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ABSTRACT

Concurrent decision-making networks represent decision systems where the utility of a component 
(node) becomes dominant by repressing other nodes. These networks are commonly used in 
modeling competitive interactions in the computational, biological, and social sciences. Most of 
the existing studies about concurrent decision-making focus on equilibrium convergence of the 
utilities. However, there are many cases where oscillations can arise. Here, we consider concurrent 
decision-making networks that follow a two-dimensional lattice topology where one node is a 
source of oscillations. We investigate the propagation of oscillations in the network, specifically 
by determining the conditions that will drive the other nodes to also exhibit oscillating utilities 
and the conditions that will allow the oscillations to dampen or persist. Our simulations show 
that the two-dimensional lattice structure of a concurrent decision-making network is enough 
to diminish the amplitude of propagating oscillations. Our results are important in the study of 
robustness of complex networks against fluctuations and can be starting points in the study of 
oscillation propagation in other types of interaction networks.
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INTRODUCTION

Interactions between two components of a 
complex system can be activatory, inhibitory, 
or neutral (Kondoh & Mougi, 2015; Mougi & 
Kondoh, 2012; Soule, 2006; Aracena et al., 
2004; Cinquin & Demongeot, 2002). Inhibition, 
such as through competition or antagonism, 
can be found in various biological, social, 
and physical systems. In biology, inhibitory 
activities can be found in gene regulatory 
networks, which play important roles in cell-
fate determination (Rabajante, Babierra, 
Tubay, & Jose, 2015; Rabajante & Babierra 
2015; Sokolowski et al., 2012; Kraut & Levine 
1991). Inhibition can also be found in cognitive 
and neural systems (Basar & Duzgun, 2016; 
Pavone et al., 2016; Neske et al., 2015; 
Rabajante & Gavina, 2015; Norman et al., 
2006; Whittington et al., 2000). Moreover, 
species competition contributes to community 
formation and evolution of populations in 
social systems (Rabajante, Babierra, Tubay, & 
Jose, 2015; Mougi & Kondoh, 2014; Mirrahimi 
et al., 2012). Under certain conditions, the 
repressive function of components in a physical 
system could also act as control of excitatory 
activities and fluctuations (Alonso et al., 2016; 
Hennequin et al., 2014; Cottrell, 1992). 

The outcomes of complex interactions 
are not always equilibrium converging but 
oftentimes exhibit nonequilibrium phenomena. 
In a complex system, oscillatory dynamics 
could arise (Zhang et al., 2016; Boie et al., 
2016; Song et al., 2015; Shaw et al., 2015; 
Nunes et al., 2005). Determining the factors 
that could regulate the spread of oscillations 
across the entire system can be favorable in 
establishing the robustness of interaction 
networks against fluctuations (Gao et al., 
2016; Podobnik et al., 2015; McDonald et al., 
2008). Here, we investigate the inhibitory 
structure of an interaction network, which we 
hypothesize could be regulated to repress the 
propagation of unwanted oscillations to avoid 

faulty system. Fault-tolerant and fluctuation-
tolerant interaction networks are very 
important in sustaining the vital functions 
of many real-world systems (Gao et al., 2016; 
Barzel & Barabasi, 2013; Albert et al., 2000).  

In this study, we consider an interaction 
network, referred to as concurrent decision-
making (CDM), with inhibitory nodes following 
a two-dimensional lattice topology (Fig. 1) 
(Rabajante & Talaue, 2015; Agarwal et al., 
2013). We call this network “concurrent 
decision-making” since it mimics a decision-
making process where a node becomes 
dominant by repressing other nodes (Rabajante 
& Talaue, 2015). The dominant node is 
generally referred to as the chosen or preferred 
node. Furthermore, each node in the CDM 
network increases its dominance through 
self-stimulation, which is a major property 
of decision switches (Cinquin & Demongeot, 
2005). The CDM network represents decision-
making and dominance specification in various 
systems, such as gene regulation in cell-
fate determination (Rabajante & Babierra, 
2015; Rabajante & Talaue, 2015), species 
competition in social and evolutionary systems 
(Rabajante, Babierra, Tubay, & Jose, 2015; 
Wang et al., 2015; Perc et al., 2013), and 
interaction in cognitive and neural systems 
(Rabajante & Gavina, 2015).

