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ABSTRACT

Chemical reaction networks (CRNs) provide a language for representing systems of interacting 
entities. In this paper, the pre-industrial carbon cycle models of Schmitz (2002) and Anderies et 
al. (2013) are viewed and analyzed as CRNs. In this framework, we assess the models’ capacity 
for multiple steady states or multistationarity via Chemical Reaction Network Theory –  an  
approach that associates the topological structure of the CRN to the dynamical behavior of the 
network. Using the computational approach of Feliu & Wiuf (2013), this paper shows that the CRN 
representation of the pre-industrial model of Schmitz is injective, which is sufficient to conclude 
that the system cannot admit multiple steady states. On the other hand, the multistationarity 
of the pre-industrial model of Anderies et al. is shown using the criterion for the uniqueness of 
complex balancing equilibrium of Müller & Regensburger (2012).
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INTRODUCTION

A chemical reaction network (CRN) 
represents a universe whose evolution is 
determined by the transformation of its 
elements into other elements (Veloz & Razeto-
Barry, 2017).  In biochemistry-related areas 
such as systems biology, bioinformatics, 
enzyme kinetics, gene regulatory networks 
and many others, chemical reaction networks 
provide a language for systemic modelling 
(Johnston, 2011; Veloz & Razeto-Barry, 2017). 
The study of CRNs gave rise to a significant 
body of theoretical work, notably the so-called 
Chemical Reaction Network Theory (CRNT). 
The field had its foundations from the works 
of Feinberg, (1972), Horn(1972) and Horn 
& Jackson (1972). The focus of CRNT is to 
draw the connection between the topological 
structure of a network’s reaction graph and 
the qualitative properties of the network. By 
qualitative properties we mean properties of 
dynamical systems with a common underlying 
structure (Feliu & Wiuf, 2013). 

In this paper, we pay attention to a 
particular qualitative property, namely the 
capacity of a network to admit multiple steady 
states, or multistationarity. More precisely, this 
paper aims to investigate the multistationarity 
of two models of global carbon cycle at pre-
industrial state by associating a CRN to each 
model and by subsequently applying known 
results in CRNT. The models of interest 
are those derived from the global carbon 
cycle representations of Schmitz (2002) and 
Anderies et al. (2013). 

Fortun et al. (2017b) showed the existence 
of steady states and the parametrization 
of the set of positive equilibria of a power-
law system approximation of pre-industrial 
carbon cycle model of Schmitz (2002). In 
this paper, this finding is enhanced by 
establishing the non-multistationarity of 
system. This is accomplished by showing that 
its corresponding CRN representation has 

the injectivity property, which is a sufficient 
condition for the absence of multiple positive 
equilibria. We apply the computational 
method of Feliu&Wiuf (2013) in determining 
injectivity of the CRN. 

The multistationarity of the power-law 
system approximation of the pre-industrial 
carbon cycle model of Anderies et al. (2013) 
was observed by Fortun et al. (2017a). Here, 
this finding is verified by considering a 
different but dynamically equivalent CRN 
representation for the model. The new CRN 
representation turns out to be a good candidate 
for applying the criterion for the uniqueness 
of complex balancing equilibrium of Müller & 
Regensburger (2012).

PRE-INDUSTRIAL  
CARBON CYCLE MODELS

The first model is derived from the carbon 
cycle box model of Schmitz (2002). The model 
is an isothermal (i.e., with fixed temperature) 
simplification of the global carbon cycle. In 
the pre-industrial condition, Schmitz’s model 
involves six carbon pools whose masses are 
denoted by . The digraph shown in Figure 
1 depicts the interaction among the different 
pools. The arrows represent the carbon fluxes 
or the transfer of carbon mass from one pool 
to another. 

