. 
 
Perform Steps 1 to 3 in the given labeling 
scheme for trees to the spanning tree � of 
� to determine the sets of labels �� and �� 
for the vertices in the partite sets �� and 
��, respectively, of the vertex set of  �. 
  
By the way the vertices of  � are classified 
into �� and �� in Step 2, it follows from 
Lemma 2 that the difference of the levels 
of �� and ��, � � � � �, in the 
corresponding rooted tree of  � is even. 
This means that either  ��� �� � ��  or 
��� �� � ��. Thus, an arbitrary assignment 
of labels from �� (or ��� to the vertices in 
�� (or ��) may lead to the labels of  �� and 
�� being negatives of each other. To avoid 

this, we modify Step 4 in the labeling 
scheme for trees as generalized to a cactus 
graph � with odd cycles.  
 
In assigning labels to the vertices of �, we 
consider three subcases. 
 
Subcase 2.1. Suppose |��| 	� � and |��| 	�
	3. Then, �� � ���� and �� �
���� ��� � � �����. Here, the rooted tree 
corresponding to the spanning tree � of � 
has a height of 1, and hence, all cycles in 
� are of length 3. The lone vertex in �� is 
labeled as ��. Using Lemma 3, every pair 
of vertices in �� that forms a chord can be 
labeled by two elements of �� whose sum 
is not equal to ��. The unused elements of 
�� are used to label the remaining vertices 
in  ��. 
 
Subcase 2.2. Suppose			|��| 	� 	 |��| 	� 	� 
and the vertices in �� do not form a chord 
from an odd cycle when  |��| � 	�.  
 
If |��| � |��| � �, then �� � 	 �	��� ��� and 
�� � 	 �	��� ���. Moreover, if |��| � � and 
|��| � 3, then �� � 	 �	��� ����� and �� �
���� ��� ��� � � �����. Even though the sum 
of the labels of the vertices in �� is ��, 
they are nonadjacent vertices in �	 
because they do not form a chord from an 
odd cycle. In assigning labels to the 
vertices of � that are contained in partite 
sets with at least three elements, we first 
assign elements of  �� (or ��� that are not 
negatives of each other as labels of the 
vertices ��� �� � �� (or ��� of a chord from 
an odd cycle in �. This is possible by 
Lemma 3. The unused elements of  �� (or 
��� may then be arbitrarily assigned as 
labels to the remaining vertices in  �� (or 
����   
 
Subcase 2.3.  Suppose |��| � �, |��| 	� 	3  
and the vertices in �� form a chord from 
an odd cycle. Without loss of generality, 
let  ��� �� 	� 	��.  
 

x is 
neither a branch of T nor a chord from an even 
cycle of G. Otherwise, the sum of the labels of 
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