Consequently,  we investigate the 
propagation of oscillations to determine the 
robustness of the CDM network against the 
spread of unwanted fluctuations. Fluctuations 
in biological, social, and physical systems 
could be advantageous or disadvantageous 
(Rabajante & Babierra, 2015; Courtin et 
al., 2014). For example, oscillations in gene 
regulation could represent cell plasticity, 
which on the damaging side could drive 
cancer progression (Rabajante & Babierra, 
2015; Lee et al., 2014). Furthermore, the 
equations associated with the CDM network 
are nonlinear and nonpolynomial (Rabajante 
& Talaue, 2015). Our study is the first to 
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investigate whether oscillations will propagate 
or not in the system of nonlinear equations 
representing the CDM network.
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Figure 1. The n-node CDM network following a two-dimensional lattice 93
topology. The links between pair of nodes represent inhibition while the loops 94
represent self-stimulation. 95
 96
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 99
Simulation preliminaries. We consider CDM networks that follow a two-dimensional 100
lattice topology (Fig. 1). In such a network of n nodes, we consider the first node as 101
the input node, the nth node as the output node, and the rest as intermediate nodes. 102
With the assumption that the input node is a source of oscillations, we determine 103
the conditions that drive the output node to also exhibit oscillations and the 104
conditions that allow these oscillations to dampen or persist. To analyze the 105
propagation of oscillations, we follow the behavior of the solution to the ordinary 106
differential equation (ODE) model associated with the CDM network. The model is 107
as follows: 108
 109

      (1) 110

for i = 1, 2, …, n 111
 112
where n is the number of nodes in the network. In this model, Xi represents the 113
value or utility of the ith node. To exhibit oscillations in the input node, we assigned 114
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for i = 1, 2, …, n, where n is the number of 
nodes in the network. 

   In this model, Xi represents the value or 
utility of the ith node. To exhibit oscillations 
in the input node, we assigned X1 = A + Asin(t), 
where A is the amplitude of source oscillations. 
(Note that in the supplementary material, 
we also investigated the case where X1 is 
a random variable.) We restrict the state 
variables and parameters to be nonnegative 
real numbers. The parameter βi represents 
the growth constant of the unrepressed Xi 
relative to the first-order degradation ρi of Xi. 
The γi,j  is the interaction coefficient associated 
with the inhibition of Xi by Xj. The nonlinear 
inhibition of Xi by Xj is influenced by the 
exponent ci,j ≥ 1. Moreover, we consider gi to 
represent the constant basal growth of Xi and 
the parameter ci,j ≥ 1 to denote the strength 
of self-stimulation by Xi. In the denominator, 
Xjs could be oscillating due to the oscillations 
of X1. In this manner, we investigate how 
the oscillations of Xjs affect the values of 
Xi, specifically by tracking the amplitude of 
oscillations. 
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Figure 2. The effect of ρ2, β2, and γ2,1 to the amplitude of oscillations 128
propagated to the output node (c1,2 = c2 = 1, n = 2). Some persisting minute 129
oscillations when g2 > 0 cannot be visually differentiated from the dampening 130
oscillations when g2 = 0 due to their very small amplitude. (a) γ2,1 = 4, (b) ρ2 = 0.13, 131
(c) β2 = 1 (with this set of parameter values, we can easily observe bifurcation in the 132
amplitude). 133
 134
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Figure 2. The effect of ρ2, β2, and γ2,1 to the 
amplitude of oscillations propagated to the 
output node (c1,2 = c2 = 1, n = 2). Some persisting 
minute oscillations when g2 > 0 cannot be visually 
differentiated from the dampening oscillations 
when g2 = 0 due to their very small amplitude. 
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(a) γ2,1 = 4, (b) ρ2 = 0.13, (c) β2 = 1 (with this 
set of parameter values, we can easily observe 
bifurcation in the amplitude).

Figure 3. The amplitude of oscillations 
propagated to the output node (c2,1=c2=2, 
n=2). Some persisting oscillations when g2 > 0 
cannot be visually observed due to their very 
small amplitude. (a) γ2,1=4, (b) ρ2=0.13, (c) β2=1 
(with this set of parameter values, we can easily 
observe bifurcation in the amplitude).

Simulation results. Following the behavior 
of the CDM ODE model, we observe the 
propagation of oscillations in a two-dimensional 
CDM square lattice with two, four, and nine 
nodes. For the network with two nodes 
(n = 2), we have observed certain conditions 
that drive the output node (X2) to exhibit 
oscillating patterns similar to the pattern 
assigned to the input node (X1) except for 
the amplitude (strength of oscillation). In 
the case where the exponents c2,1 = c2 = 1, 
several parameters influence the amplitude 
of oscillations observed in the output node 
(Fig. 2). We have seen that the output node’s 
growth constant (β2), the interaction coefficient 
γ2,1, and the degradation rate of X2 (ρ2) affect 
the amplitude of oscillations in the output 
node (Fig. 2). On the other hand, the cases 
where c2,1,c2 ≥2 result to weak or mostly no 
oscillations in X2  (Fig. 3).

