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ABSTRACT

We study the bound-state solutions of the Schrödinger equation with Woods–Saxon plus attractive 
inversely quadratic potential using the parametric Nikiforov–Uvarov method. We obtained the 
bound-state energy eigenvalues and the corresponding normalized eigenfunctions expressed in 
terms of hypergeometric functions. Two special cases of this potential are discussed. Numerical 
values of the energy eigenvalues are also computed for some values of n at l = 0 with α = 0.01, 
0.03, 0.1, 2, and 5 using python 3.6 programming.
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INTRODUCTION

Over the years, theoretical physics and 
chemistry have been successful in explaining 
the behavior of different particles in different 

potentials. This has been made possible 
through obtaining exact or approximate 
solutions of the nonrelativistic and relativistic 
wave equations for different physical 
systems of interest (Louis et al., 2016). In 
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nonrelativistic quantum mechanics, one of 
the interesting problems is to obtain exact 
solutions of the Schrödinger equation. In 
order to do this, a real potential is normally 
chosen to derive the energy eigenvalues 
and eigenfunctions of the Schrödinger 
equation (Magu et al., 2017). The Schrödinger  
equat i on  thereby  revea l s  tha t  the 
eigenfunctions of the system can furnish 
us with information regarding the behavior 
of such a system. Hence, if the system is 
exactly solvable for a given potential, the 
wave function can describe such a system 
completely. Recently, the study of exponential-
like-type potentials has attracted much 
attention from different authors. However, 
the bound-state solutions of the Schrödinger 
equation of some of these potentials are 
possible for few cases such as the Coulomb 
potential, Woods–Saxon potential, Hulthen 
potential, Yukawa potential, Hellmann 
potential, Manning–Rosen potential, Eckart 
potential, Mie-type, and Morse potential (Ita 
et al., 2016). Furthermore, our group has 
attempted to study the bound-state solutions 
of the Klein-Gordon, Dirac, and Schrödinger 
equations using combined or mixed potentials. 
Some of which include the Woods–Saxon 
plus attractive inversely quadratic (WSAIQ) 
potential (Ita et al., 2017), Manning–Rosen 
plus a class of Yukawa potential (Ita et 
al., 2017), generalized Woods–Saxon plus 
Mie-type potential (Magu et al., 2017), 
and Kratzer plus reduced pseudoharmonic 
oscillator potential (Louis et al., 2016).

The Woods–Saxon potential, either in 
its spherical or in its deformed form, has 
been used in nuclear calculations, and this 
potential has been studied and many works 
had been published by various scientists 
(Louis et al., 2016). The inversely quadratic 
Yukawa potential (IQYP) was first studied in 
2012 by Hamzavi et al., when they obtained 

approximate spin and pseudospin solutions 
to the Dirac equation with the potential 
including a tensor interaction. The IQYP 
expressed as  is related 
to the inversely quadratic potential (IQP) 
when , i.e., . The IQP has 
been used by Oyewumi and Bangudu (2002) 
in combination with a isotropic harmonic 
oscillator in N-dimension spaces. Since then, 
several papers on the potential have appeared 
in the literature (Ita & Ikeuba, 2015)

The main aim of this paper is to use the 
proposed approximation in Ita and Ikeuba 
(2015) and the Nikiforov–Uvarov (NU) method 
to obtain the bound-state solutions of the 
Schrödinger equation with WSAIQ potential 
defined as

  (1)

where V0, V0ʹ are the strength of the potential 
for the Woods–Saxon and inversely quadratic 
potentials, respectively; � = screening 
parameter; and r = radius.

The rest of the paper is organized as 
follows. In section 2, the parametric NU 
method is presented. The factorization  
method is presented in section 3. In section 
4, solutions of the radial part of Schrödinger 
equation with WSAIQ potential is presented. 
We discuss the results of our work in section 
5. Finally, we present a brief conclusion in 
section 6.