Figure 1. Digraph corresponding to the  
pre-industrial carbon cycle model of Schmitz 

(2002).
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Furthermore, the rates of transfer of carbon 
mass from one pool to another are all power-law 
functions with a single exception – the rate of 
transfer from atmosphere to terrestrial biota. 
Fortun et al. (2017b) constructed a power-
law approximation of the exception using a 
standard method from Biochemical Systems 
Theory (BST) to obtain a Generalized Mass 
Action (GMA) system, i.e. a system where 
each flux is approximated separately with a 
power-law term (Voit, 2000). The resulting 
ODE system, called SM-PRI-GA, is given by

Biochemical Systems Theory (BST) to obtain 131 
a Generalized Mass Action (GMA) system, i.e.  132 
a system where each flux is approximated 133 
separately with a power-law term (Voit, 134 
2000). The resulting ODE system, called SM-135 
PRI-GA, is given by 136 
 137 
�� �  =  ������.� �  �������.� � ����� 
             � ����� � ����� � ����� � ������.�� 

(1)

�� �  =  ����� �  ����� � ����� 
              � ����� � ������.� 
�� �  =  ����� �  ����� �  ����� 
� ����� � �������.� 
�� �  =  �����  �  ����� � ������ ����� 
�� �  =  ������.��� ������ ����� 
�� �  =  ������ ����� 
 138 

The second model is the pre-industrial 139 
carbon cycle representation of Anderies et al. 140 
(2013). Unlike the model of Schmitz, this 141 
model takes into account the impact of 142 
temperature in the system, thereby forming a 143 
feedback system. The model also considers 144 
only the basic interactions in three pools 145 
(land, atmosphere, and ocean) that are most 146 
significant at a global scale. Pictorially, the 147 
system is depicted using the biochemical map 148 
in Figure 2. The map consists of nodes that 149 
represent carbon pools, solid arrows that 150 
indicate transfer of carbon, and dashed 151 
arrows that indicate if a pool affects or 152 
modulates a process. 153 

 154 
Figure 2. Biochemical map of the pre-155 

industrial carbon cycle model of Anderies et 156 
al. (2013). 157 

 158 
As in the previous model, a GMA system 159 
approximation of the model of Anderies et al. 160 
is computed (Fortun et al., 2017a) and the 161 
resulting system, named as AN-PRI-GA, is 162 
as follows: 163 
 164 
 165 
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where 167 

�� =  −�.8�423,   �� =  −0.270554,  
�� =  0.4256� ����� =  0.438628. 168 
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(CRN) 171 
 172 

In this section, we shall translate the 173 
models presented in the previous section as 174 
chemical reaction networks with power-law 175 
rate functions. Our aim is to determine the 176 
capacity for multistationarity of each system 177 
through these CRN representations. We first 178 
require some notations and terminologies. 179 
 180 
 We adopt the following notation 181 
used by Feinberg (1979) and (Müller 182 
&Regensburger, 2012). Denote the set ofreal 183 
numbers by ℝ, the non-negative real numbers 184 
by ℝ� and the positive real numbers by ℝ�. 185 
Objects in the reaction systems are viewed as 186 
members of vector spaces. Suppose ℐ is a 187 
finite (index) set. By ℝℐwe mean the usual 188 
vector space of real-valued functions indexed 189 
by ℐ. For � ∈ ℝℐ, the ��� coordinate is denoted 190 
by��. Addition, subtraction, and scalar 191 
multiplication in ℝℐare defined in the usual 192 
way. The sets ℝ�ℐ  and ℝ�ℐ are called the non-193 
negative and positive orthantsof ℝℐ, 194 
respectively. We define the standard basis 195 
{��}�∈ℐ by the characteristic function 196 

(��)(�) = ��  �� � = �,
0  �� � � �, 

for all � ∈ ℐ. If � ∈ ℝ�ℐ and � ∈ ℝℐ, we define 197 
�� ∈ ℝ� by 198 
 199 

�� = � ��
��

�∈ℐ
. (3)

 200 
The vector ��� � ∈ ℝℐ, where � ∈ ℝ�ℐ  is given 201 
by  202 
 203 

(��� �)� = ��� �� , ��� ��� � ∈ ℐ. 
 204 
By the supportof � ∈ ℝℐ, denoted by ���� �, 205 
we mean the subset of ℐ assigned with non-206 
zero values by �. That is,  207 
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�� �  =  ������.� �  �������.� � ����� 
             � ����� � ����� � ����� � ������.�� 

(1)

�� �  =  ����� �  ����� � ����� 
              � ����� � ������.� 
�� �  =  ����� �  ����� �  ����� 
� ����� � �������.� 
�� �  =  �����  �  ����� � ������ ����� 
�� �  =  ������.��� ������ ����� 
�� �  =  ������ ����� 
 138 

