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ABSTRACT

A clique partition of a simple graph G is a collection of complete subgraphs of G (called cliques) 
that partitions the edge set of G. The cardinality of a minimum clique partition number of G 
is called the clique partition number of G and is denoted by cp(G). This paper presents some 
approaches in determining integers x for which a  graph G on n vertices with clique partition 
number x exists.
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INTRODUCTION

In this section, we provide some definitions 
and preliminary results on clique partitions 
of a graph. A detailed discussion on basic 
terminology on graphs can be found in Bondy 
(1977) and Harary (1969). Throughout the 
paper, only connected finite simple undirected 
graphs will be considered.

A complete subgraph of a graph G is called 
a clique of G. A j - clique is a clique with j 
vertices. A clique partition of G is a family 
  of cliques of G such that every edge of G is 

in exactly one member of  . The cardinality of 
  is denoted by |  |. If   has the property that  

|   ́| ≥ |  | for all clique partitions   ́ of G,  

then   is said to be minimum. The clique 
partition number of G, denoted by cp(G), is 
the common cardinality of its minimum clique 
partitions. For each pair (d,n) denoted by Sd(n) 
the set of integers x for which a d-regular 
connected graph with n vertices and clique 
partition number x exists.

One of the early results on clique partitions 
is due to Hall (1941) and Erdős, Goodman, 
and Pósa (1966). In particular, Erdős et. al. 
(1966) proved that for any graph on n vertices, 
its edge set can be partitioned using at most 

       triangles and edges, where        denotes the 
floor function of x.
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The following observations and results 
about the set are found in Eades et al. (1984) 
and Pullman (1983).

Proposition 1. If G is d-regular and 1 ≤ n ≤ 
d then Sd(n) = Ø

Proposition 2. Sd(d + 1) = {1}, that is, G ≅  Kd+1. 

Proposition 3. For any n ≥ 4, S2(n) = {n}. 
Since we are only considering finite simple 
connected graphs, this means that is G is a 
cycle of length n.

In Eades et al. (1984), the sets S3(n) 
and S4(n) were determined. Specifically, the 
following results were proved.

Proposition 4. For all even n > 6, 

 49 
In Eades et al. (1984), the sets ��(�) and ��(�) were determined. Specifically, the following 50 
results were proved. 51 
 52 

Proposition 4. For all even � � �, ��(�) = ���� ��� � � � ��
� ������ �

�
� (�����)� 53 

 54 
Proposition 5. For all � � 13, 55 

��(�) = �
�� ∪ {�� � �,��}�������� � ��(����3)

�� ∪ �
��
3 , �� � �,��� �������� � ��(����3) 

where�� = �� � �� ���� � � 1 � � � �� � ��. 56 

 57 
Moreover, in Eades et al. (1984), the sets ��(�) for � � � � 13 were completely determined. 58 

 59 
 60 

NECESSARY CONDITIONS FOR � � ��(�) 61 
 62 

In Pullman (1983), a method for determining ��(�) for arbitrary simple graphs � 63 
was obtained. Following this approach, we consider the class of regular graphs on � vertices 64 
and determine a necessary condition for a positive integer � to belong to the set ��(�). We 65 
say that � � ��(�)  if and only if there is a � -regular graph �  on �  vertices with clique 66 
partition number �. 67 

 68 
The trivial case where ��(�) = 1 occurs when � = ����.Throughout the paper, we 69 

assume that � is not a complete graph. 70 
 71 
Let ��be a � -regular graph on �  vertices with a minimum clique partition �  and 72 

clique partition number �. For each � � �(�), let ��(�) denote the number of �-cliques in � 73 
adjacent to �. Since � is �-regular, then  74 

�(� � 1)��(�)
�

���
= ��������������������������(����������) 

 75 
To each � � �(�),  we associate an ordered (� � 1) -tuple 76 

� = �(�) = (��(�), ��(�), � , ��(�)) with  ��(�) � �, � � � � � and such that Equation 1 holds. 77 
In this case, we say that “vertex � has the property �.” 78 

Let � denote the set of all (� � 1)-tuples (��, ��, � , ��) of integers �� � �, � � � � � , 79 
such that ∑ (� � 1)�� = �.�

���  Let �(�) denote the number of vertices � � �(�) with common 80 
property �.  Since each � -clique in �  is shared by �  vertices, then for each � � � � �,  the 81 
number �� of �-cliques in �, is given by  82 

�� =
∑ ��(�)���(�)

� = ∑ ���(�)���
� . 

Counting the � cliques in �,we have  83 

� = ∑ �� =�
��� ∑ �∑ ��

� �(�)
�
��� ��(��,��,�,��)�� .               (Equation 2) 84 

Thus, we have the following proposition. 85 
 86 
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Moreover, in Eades et al. (1984), the sets 
S4(n) for 5 ≤ n ≤ 13 were completely determined.

NECESSARY CONDITIONS  
FOR x ∈ Sd(n)  

In Pullman (1983), a method for determining 
cp(G) for arbitrary simple graphs G was 
obtained. Following this approach, we consider 
the class of regular graphs on n vertices 
and determine a necessary condition for 
a positive integer x to belong to the set  
Sd(n). We say that x ∈ Sd(n) if and only if there 
is a d-regular graph G on n vertices with clique 
partition number x.

The trivial case where cp(G) = 1 occurs 
when G = Kd+1. Throughout the paper, we 
assume that G is not a complete graph. 