The scientific significance of this 
research paper includes giving an insight 
into possible eigensolutions of atoms and 
molecules moving under the influence 
of the WSAIQ potential. Secondly, the 
resulting eigenenergy equations can be 
used to study the spectroscopy of some 
selected diatomic atoms and molecules.
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REVIEW OF PARAMETRIC NU METHOD

The NU method is based on the solutions of a generalized second-order linear differential 
equation with special orthogonal functions. The hypergeometric NU method has shown its power 
in calculating the exact energy levels of all bound states for some solvable quantum systems. 

  (2)

where σ(s) and σ (s) are polynomials of at most second degree and τ (s) is a first-degree polynomial. 
For a given potential, the Schrödinger or Schrödinger-like equation is given as 

  (3)

where E = total energy and V(x) = potential depth.

The parametric generalization of the NU method is given by the generalized 
hypergeometric-type equation

  (4)

Thus, equation (2) can be solved by comparing it with equation (4), and the following polynomials 
are obtained:

  (5)

The parameters obtainable from equation (4) serve as important tools to finding the energy 
eigenvalue and eigenfunctions. They satisfy the following sets of equation respectively:

  (6)

  (7)

while the wave function is given as

  (8)

where 

(9)

and Pn is the orthogonal polynomial.
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Given that

  (10)

this can also be expressed in terms of Rodriguez’s formula:

  (11)

FACTORIZATION METHOD

In a spherical coordinate, the Schrödinger equation with the potential V(r) is given as 

   (12)

Using the common ansatz for the wave function as

  (13)

and substituting equation (13) into equation (12), we obtain the following sets of equations:

  
(14)

  (15)

  (16)

where  and  are the separation constants and  is the solution 
of equation (15) and equation (16).

SOLUTIONS OF THE RADIAL PART OF SCHRÖDINGER EQUATION  
WITH WSAIQ POTENTIAL

Substituting the potential of equation (1) into the radial Schrödinger equation of equation (14), 
we obtain
 
  (17)

It is well known that the Schrödinger equation of equation (17) cannot be solved exactly for  
by any known method. The way out is to use approximation for the centrifugal term. On this 
note, we invoke a good approximation for the centrifugal barrier 
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  (18)

similar to other related work.[2, 5, 6, 14]

By substituting equation (18) into equation (17) and using the transformations = , 
we have

  (19)

  (20)

  (21)

  (22)

 where  (23)

Comparing equation (4) with equation (23), we obtain the following parameters:

  (24)

Substituting equation (24) into the energy eigenvalues equation of equation (7), we obtain the 
energy equation for this system as

 

  
(25)

Solving equation (25) explicitly, we obtain the energy eigenvalues of the system as

 

  (26)
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Using equations (8) and (24), the wave function of this system is obtained as

  (27)

where

  (28)

Furthermore, the relation between the hypergeometric function and the Jacobi polynomials  
are 

  (29)

with  under the transformation .

The normalization constant  can be found from norma lization condition as[13]

  (30)

By using the following integral formula

  (31)

       

with the help of  equation (31) and after some calculations, the normalization constant  is 
obtained as 

  (32)

Finally, the total normalized wave function,  of the Woods–Saxon potential plus 
attractive inversely quadratic potential is obtained as

   
  (33)
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DISCUSSION

Considering the proposed potential in equation (1), the radial Schrödinger equation has been 
solved, and the energy eigenvalues are obtained in equation (26) as

With different screening parameters (α), the energy spectrum of the WSAIQ potential is reported 
numerically for various states in Table 1.

If V0′ = 0 in equation (17), the potential turns back into the Woods–Saxon potential expressed 
as 

Here, the index is non-negative integers with , and the above equation indicates 
that we deal with a family of the standard Woods–Saxon potential. By imposing appropriate 
changes in the parameters α and V0, the index describes the quantization of the bound states 
and the energy spectrum. 