The second model is the pre-industrial 139 
carbon cycle representation of Anderies et al. 140 
(2013). Unlike the model of Schmitz, this 141 
model takes into account the impact of 142 
temperature in the system, thereby forming a 143 
feedback system. The model also considers 144 
only the basic interactions in three pools 145 
(land, atmosphere, and ocean) that are most 146 
significant at a global scale. Pictorially, the 147 
system is depicted using the biochemical map 148 
in Figure 2. The map consists of nodes that 149 
represent carbon pools, solid arrows that 150 
indicate transfer of carbon, and dashed 151 
arrows that indicate if a pool affects or 152 
modulates a process. 153 

 154 
Figure 2. Biochemical map of the pre-155 

industrial carbon cycle model of Anderies et 156 
al. (2013). 157 

 158 
As in the previous model, a GMA system 159 
approximation of the model of Anderies et al. 160 
is computed (Fortun et al., 2017a) and the 161 
resulting system, named as AN-PRI-GA, is 162 
as follows: 163 
 164 
 165 
���  =  ����

����
�� − ����

����
�� 

(2) ���  =  ����
����

�� −  ����
����

��  
            −����  �  ����� 
���  =  ���� − ����� 

 166 
where 167 

�� =  −�.8�423,   �� =  −0.270554,  
�� =  0.4256� ����� =  0.438628. 168 

 169 
CHEMICAL REACTION NETWORK 170 

(CRN) 171 
 172 

In this section, we shall translate the 173 
models presented in the previous section as 174 
chemical reaction networks with power-law 175 
rate functions. Our aim is to determine the 176 
capacity for multistationarity of each system 177 
through these CRN representations. We first 178 
require some notations and terminologies. 179 
 180 
 We adopt the following notation 181 
used by Feinberg (1979) and (Müller 182 
&Regensburger, 2012). Denote the set ofreal 183 
numbers by ℝ, the non-negative real numbers 184 
by ℝ� and the positive real numbers by ℝ�. 185 
Objects in the reaction systems are viewed as 186 
members of vector spaces. Suppose ℐ is a 187 
finite (index) set. By ℝℐwe mean the usual 188 
vector space of real-valued functions indexed 189 
by ℐ. For � ∈ ℝℐ, the ��� coordinate is denoted 190 
by��. Addition, subtraction, and scalar 191 
multiplication in ℝℐare defined in the usual 192 
way. The sets ℝ�ℐ  and ℝ�ℐ are called the non-193 
negative and positive orthantsof ℝℐ, 194 
respectively. We define the standard basis 195 
{��}�∈ℐ by the characteristic function 196 

(��)(�) = ��  �� � = �,
0  �� � � �, 

for all � ∈ ℐ. If � ∈ ℝ�ℐ and � ∈ ℝℐ, we define 197 
�� ∈ ℝ� by 198 
 199 

�� = � ��
��

�∈ℐ
. (3)

 200 
The vector ��� � ∈ ℝℐ, where � ∈ ℝ�ℐ  is given 201 
by  202 
 203 

(��� �)� = ��� �� , ��� ��� � ∈ ℐ. 
 204 
By the supportof � ∈ ℝℐ, denoted by ���� �, 205 
we mean the subset of ℐ assigned with non-206 
zero values by �. That is,  207 

(2)

where

and

CHEMICAL REACTION  
NETWORK (CRN)

In this section, we shall translate the 
models presented in the previous section as 
chemical reaction networks with power-law 
rate functions. Our aim is to determine the 
capacity for multistationarity of each system 
through these CRN representations. We first 
require some notations and terminologies.

We adopt the following notation used by 
Feinberg (1979) and (Müller & Regensburger, 
2012). Denote the set of real numbers by ℝ, 
the non-negative real numbers by ℝ≥ and 
the positive real numbers by ℝ>. Objects in 
the reaction systems are viewed as members 
of vector spaces. Suppose ℐ is a finite (index) 

Figure 2. Biochemical map of the pre-industrial carbon cycle 
model of Anderies et al. (2013).
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set. By ℝℐ we mean the usual vector space of 
real-valued functions indexed by ℐ. For x ∈ ℝℐ, 
the ith coordinate is denoted by xi. Addition, 
subtraction, and scalar multiplication in ℝℐ 
are defined in the usual way. The sets  and 

 are called the non-negative and positive 
orthants of ℝℐ, respectively. We define the 
standard basis  by the characteristic 
function

for all . If  and , we define 
 by

(3)

The vector , where  is given by 

By the support of , denoted by x, we 
mean the subset of ℐ assigned with non-zero 
values by x. That is, 

We now formally define a chemical reaction 
network (CRN).