Let G be a d-regular graph on n vertices 
with a minimum clique partition   and clique 
partition number x. For each v ∈ V(G) let αj (v) 

denote the number of j-cliques in   adjacent 
to v. Since G is d-regular, then 
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 (Equation 1)

To each v ∈ V(G) we associate an ordered 
(d – 1) -tuple p = α(v) = (α2 (v), (α3 (v), ..., (αd (v)) 
with αj (v) ≥ 0,2 ≤ j ≤ d and such that Equation 
1 holds. In this case, we say that “vertex v has 
the property p.”

Let S denote the set of all (d – 1)-tuples  
(y2, y3, ..., yd) of integers yj ≥ 0,2 ≤ j ≤ d, such that 
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. Let C(p) denote the number 
of vertices v ∈ V(G) with common property p. 
Since each j-clique in   is shared by j vertices, 
then for each 2 ≤ j ≤ d, the number cj of j-cliques 
in  , is given by 
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Counting the  cliques in C, we have
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Thus, we have the following proposition.

Proposition 6. If there is a d-regular graph 
on n vertices with clique partition number x, 
then x satisfies Equation 2. 

Illustration 1. If G is a 5-regular graph, 
then we have S = {(5,0,0,0), (1,2,0,0), 
(3,1,0,0), (0,1,1,0), (1,0,0,1), (2,0,1,0)} with 
S as previously defined. Suppose v ∈ V(G) 
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is adjacent to exactly three 2-cliques and one 3-clique in   then we have α(v) = (3,1,0,0). 
Consider the following table. 

Table 1. Number of Vertices C(p) of G With Property p, a, + b + c + d + e + f = n.

Figures and Tables

p C(p)

(5,0,0,0) a

(1,2,0,0) b

(3,1,0,0) c

(0,1,1,0) d

(1,0,0,1) e

(2,0,1,0) f
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.

Proposition 7. If there is a d-regular graph  
G on n vertices with clique partition number 
x, then there is a (d + 1)-regular graph on 2n 
vertices with clique partition number 2x + n, 
and whose minimum clique partition contains   
n mutually non-adjacent 2-cliques.
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Figure 1: Construction of a (d – 2)-regular graph on k vertices 
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do this, we first introduce an operation ∗ on two isomorphic graphs. 109 
 110 

Let � be a �-regular graph on � vertices and ��, an isomorph (exact copy) of �, with 111 
vertex sets �(�) = {��� 1 � � � �} and �(��) = {���� 1 � � � �}. We define the operation ∗ on � 112 
and �� as follows: � ∗ �� is the graph with vertex set �(� ∗ ��) = �(�) ∪ �(��) and edge set 113 
�(� ∗ ��) = �(�) ∪ �(��) ∪ {������ 1 � � � �}. We note that the graph � ∗ �� is a (� � 1)-regular 114 
graph on 2� vertices and 2|�(�)| � � = �� � 2 edges. Moreover, the subgraph � with vertex 115 
set �(�) = �(� ∪ ��)  and edge set �(�) = {������ 1 � � � �}  consists of �  mutually 116 
nonadjacent edges and is a perfect matching in � ∗ ��. 117 

 118 
Regular graphs with specified minimum clique partitions can be constructed by one 119 

or more applications of ∗. We note here that the operation ∗ on � and �� can be interpreted 120 
as the graph obtained by taking the Cartesian product of � with ��; that is � ∗ �� � � � ��. 121 
 122 
Proposition 7. If there is a�-regular graph � on n vertices with clique partition number �, 123 
then there is a (� � 1)-regular graph on 2� vertices with clique partition number 2� � �, 124 
and whose minimum clique partition contains � mutually nonadjacent 2-cliques. 125 

 126 
Proof: An application of ∗ on � and its isomorph ��produces a graph � ∗ �� on 2� vertices. 127 
Let � = {������ 1 � � � �} be a perfect matching in � ∗ ��. Then � ∗ �� = � ∪ �� ∪ �. Since � is 128 
triangle free, the union of � with the disjoint union � ∪ �� does not affect the cliques of 129 
� ∪ ��.It follows that 130 

Comment [LJA1]: Insert Table 1. 

 by inserting a 
vertex. Using these k new vertices, form a  
(d – 2)-regular graph, say L, on k vertices.  
See the following il lustration of the 
construction. 

Then, a minimum clique partition of H consists of the cliques of G minus the k mutually 
non-adjacent 2-cliques plus the cliques of L plus the 2k new 2-cliques. Hence, if cp(L) = y that 
is, when , then

 

for every .

The last two results are proved similarly using the discussed graph constructions:
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Proposition 9. If there is a d-regular graph 
G, where d ≥ 5, on n vertices with a minimum 
clique partition containing (d – 1)-mutually 
non-adjacent 2-cliques, then there is d-regular 
graph H on n + d – 1 vertices such that 

 .

Proposition 10. If there is a d-regular graph  
G, where d ≥ 5, on n vertices with a minimum 
clique partition containing d-mutually non-
adjacent 2-cliques, then there is d-regular 
graph H on n + d – 1 vertices such that

 

In determining the members of Sd(n), there 
are instances that we need to prove that there 
is no regular graph with a given degree with 
a specified minimum clique partition. For 
instance, given a 5-regular grap the following 
statements can be verified easily by graph 
theoretic arguments and using Equation 1.

• There is no 5-regular graph on n vertices 
with a minimum clique partition 
consisting entirely of 3-cliques.

• There is no 5-regular graph on 12t 
vertices, t ≥ 1, with a minimum clique 
partition   consisting of 2-cliques and 
4-cliques such that |  | = 10t 

• There is no 5-regular graph on 14t 
vertices, with a minimum clique 
partition   consisting of 2-cliques and 
5-cliques such that |  | = 8t.
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