In the case that c2,1 = c2 = 1, we have 
observed that the growth constant (β2) of the 
output node (X2) influences the amplitude of 
oscillations seen in the values of the output 
node (Figs. 2a and 2b). For a fixed amount of 
inhibition of the output by the input node (γ2,1) 
and fixed degradation rate (ρ2) of the output 
node, an increase in the growth constant 
(β2) causes an increase in the amplitude of 
oscillations observed in the output node (Figs. 
2a and 2b, respectively). We have seen that for 
several fixed values of ρ2 or γ2,1, the increase in 
the amplitude caused by the growth constant 
of the output node (β2) follows approximately 
a logarithmic pattern (Fig. S1). Moreover, 
the degradation rate (ρ2) of X2 and amount 
of inhibition of X2 by X1 (γ2,1) have different 
effects on the amplitude of the oscillations in 
the output node (X2) (Fig. 2). These effects are 
dependent on the values of other parameters 
influencing the amplitude of oscillations in 
the output node. An increase in the strength 
of inhibition by the input node, represented by 
the increase in the interaction coefficient γ2,1, 
causes growth and decline in the amplitude 
of oscillations in the output node. For a fixed 
degradation rate of X2 (ρ2 = 0.013), we have 
observed that for each corresponding values 
of the growth constant β2, an increase in 
the strength of inhibition of X1 results in 
an increase in the amplitude of persistent 
oscillations observed in X2 (Fig. 2b). Both cases 
when g2 = 0 and g2 > 0 exhibit this behavior. 
On the other hand, when the growth constant 
of the output node is fixed (β2 = 1) and g2 = 0, 
we have observed that increasing values of 
the inhibition coefficient γ2,1 results in growth 
in the amplitude of oscillations in the output 
node provided that γ2,1 < 8.6697exp(−5.217ρ2) 
with R2 = 0.98808 (Fig. S2). This is different 
if γ2,1 > 8.6697exp(−5.217ρ2), where increasing 
values of γ2,1 result in decline in the amplitude 
of oscillations in X2 (Fig. S2). We observe 
almost similar behavior when g2 > 0. 
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γ2,1=0.5; (c) ρ2=0.13, γ2,1=2; (d) ρ2=0.01, γ2,1=4; (e) 
ρ2=0.13, γ2,1=4; (f) ρ2=0.5, γ2,1=4.
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Figure S2. The amplitude of oscillations in X2 for varying values of ρ2 and 512
γ2,1 (n=2, β2=1, ci,j=ci=1) with the graph of γ2,1=8.1933exp(-0.68ρ2). Increasing 513
values of γ2,1 results to increase in the amplitude above the curve and decrease in the 514
amplitude below the curve. 515
 516
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Figure S2. The amplitude of oscillations in 
X2 for varying values of ρ2 and γ2,1 (n=2, β2=1, 
ci,j=ci=1) with the graph of γ2,1=8.1933exp(–
0.68ρ2). Increasing values of γ2,1 results to increase 
in the amplitude above the curve and decrease in 
the amplitude below the curve.