Definition 1 (Feinberg, 1979). A chemical 
reaction network is a triple  of 
three non-empty finite sets:

1. a set species 
2. a set  of complexes, which are non-

negative integer linear combination of 
the species, and

3. a set  of reactions such that 
a.  for all , and 
b. for each , there exists a  

such that  or .

We reserve m to denote the number of species, 
n to denote the number of complexes, and r 
to denote the number of reactions in a CRN.

If , we say that i reacts to j. The 
usual notation in chemistry to denote this 
relation is . In this paper, the notations 

 and  are used interchangeably. 
Moreover, if , we say that i is the 
reactant complex and j is the product 
complex of the reaction.

Arceo et al. (2015) proposed CRNT 
approaches in studying GMA systems. 
To analyze the dynamic behavior of a 
GMA system through CRNT, it requires 
translating the GMA system into a CRN 
whose evolution is governed by power-law 
rate functions. In this way, the two systems 
(the GMA system and its associated CRN) 
are dynamically equivalent, i.e., they have 
the same ordinary differential equations. The 
CRN representation needed is referred to 
as the total CRN representation of the GMA 
system (Arceo et al., 2015). The procedure to 
obtain the representation is presented below 
as a definition.

Definition 2. The total CRN representation 
of a GMA system is a network of reactions 
based from its biochemical map. This is 
constructed as follows:

1. To characterize an independent 
variable , add the inflow  to 
the reaction network.

2. For each efflux coming out of  
(indicated by an outlofw arrow), add 
the outflow reaction .

3. For each interaction , with 
a  regulatory arrow from each 
element , associate the reaction 

.

Example 1. Consider the biochemical map 
of SM-PRI-GA in Figure 1 (the digraph is its 
biochemical map) and AN-PRI-GA in Figure 
2. Since there are no assumed independent 
variables in each system and there are 
no outflows (or effluxes), we need only to 
consider the third condition in the preceding 
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definition. For SM-PRI-GA, its total CRN 
representation is given by  where

Hence,  and . In the case of 
AN-PRI-GA, the CRN representation of the 
system is given  by where 

In this case,  and .

A CRN may be viewed as a digraph with 
its complexes as vertices and its reactions as 
arcs. This description is called the reaction 
graph of the CRN.

Example 2. The reaction graph for the CRN 
representation of SM-PRI-GA is precisely 
shown in Figure 1. On the other hand, the 
following reaction graph corresponds to the 
CRN representation of AN-PRI-GA.

The reaction graph of SM-PRI-GA is made 
of one connected piece containing all the 
complexes. On the other hand, the reaction 
graph of AN-PRI-GA is composed of three 
separate pieces; the first piece contains the 
linked complexes  and , the 
second piece contains the linked complexes  

 and , and the third piece contains 
the connected complexes  and . These 

pieces comprised of mutually linked complexes 
are called the linkage classes of the CRN. 
We denote the number of a CRN’s linkage 
classes by .

We say that two complexes are strongly 
connected if there is a directed path from 
one to the other and vice versa. If every pair 
of complexes in each linkage class of CRN 
is strongly connected, then we say that the 
network is weakly reversible. Observe that 
the CRN representation for SM-PRI-GA is 
weakly reversible but the CRN representation 
for AN-PRI-GA is not weakly reversible.

Many features of CRNs can be examined by 
working in terms of finite dimensional spaces 

,  and , which are referred to as species 
space, complex space and reaction space, 
respectively. Since these are vector spaces of 
real-valued functions, the set  forms a 
basis of  where  or . We collect some 
linear algebraic notions related to the study 
of CRNs.

In a CRN, each complex is associated with 
a complex vector in .

Definition 3. The complex vector of  
is defined as

where  is the stoichiometric coefficient of 
.

The set of complexes for the two CRNs of 
interest are expressed as set of complex vectors 
as follows:

SM-PRI-GA:
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AN-PRI-GA:

For every reaction, we associate a reaction 
vector, which is obtained by subtracting 
the reactant complex from the product 
complex. By the rank of a CRN, we mean the 
maximallinearly independent reaction vectors 
that the CRN contains.