If V0 = 0, the energy eigenvalues for the attractive inversely quadratic potential becomes 

The numerical values of the energy are obtained at different principal and orbital quantum 
numbers as shown in Table 1. The behaviors of the superposed potential at various values of 
the screening parameter are presented in Figures 1 to 3. The energy eigenvalues increase with 
n and l values and drop as l reduces for very low α values (α = 0.01, α = 0.03, and α = 0.1) and 
decreases abruptly at large α values (α = 2 and α = 5). Thus, the particles with a lower angular 
momentum can be easily separated from the WSAIQ potential. These results could be used in the 
study of the nuclear structure within the shell model of an atom in a nonrelativistic framework.
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Table 1: Energy Eigenvalues E(eV) of the WSAIQ pPotential for ђ=µ=1, V0 = 0.2, Vʹ0 = 0.1 with  
Different α Values.

|n,l〉 WSAIQPEn,l

α = 0.01 α = 0.03 α = 0.1 α = 2 α = 5

| 0,0〉 -95.62974941 -10.74881358 -1.098111629 -2.140583888 -2.140583888

| 0,1〉 -13.45063995 -1.544529482 -0.230749915 -18.05210063 -112.551819266

| 0,2〉 -5.742611968 -0.675656881 -0.175867240 -34.033930195 -212.533810328

| 0,3〉 -3.196744092 -0.38868765 -0.181883736 -50.025259859 -312.525193282

| 0,4〉 -2.039681218 -0.25915525 -0.205268925 -66.020139956 -412.520097580

| 1,0〉 -16.93726919 -1.978295946 -0.291957248 -6.875722281 -42.4103580626

| 1,1〉 -5.896828321 -0.731420553 -0.204090920 -26.823792825 -167.232762720

| 1,2〉 -3.253093071 -0.427339394 -0.206020471 -44.512219613 -277.8700955764

| 1,3〉 -2.076941316 -0.290884728 -0.226225165 -61.548307887 -384.4022845879

| 1,4〉 -1.445804729 -0.217659671 -0.254104334 -78.253598986 -488.8506868257

| 2,0〉 -6.843417703 -0.855142273 -0.209216567 -15.749717146 -97.89555125

| 2,1〉 -3.323740234 -0.456762674 -0.221042527 -40.225433857 -250.944599082

| 2,2〉 -2.110594191 -0.315936401 -0.248577472 -60.808359923 -379.6507287233

| 2,3〉 -1.471171294 -0.240696632 -0.280737109 -79.3405561345 -499.5867532509

| 2,4〉 -1.088724595 -0.195550472 -0.315305741 -98.3405561345 -614.3168191017

| 3,0〉 -3.708294136 -0.508545145 -0.208844500 -28.6377975985 -178.453113065

| 3,1〉 -2.149754089 -0.333996925 -0.257434980 -57.804020576 -360.7886685771

| 3,2〉 -1.493461251 -0.258475741 -0.302071884 -81.813417724 -510.89437829

| 3,3〉 -1.107136973 -0.213372442 -0.345329223 -103.804237549 -648.378799343

| 3,4〉 -0.857618963 -0.184172282 -0.387765379 -124.47679346 -777.618169816
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Figure 2: Variation of En,l against l at n = 1.

Figure 1. 
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Figure 4: Variation of the WSAIQ potential V(r) against r 
at different α.
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CONCLUSION

In this paper, we have obtained the bound-
state solution of the Schrödinger equation 
with WSAIQ potential via the parametric 
NU method. The energy eigenvalues and the 
corresponding total normalized wave functions 
expressed in terms of the hypergeometric 
functions for the system are also obtained. 
The energy eigenvalues were evaluated as a 
function of the screening parameter in Table 1. 
The behaviors of our potentials are discussed 
in Figure 3. Interestingly, the Schrödinger 
and Dirac equations with the arbitrary 
angular momentum values for this potential 
can be solved by this method. The resulting 
eigenenergy equations can be used to study the 
spectroscopy of some selected diatomic atoms 
and molecules.
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