For the effect of the increase in degradation 
rate (ρ2) on the amplitude of oscillations in 
X2, we have observed that the relationship 
among ρ2, β2, and γ2,1 influences the increase or 
decrease of the amplitude (Figs. 2a and 2c). In 
the case that g2 = 0, the increasing degradation 
rate of X2 results in growth in the amplitude 
when ρ2 < 0.124β2 + 0.015 (R2 = 0.992) 
for γ2,1 = 4, or ρ2 < −0.097ln(γ2,1) + 0.2678 
(R2 = 0.9926) for β2 = 1 (Fig. S3). On the other 
hand, a decline in the amplitude happens 
when ρ2 > 0.124β2 + 0.015 for γ2,1 = 4, or 
ρ2 > −0.097ln(γ2,1) + 0.2678 for β2 = 1 until the 
oscillation dampens when the degradation rate 
exceeds 0.333β2 + 0.006 (R2 = 0.99981) if γ2,1 = 4 
or −0.17ln(γ2,1) + 0.573 (R2 = 0.99389) if β2 = 1 
(Fig. S3). This is almost similar to the case 
where g2 > 0 except the fact that there is no 
dampening of oscillations for any value of ρ2.
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Figure S3. The amplitude of oscillations in X2 for fixed values of β2 and γ2,1.  519
(a) amplitude for varying values of ρ2 and β2 (n=2, γ2,1=4, ci,j=ci=1) with the curve 520
ρ2=0.124β2+0.015; (b) amplitude for varying values of ρ2 and γ2,1 (n=2, β2=1, ci,j=ci=1) 521
with the curve ρ2= -0.097ln(γ2,1)+0.2678. 522
 523
Figure S3. The amplitude of oscillations in 
X2 for fixed values of β2 and γ2,1. 
(a) amplitude for varying values of ρ2 and β2 (n=2, 
γ2,1=4, ci,j=ci=1) with the curve ρ2=0.124β2+0.015; 
(b) amplitude for varying values of ρ2 and 
γ2,1 (n=2, β2=1, ci,j=ci=1) with the curve ρ2= 
–0.097ln(γ2,1)+0.2678.

When c2,1,c2 > 1, there is less chance of 
propagation of oscillations in the output node 
X2. In fact, keeping the value of g2 = 0 inhibits 
the propagation of oscillations in X2 (Fig. 3). 
This is different in the case when g2 > 0, where 
the values of the output node exhibit small 
persistent oscillations. We observe the effect 
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of changing the parameter values of β2, ρ2, and 
γ2,1 to the oscillations in X2.

For a fixed value of the inhibition coefficient 
of X2 by X1 (γ2,1 = 4), increasing the growth 
constant of X2 (β2) results in growth in the 
amplitude of oscillations in the output node if 
β2 < 25ρ2 − 2.3294 (R2 = 0.9855) and decrease 
in the amplitude of oscillations otherwise (Fig. 
S4). Moreover, the increasing degradation 
rate of X2 (ρ2) results in growth in the 
amplitude of oscillations in the output node 
if ρ2 < 0.38β2 + 0.92 (R2 = 0.9861) for different 
values of the growth constant β2 (Fig. S5).

There are changes in the amplitude of 
persistent oscillations by fixing the growth 
rate (β2) of X2. For each interaction coefficient 
γ2,1, if β2 = 1, increasing the degradation 
rate results in growth in the amplitude of 
oscillations in the output node provided that 
ρ2 < −0.03ln(γ2,1) + 0.1645 (R2 = 0.9384) and 
decrease in the amplitude of oscillations, 
otherwise (Fig. S6).

Generally, for all simulations in CDM 
square lattice consisting of two nodes (n = 2), 
we observe that the oscillations propagated 
in the output node are significantly weaker 
than the oscillations in the input node (Figs. 
2, 3, and S7). In other words, the inhibitions 
between nodes drive the oscillations from the 
input node to decrease in the output node. 
We also see this behavior in our simulations 
involving square CDM lattices with higher 
number of nodes.

For networks with four nodes (n = 4), we 
have seen that oscillations from the input node 
(X1) propagate to the intermediate nodes (X2 
and X3). These oscillations in the intermediate 
nodes have significantly smaller amplitudes 
than that of X1 (Figs. 4 and S8). The addition 
of intermediate nodes and the inhibition of 
these nodes with the input and output node 
(X4) result in smaller amplitude of oscillations 
in the output node (Figs. 4 and S8). We have 
further observed this behavior in CDM lattice 
networks of nine nodes (n = 9). Smaller 
oscillations than that of the input node (X1) 

are propagated in some of the intermediate 
nodes, but the inclusion of bigger number of 
intermediate nodes prevents the values of 
the output node (X9) to exhibit perceptible 
oscillations (Figs. 5 and S9).

Figure S4. The amplitude of oscillations 
in X2 for varying values of β2 and ρ2 (n=2, 
γ2,1=4, ci,j=ci=2, g2=0.01) with the curve 
β2=25ρ2–2.3294. Increasing values of β2 results 
to growth of amplitude of oscillations below the 
curve and decline in amplitude of oscillations 
above the curve.
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(n=2, γ2,1=4, ci,j=ci=2, g2=0.01) with the curve ρ2=0.38β2+0.92. Increasing values of 531
ρ2 results to growth of amplitude of oscillations to the left of the curve and decline in 532
amplitude of oscillations to the right of the curve. 533
 534
Figure S5. The amplitude of oscillations in 
X2 for varying values of β2 and ρ2 (n=2, γ2,1=4, 
ci,j=ci=2, g2=0.01) with the curve ρ2=0.38 β2+0.92. 
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Increasing values of ρ2 results to growth of 
amplitude of oscillations to the left of the curve 
and decline in amplitude of oscillations to the 
right of the curve.