Definition 4. For a reaction , the 
associated reaction vector is . 
The stoichiometric subspace  of the CRN 
is the linear subspace of  defined by

The rank of the CRN, denoted by , is defined 
as .

One can verify that the ranks of the CRN 
representation of SM-PRI-GA andAN- PRI-GA 
are 5 and 2, respectively.

A non-negative integer, called deficiency, 
can be associated to each CRN. The earliest 
results in CRNT were centered about the 
classification of reaction networks by means 
of this index.

Definition 5. The deficiency of a CRN is 
the integer .

The deficiency is not a measure of a network’s 
size. In fact, a very large or complex network 
can have a low deficiency(Shinar & Feinberg, 
2012). Instead, the deficiency measuresthe 
amount of linear independence among the 
reactions of the network. The higher the 
deficiency, the lower the extent of linear 
independence of the reactions(Shinar & 
Feinberg, 2011). The deficiencies of the CRNs 

of SM-PRI-GA and AN-PRI-GA are shown 
computed below.

SM-PRI-GA:

AN-PRI-GA: 

For later reference, we define three maps 
relevant in the study of CRNs: incidence 
map,map of complexes, and stoichiometric 
map. 

Definition 6. Let  be a CRN.

1. The incidence map  is the 
linear map defined by 

       for all .

 Its matrix representation is the   
matrix, called incidence matrix, is 
given by

2. The map of complexes  is 
the linear map defined by 

 for all .

 Its matrix representation is the 
 matrix, called the matrix of 

complexes , whose  entry is 
the stoichiometric coefficient of the  
species in the  complex.

3. The stoichiometric map  
is defined as . Its matrix 
r e p r e s e n t a t i o n ,  c a l l e d  t h e 
stoichiometric matrix ,  is the 

 matrix whose  column is the 
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reaction vector  of the reaction 
 for .

Remark 1. Since the columns of N are 
precisely the reaction vectors, clearly ImN = S.

To capture the evolution of a CRN, a 
system ordinary differential equations (ODEs) 
is specified. In this representation, the state of 
the system is described by the concentrations 
of the species, which are specified through 
a vector of composition , where each 
coordinate denotes the concentration of 
species . In order to write the ODEs, it 
is necessary to know the rate of occurrence of 
each of the chemical reactions in the network. 
It is generally assumed that the rate of 
each reaction depends in its own way on the 
(instantaneous) composition of species. That 
is, there exists a nonnegative real-valued 
rate function  such that  is 
the instantaneous occurrence rate of reaction 

 when the composition is . A kinetics 
for a CRN is an assignment of such a rate 
function to each reaction in the network. This 
is defined formally as follows.

Definition 7.  A kinetics  of  a CRN 
 is an assignment of a rate 

function  to each reaction 
, and 

 for all  if and only if 
 

A kinetics for a network  is denoted by 
. The pair  is called 

the chemical kinetic system (CKS).

We denote the set of all kinetics on a CRN  
by .

In light of the GMA system approximation 
of the pre-industrial carbon cycle models, we 
focus our discussion on power-law kinetic 
systems. Power-law kinetics is determined by 

arate vector  whose elements are the 
rate constants for each reaction, and an  
matrix , called the kinetic order matrix, 
where  is the kinetic order of the  species 
concentration in the  reaction.

Definition 8. A kinetics  is a 
power-law kinetics (PLK) if

 for all 

where  and .

In the definition , pertains to the row of 
the kinetic order matrix corresponding to the 
reaction . By Equation (3),

Example 3. Let  and  denote the kinetic 
order matrices of the CRN representation of 
SM-PRI-GA and AN-PRI-GA, respectively. 
These matrices are given below.

and

Fortun-revised.indd   87 6/9/2018   9:22:10 AM



88 VOLUME 11 (2018)MANILA JOURNAL OF SCIENCE

The respective kinetics  and  of the two 
systems are as follows:

and

Arceo et al. (2017)identified some of 
subsets PLK systems and presented them 
through a kinetics landscape. One class of 
power-law kinetics they identified is the set of 
power-law kinetics with reactant-determined 
kinetic order (PL-RDK). These are kinetic 
systems with power-law rate functions whose 
kinetic orders are identical for all branching 
reactions (i.e.,reactions with similar reactant 
complex).

Definition 9. A PLK system has reactant-
determined kinetics (of type PL-RDK) if for 
any two reactions  with identical reactant 
complexes, the corresponding rows of kinetic 
orders in  are identical, i.e.,  for 

. Otherwise, a PLK system has 
non-reactant-determined kinetics (of type 
PL-NDK) if there exist two reactions with the 
same reactant complexes whose corresponding 
rows of kinetic orders in  are not identical.

The kinetic order matrix for SM-PRI-GA 
(in Example 3) reveals that the system is of 
typePL-NDK. On the other hand, the AN-PRI-
GA system is of type PL-RDK.

Once a kinetics is associated with a 
CRN, we can determine the rate at which 
the concentration of each species evolves at 
composition c. The rate of formation of the 
species and the ODEs that govern the species 
concentration can be specified according to the 
following definition.

Definition 10. The species formation rate 
function (SFRF) of a chemical kinetic system 
(CKS) is the vector field

(4)

The equation  is  the ODE  or  
dynamical system of the CKS.

Remark 2. Using the above formula, one may 
verify that the ODE systems correspondingto 
the CRN representations of SM-PRI-GA 
and AN-PRI-GA are indeed identical to the 
ODEsystems in Section 2.

Definition 11. A positive equilibrium 
or steady state is an element of  for 
which . The set of positive equilibria  
of a chemical kinetic system is denoted by 

.

Definition 12. Two elements  are 
stoichiometrically compatible if  is 
contained in . The intersection of the coset 

 with  is called a stoichiometric 
compatibility class.

Since the trajectory of the chemical system 
is contained in the stoichiometric compatibility 
class of its initial point (Feinberg, 1979), all 
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questions relating to existence and numberof 
steady states are relative to a stoichiometric 
compatibility class. In particular, a chemical 
kinetic system is multistationary (or has the 
capability for multiple steady states) ifthere is 
at least one stoichiometric compatibility class 
with two distinct steady states. Onthe other 
hand, the system is monostationary if it has 
at most one steady state for allstoichiometric 
compatibility classes.

Definition 13 (Wiuf&Feliu, 2013). Let    
be a CRN with associated stoichiometric 
matrix N. The CRN  is multistationary 
or has that capacity for multiple steady 
states if there exists a kinetics  and 
distinct stoichiometrically compatible vectors 

 such that

Finally, we discuss the notion of complex 
balancing in chemical kinetics, which was 
first introduced by Horn & Jackson (1972). 
Analogous to the species formation rate 
function, there is a function called complex 
formation rate function, which takes as an 
argument a concentration vector  in the species 
space. However, unlike the SFRF, the complex 
formation rate function returns a vector in .

Definition 14. The complex formation rate 
function  of a chemical kinetic 
system is given by

(5)

The counterpart of a steady state in 
the complex space is a concentration  
such that . This has a natural 
interpretation: Observe from Equation (5) that 
the function  gives the difference between the 
production and degradation of each complex. 
Thus, complex balancing occurs when .

Remark 3. In view of Definitions 6, 10 and 
14, it is clear that

Hence, if  is complex balanced, then  
is a steady state (the linearity of Y implies 

). However, the converse does not 
necessarily hold (i.e., when  is nontrivial).

Definition 15. A CKS  is called  
complex balanced if it has a complex 
balanced steady state. The set of positive 
complex balanced steady states of the CKS is 
denoted by .

INJECTIVE REACTION NETWORKS

We discuss the notion of an injective 
network.

Definition 16. (Wiuf & Feliu, 2013). Let  be 
a CRN with associated stoichiometric matrix 
N. We say that  is injective if for any distinct 
stoichiometrically compatible vectors  
we have

 for all .

From Definitions 13 and 16, we find that 
if  is injective, then  does not have the 
capacity for multiple steady states. Hence, to 
determine the multistationarity of the SM-
PRI-GA and AN-PRI-GA, one can initially 
verify the injectivity of their corresponding 
CRN representations. If the network is 
injective, we can immediately conclude the 
monostationarity of the system. However, if 
the network is not injective, multistationarity 
of the system does not automatically follow.