Figure S6. The amplitude of oscillations 
in X2 for varying values of γ2,1 and ρ2 (n=2, 
β2=4, ci,j=ci=2, g2=0.01) with the curve ρ2= 
–0.03ln(γ2,1)+0.1645. Increasing values of ρ2 
results to growth of amplitude of oscillations to 
the left of the curve and decline in amplitude of 
oscillations to the right of the curve.

Figure S7. The effect of ρ2, β2, and γ2,1 to 
the amplitude of oscillations propagated 

to the output node (n=2, X1=r, where r is a 
standard normal random number). Some 
persisting minute oscillations when g2>0 cannot 
be visually differentiated from the dampening 
oscillations when g2=0 due to their very small 
amplitude. (a) γ2,1=4, (b) ρ2=0.13, (c) β2=1 (with 
this set of parameter values, we can easily observe 
bifurcation in the amplitude).

Figure S8. Propagation of oscillations in two-
dimensional concurrent decision-making 
lattice networks of 4 nodes (X1=Ar, where r 
is a standard normal random number). (a)-
(c) Sample simulation runs showing diminishing 
propagation of oscillations from input node to 
output node. Parameter values are equal to the 
parameter values in Fig. 4.
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ρ2 (n=2, β2=4, ci,j=ci=2, g2=0.01) with the curve ρ2= -0.03ln(γ2,1)+0.1645. 537
Increasing values of ρ2 results to growth of amplitude of oscillations to the left of the 538
curve and decline in amplitude of oscillations to the right of the curve. 539
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 541
Figure S7. The effect of ρ2, β2, and γ2,1 to the amplitude of oscillations 542
propagated to the output node (n=2, X1=r, where r is a standard normal 543
random number). Some persisting minute oscillations when g2>0 cannot be 544
visually differentiated from the dampening oscillations when g2=0 due to their very 545
small amplitude. (a) γ2,1=4, (b) ρ2=0.13, (c) β2=1 (with this set of parameter values, 546
we can easily observe bifurcation in the amplitude). 547
 548
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 549
Figure S8. Propagation of oscillations in two-dimensional concurrent 550
decision-making lattice networks of 4 nodes (X1=Ar, where r is a standard 551
normal random number). (a)-(c) Sample simulation runs showing diminishing 552
propagation of oscillations from input node to output node. Parameter values are 553
equal to the parameter values in Fig. 4. 554
 555
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Figure S9. Propagation of oscillations in two-dimensional concurrent 557
decision-making lattice of 9 nodes (X1=Ar, where r is a standard normal 558
random number). (a)-(c) Sample simulation runs showing diminishing 559
propagation of oscillations from input node to output node. Parameter values are 560
similar to the parameter values in Fig. 5. 561
 562

Figure S9. Propagation of oscillations in 
two-dimensional concurrent decision-
making lattice of 9 nodes (X1=Ar, where r is 
a standard normal random number). (a)-(c) 
Sample simulation runs showing diminishing 
propagation of oscillations from input node to 
output node. Parameter values are similar to the 
parameter values in Fig. 5.
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Figure 4. Propagation of oscillations in a two-dimensional CDM lattice of 4 231
nodes. (a)–(c) Sample simulation runs showing diminishing propagation of 232
oscillations from input node to output node. For the parameter values used in the 233
simulations, refer to the supplementary material. 234
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Figure 5. Propagation of oscillations in a two-dimensional CDM lattice of 9 237
nodes. (a)–(c) Sample simulation runs showing diminishing propagation of 238
oscillations from input node to output node. For the parameter values used in the 239
simulations, refer to the supplementary material. 240
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Figure 5. Propagation of oscillations in a 
two-dimensional CDM lattice of 9 nodes. (a)–
(c) Sample simulation runs showing diminishing 
propagation of oscillations from input node to 
output node. For the parameter values used in the 
simulations, refer to the supplementary material.

DISCUSSION

The goal of our study is to investigate whether 
oscillations will dampen, persist, or enhance 
in a CDM network and to determine the 
conditions that drive the spread of oscillations. 
In our simulations involving CDM lattices 
with n ≥ 2 nodes, we found that the amplitude 
of oscillations diminishes as the oscillations 
propagate throughout the entire network 
(Figs. 2–5). From the input node (source of 
oscillations) to the intermediate nodes to the 
output node, fluctuations become significantly 
weaker and weaker (Figs. S7–S9). We have 
proven that the inhibitory interactions in a 
CDM network, which are described by the 
associated CDM ODE model, are sufficient to 
filter the spread of oscillations and unwanted 
fluctuations. This result demonstrates the 
robustness of the CDM network. The CDM 
network can be a template in building a real-
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world network that avoids fluctuation-induced 
faulty structure.

The exponents ci,j  and ci  affect the behavior 
of oscillations in the output node. The exponent 
ci describes the mode of self-stimulation of Xi, 
such as whether self-stimulation follows a 
hyperbolic or sigmoidal function (Rabajante 
& Talaue, 2015). This exponent influences 
the number of equilibrium values in a system 
(Rabajante & Talaue, 2015), which could affect 
the behavior of oscillations. The exponent ci,j 
influences the strength of inhibition, which has 
an impact on the regulation of the spread of 
oscillations. Furthermore, the growth constant 
(βi), the interaction coefficient γi,j, and the 
degradation rate (ρi) affect the amplitude of 
oscillations in the output node. The parameters 
βi and ρi affect the possible equilibrium values 
of X2 (Rabajante & Talaue, 2015), which may 
have significant effect on the amplitude of 
oscillations. Similar to ci,j, the parameter γi,j 
influences the strength of inhibition between 
nodes, which affects the regulation of the 
spread of oscillations throughout the entire 
network.

The CDM network regulates the spread of 
oscillations. This is advantageous in preventing 
the spread of unwanted fluctuations. However, 
this could be disadvantageous if we intend 
to enhance the spread of signals, such as 
information, throughout the entire network. 
Other types of interaction network, such as a 
network with activators, could be used instead 
(Seybold et al., 2015). The CDM network 
coupled with parasitism-type antagonism 
(Rabajante, Babierra, Tubay, & Jose, 2015) 
can also be used to enhance, rather than 
inhibit, the utilities of the nodes. 

In addition, the amplitude of oscillations 
can affect “equilibrium switching” (Rabajante 
& Talaue, 2015) in the CDM system (Fig. S10). 
Equilibrium switching portrays the switching 
of inferior and dominant states (Rabajante 
& Talaue, 2015), which can be linked to the 
activation and inactivation of components. For 

example, in a two-node CDM network with 
c2 = c2,1 =1, g2 = 0, and β2 > ρ2, the attracting 
states of X2 are determined by the following 
conditions, which are dependent on the 
oscillating values of X1 (see supplementary 
material):

•   X2 = 0 is stable if  
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suppressed) and dominant (active or expressed) 
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of the interactions. The CDM network model 
has limitations in representing biological, 
social, and physical systems, such as delay 
dynamics that are not considered in the model. 
Our simulations can be further extended to 
study the spread of oscillations in other types 
of interaction networks and other dynamical 
systems (Kim et al., 2008; Radde, 2011; Mougi 
& Kondoh 2012).

METHODS

To analyze the propagation of oscillations 
in a two-dimensional CDM lattice network, 
we follow the behavior of the network’s 
corresponding ODE model (1). We investigated 
the case where n ≥ 2 by considering certain 
parameter values. Without losing essential 
qualitative dynamics, we considered the 
following parameter ranges in our numerical 
simulations:

• 1 ≤ βi ≤ 5 with simulation increment = 0.1, 
for all i;

• 0 . 0 1  ≤  ρ i  ≤  1  w i t h  s i m u l a t i o n 
increment = 0.01, for all i;

• 0.1 ≤ γi,j ≤ 4 with simulation increment = 0.1, 
for all i and j;

•	 ci,j = ci = 1 or 2, for all i and j; and
• 0 ≤ gi ≤ 0.5, with simulation increment = 0.1, 

for all i.

Suppose A is the amplitude of oscillations 
or fluctuations. To exhibit oscillations in the 
input node, we assigned X1 = A + Asin(t). 
In the supplementary material, we also 
investigated the case where X1 = Ar, where 
r is a nonnegative random number from a 
standard normal distribution. We solved the 
differential equations using Runge–Kutta 4 
with 0.01 as step size. For each simulation, 
we computed for the amplitude of persisting 
oscillations, if there are any. 
 In Figures 2–3, we used 0.01 as the 
initial value of the output node X2. We also did 

simulations with other initial values (Fig. S11). 
In some cases, the initial value of the output node 
affects the amplitude of oscillations. However, 
the oscillations from the input node X1 are still 
diminished when propagated to X2. 