Characterization

We use the simple characterization of 
injective power-law kinetic systems provided 
by Wiuf & Feliu (2013).
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Definition 17.(Feliu & Wiuf, 2013). Amatrix  
with entries is called sign-non-singular if the 
determinant of Y is a nonzero homogeneous 
polynomial in , with all coefficients being 
positive or all being negative. For the matrices 
considered here, Y is sign-non-singular if its 
determinant has constant nonzero sign for 
positive values of .

Let m and r denote the number of species 
and reactions a CRN, respectively and 
consider symbolic vectos  and 

. Define the  matrix  by

where  denotes the stoichiometric matrix of 
the network and F is the kinetic order matrix.

Let  be the basis of the left 
kernel of  and let  be the indices 
of the corresponding d rows of  that are 
linearly dependent of the remaining s rows. 
To determine the indices, compute a basis 
of the left kernel of  and perform Gaussian 
elimination to obtain a new basis . 
Then  can be taken to be the index of the first 
nonzero entry of .

Define an  matrix  by replacing 
the -th row of  by . The matrix  has d 
rows of real entries and s rows whose nonzero 
entries are polynomials in  and .

Theorem 1 (Wiuf & Feliu, 2013). A CRN with 
power-law kinetics and fixed kinetic orders is 
injective if and only if  is sign-non-singular.

For a comprehensive discussion of the previous 
result along with its proof, the reader is 
referred to paper of Wiuf & Feliu (2013). 
Here, we are particularly interested in the 
computational approach to determine the 
multiple steady state capacity of a PLK system 
arising from the previous theorem. Feliu & 
Wiuf (2013) discussed the said approach and 

provided a Maple script, which is based from 
the following algorithm:

1. Input the stoichiometric matrix  and 
kinetic order matrix . 

2. Compute the matrix  
.

3. Calculate a basis  of the left 
kernel of . Reduce it by Gaussian 
elimination.

4. Generate the matrix : For each  
find the first nonzero entry  of the row 
vector  and replace the -th row of  
by .

5. Compute the determinant of .
a. If it is zero, then the CRN is not 

injective.
b. If there are nonzero terms in the 

determinant, extract the signs of 
the coefficients. If all the signs are 
the same, the CRN is injective. If 
the signs are different, then the 
CRN is not injective.

Injectivity Test of Pre-industrial 
Carbon Cycle Models

The script was used to determine the 
injectivity of the CKS associated with  
SM-PRI-GA and AN-PRI-GA (see Appendix).
The calculation reveals that the network of 
SM-PRI-GA is injective. Hence, it cannot 
admit multiple positive steady states in 
any stoichiometric compatibility class. This 
result supplements the results of Fortun et 
al. (2017b), which characterized the steady 
states of SM-PRI-GA through a Deficiency 
Zero Theorem. In the aforementioned paper, 
no statement was made about the uniqueness 
of the equilibrium in each stoichiometric class.

Implementation of the algorithm to AN-
PRI-GA indicates that the network is not 
injective. Note, however, that non-injectivity 
is not a sufficient condition for the existence of 
multiple steady states in some stoichiometric 
compatibility classes.Nevertheless, Fortun 
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et al. (2017a) showed that, indeed, AN-PRI-
GA is a system that admits multiple steady 
states in some stoichiometric compatibility 
classes using anprocedure called Deficiency-
One Algorithm. In the following section, this 
findingis verifiedusing an alternative CRN, 
which is still dynamically equivalent to AN-
PRI-GA.

MULTISTATIONARITY CRITERION 
FOR GMAK SYSTEMS

In this section, the problem of deciding for 
the multistationarity capacity of AN-PRI-GA 
is addressed by considering an alternative 
CRN representation for the system, which 
allows for the application of a result of Müller 
& Regensburger (2012).

Alternative CRN representation of  
AN-PRI-GA

Recall the CRN representation for AN-
PRI-GA:

(6)

Talabis et al. (2018b) found the following CRN 
whose stoichiometric subspace is identical to
that of (6):

(7)

The second reaction of (6)  
is written as  in (7). 
Observe that these two reactions point to a 
similar reaction vector. Since one retains the 
same kinetic order matrix for both systems, 
the two induced chemical kinetic systems must 
be dynamically equivalent.