We compare the values of the amplitude 
against parameter values to determine the 
effect of the parameters to the strength 
of oscillations in the output node. We also 
used these values to compare the strength 
of oscillations in the input, intermediate, 
and output nodes. In addition, refer to the 
supplementary material and to Rabajante 
and Talaue (2015) for additional theoretical 
analysis of the CDM model.

26

 568
Figure S11. Effect of the initial value of X2 to the amplitude of oscillations 569
in X2 (n=2). The amplitude of the input X1=1+sint is diminished in the output.  570
 571

Figure S11. Effect of the initial value of X2 to 
the amplitude of oscillations in X2 (n=2). The 
amplitude of the input X1=1+sint is diminished in 
the output.
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We analyze the stability of equilibrium points 
of the output node in a two-dimensional square 
concurrent decision-making lattice. This 
analysis focuses on the case where n=2 and 
g2=0. We start with the case where c2=c2,1=1.
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and

respectively.

Table S1. Summary of variables and model 
parameters.

Variable/
Parameter Description

Xi value/utility of the ith node

βi
growth constant of the 
unrepressed Xi

ρi first-order degradation of Xi

γi,j
interaction coefficient associated 
with the inhibition of Xi by Xj

ci,j
exponent of Xj affecting the 
nonlinear inhibition of Xi by Xj

gi constant basal growth of Xi

ci strength of self-stimulation by Xi

Table S2. Value of variables and parameters in 
Fig. 4a and Fig. S8a.

Variable/Parameter Value
X1 5+5sin(time) (Fig. 4a), 

5r (Fig. S8a)
β2, β3 1.5
β4 1
c2, c3, c4, c2,1, c2,4, c3,1, c3,4, 
c4,2, c4,3

1

γ2,1,γ3,1 4
γ2,4,γ3,4 0.1
γ4,2,γ4,3 0.5
g2, g3, g4 0.01
ρ2,ρ3, ρ4 0.13

Table S3. Value of variables and parameters in 
Fig. 4b and Fig. S8b.

Variable/Parameter Value
X1 2+2sin(time) (Fig. 4b), 

2r (Fig. S8b)
β2, β3 1.5

b4 1
c2, c3, c4, c2,1, c2,4, c3,1, c3,4, 
c4,2, c4,3

2

γ2,1,γ3,1 4
γ2,4,γ3,4 0.1

g4,2,g4,3 0.5

g2, g3, g4 0
ρ2,ρ3, ρ4 0.13

Table S4. Value of variables and parameters in 
Fig. 4c and Fig. S8c.

Variable/Parameter Value
X1 1+1sin(time) (Fig. 4c), 

r (Fig. S8c)
β2, β3 1.5
b4 1
c2, c3, c4, c2,1, c2,4, c3,1, c3,4, 
c4,2, c4,3

2

γ2,1 4

 15 

 
486 

Thus, the equilibrium points are X2*=0,  487 

     (ES1) 
488 

and  
489 

     (ES2) 
490 

Going through the similar process used in the case where c2=c2,1=1, we have 491 

 
492 

Hence, X2*=0 is a stable equilibrium point for any value of the variables and 493 
parameters in the concurrent decision-making ODE model. In the case of the other 494 
two equilibrium points, (ES1) and (ES2) are stable provided that  495 

 

496 

and 497 

, 498 

respectively. 499 
 500 
 501 
Table S1. Summary of variables and model parameters 502 
Variable/Parameter Description 
Xi value/utility of the ith node 
bi growth constant of the unrepressed Xi 
ri first-order degradation of Xi 

gi,j interaction coefficient associated with the inhibition of Xi by 
Xj 

ci,j exponent of Xj affecting the nonlinear inhibition of Xi by Xj 

gi constant basal growth of Xi 
ci strength of self-stimulation by Xi 

 503 
 504 

( )
( )

2**
2 2 *2

2 22* 2
2 2,1 1

0
1

XdX X
dt X X

b
r

g
= - =

+ +

( )2 2 2
2 2 2 2,1 1*

2
2

4 1

2

X
X

b b r g

r

+ - -
=

( )2 2 2
2 2 2 2,1 1*

2
2

4 1

2

X
X

b b r g

r

- - -
=

  

d 2 X2
*

dt2
X2

*=0

= −ρ2 < 0.