Interestingly, the new network haszero 
deficiency. Since the induced CKS belongs 
toa subset of power-law kinetic system with 
linearly independent kinetic order vectors 
calledPL-TIK system by Talabis et al. (2018a), 
the existence of a steady state is guaranteed 
by theDeficiency Zero Theorem for PL-TIK 
systems (Talabis et al., 2018a)1. However, 
the theoremis silent about the capacity of 
the system to admit multiple steady states 
in some stoichiometric compatibility classes.
To verify the capacity of AN-PRI-GA to 
support multiple steady states in a positive 
compatibility class, we appeal to the results of 
Müller &Regensburger (2012) for Generalized 
Mass Action Kinetic (GMAK) systems.

Uniqueness of Complex Balancing 
Equilibria in GMAK systems

The papers of (Müller & Regensburger, 
2012, 2014) on GMAK systems marked the 
emergence of results on power law kinetics in 
CRNT. GMAK systems essentially correspond 
toPL-RDK systems, but there are some slight 
differences; see Section 6 of paper of Talabiset 
al. (2018a) for a detailed discussion. We recall 
some relevant notions.

Definition 18. The matrix  is the  
matrix defined as

In other words, for a reactant complex, the 
column of  is the transpose of the kinetic order 
matrix row of the complex’s reaction, otherwise 
the column is 0.

Definition 19. The kinetic order subspace 
 is defined as

1 To be exact, the existence of the equilibrium is 
guaranteed by Corollary 6 of Talabis et al. (2018a).
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GMAK theory introduced the concept of 
kinetic deficiency , which replaces the rank of 
the network with the dimension of the kinetic 
order subspace  in the deficiency definition. 
Their Kinetic Deficiency Zero Theorem (KDZT) 
includes the following statements:

Theorem 2 (Müller &Regensburger, 2012). 
For a weakly reversible GMAK system  
and its set of complex balanced equilibria 

.

(i) if and only if  has a complex 
balanced 

(ii)  
 for any  

Note that the CKS induced by the new CRN 
representation for AN-PRI-GA is a GMAK 
system. Observe that

and

Hence,

Thus,

The kinetic deficiency is thus

By the first statement of Theorem 2, the 
network is complex balanced. Moreover, it 
follows from the second statement that for any

,

where

(8)

(Recall that , , 
, and .)

Note that for zero deficiency networks 
; i.e., all steady states are 

complex balanced (Feinberg, 1972).

Müller & Regensburger (2012) provided 
a criterion for the uniqueness of complex 
balancing equilibrium in stoichiometric class 
in terms of sign vector relationships between 
 and . 

Definition 20 (Müller &Regensburger, 2012). 
The sign vector  of a 
vector  is obtained by applying the sign 
function component wise; we write

for any subset .

Theorem 3 (Müller &Regensburger, 2012). 
Let  and  be subspaces of . Then the 
following statements are equivalent: 

(i)  for every 
stoichiometric compatibility class .

(ii) 
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Consider the vector 

This is clearly sign compatible with the vector 
in ; see Equation (8). By Theorem 3 and 
the fact that , the system 
has the capacity to admitat least two distinct 
stoichiometrically compatible equilibria. This 
is consistent with the finding of Fortun et al. 
(2017a).

SUMMARY

This paper aims to assess the capacity 
of two pre-industrial carbon cycle models 
to admit multiple steady states in some 
positive stoichiometric compatibility classes. 
Using the algorithm of Feliu & Wiuf (2013),it 
was shown that the power-law system 
approximation of the pre-industrial carbon 
cycle model of Schmitz (2002) or SM-PRI-GA 
is injective. This implies that the CRN cannot 
admit multiple steady states in any positive 
stoichiometric class. This result supplements 
the characterization of the steady states 
of SM-PRI-GA provided by Fortun et al. 
(2017b). Furthermore, a CRN with power-law 
kinetics corresponding to a power-law system 
approximation of the pre-industrial carbon 
cycle model of Anderies et al.(2013) or AN-PRI-
GA was obtained from Talabis et al. (2018b). 
This CRN representationis an alternative to 
the CRN representation generated by Fortun 
et al. (2017a). Viewed asa GMAK system with 
zero deficiency, the GMAK theory of Müller & 
Regensburger (2012)indicates that the system 
cannot admit multiple steady states in any 
positive stoichiometriccompatibility class. 
This result agrees with the finding in Fortun 
et al. (2017a).
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AN-PRI-GA: 1083 
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