  

d 2 X2
*

dt2
X2

*=
β2+ β2

2−4ρ2
2 1−γ 2,1X1

2( )
2ρ2

=
2β2 X2

*

1+ X2
* + γ 2,1X1

2 −
2β2 X2

*

1+ X2
* + γ 2,1X1

2( )2 − ρ2

X2
*=

β2+ β2
2−4ρ2

2 1−γ 2,1X1
2( )

2ρ2

< 0

( ) ( ) ( )
2 2 2

2 2 2 2,1 1 2 2 2*
2 2 2 2,1 12 *

2 2
2

2 * * *
2 2 2 2 2

222 * 24 1 * 2
4 12 2,1 1 2 2,1 12
2

2 2 0
1 1X

XX
X

d X X X
dt X X X Xb b r g

b b r g
r

r

b b r
g g- - -

- - -=
=

= - - <
+ + + +

 15 

 
486 

Thus, the equilibrium points are X2*=0,  487 

     (ES1) 
488 

and  
489 

     (ES2) 
490 

Going through the similar process used in the case where c2=c2,1=1, we have 491 

 
492 

Hence, X2*=0 is a stable equilibrium point for any value of the variables and 493 
parameters in the concurrent decision-making ODE model. In the case of the other 494 
two equilibrium points, (ES1) and (ES2) are stable provided that  495 

 

496 

and 497 

, 498 

respectively. 499 
 500 
 501 
Table S1. Summary of variables and model parameters 502 
Variable/Parameter Description 
Xi value/utility of the ith node 
bi growth constant of the unrepressed Xi 
ri first-order degradation of Xi 

gi,j interaction coefficient associated with the inhibition of Xi by 
Xj 

ci,j exponent of Xj affecting the nonlinear inhibition of Xi by Xj 

gi constant basal growth of Xi 
ci strength of self-stimulation by Xi 

 503 
 504 

( )
( )

2**
2 2 *2

2 22* 2
2 2,1 1

0
1

XdX X
dt X X

b
r

g
= - =

+ +

( )2 2 2
2 2 2 2,1 1*

2
2

4 1

2

X
X

b b r g

r

+ - -
=

( )2 2 2
2 2 2 2,1 1*

2
2

4 1

2

X
X

b b r g

r

- - -
=

  

d 2 X2
*

dt2
X2

*=0

= −ρ2 < 0.

  

d 2 X2
*

dt2
X2

*=
β2+ β2

2−4ρ2
2 1−γ 2,1X1

2( )
2ρ2

=
2β2 X2

*

1+ X2
* + γ 2,1X1

2 −
2β2 X2

*

1+ X2
* + γ 2,1X1

2( )2 − ρ2

X2
*=

β2+ β2
2−4ρ2

2 1−γ 2,1X1
2( )

2ρ2

< 0

( ) ( ) ( )
2 2 2

2 2 2 2,1 1 2 2 2*
2 2 2 2,1 12 *

2 2
2

2 * * *
2 2 2 2 2

222 * 24 1 * 2
4 12 2,1 1 2 2,1 12
2

2 2 0
1 1X

XX
X

d X X X
dt X X X Xb b r g

b b r g
r

r

b b r
g g- - -

- - -=
=

= - - <
+ + + +



OSCILLATION PROPAGATION       CUENO, ET. AL 15

γ2,4,γ3,4 0.1
γ3,1 1
g4,2,g4,3 0.5
g2, g3, g4 0.01
ρ2,ρ3, ρ4 0.13

Table S5. Value of variables and parameters in 
Fig. 5a and Fig. S9a.

Variable/Parameter Value
X1 5+5sin(time) (Fig. 

5a), 5r (Fig. S9a)
β2, β3 1.5
β4,β5,β6,β7,β8 1

β9 2
c2, c3, c4, c5, c6, c7, c8, c9, 
c2,1, c2,4, c2,5, c3,1, c3,4, c3,6, 
c4,2, c4,3, c4,7, c4,8, c5,2, c5,7, 
c6,3, c6,8, c7,4, c7,5, c7,9, c8,4, 
c8,6, c8,9, c9,7, c9,8

1

γ2,1,γ3,1 4
γ2,4,γ2,5,γ3,4,γ3,6,γ4,7,γ4,8,γ5,7,
γ6,8,γ7,4,γ7,5,γ7,9,γ8,4,γ8,9,

0.1

γ4,2,γ4,3,γ5,2,γ6,3 0.5

γ9,7,γ9,8 4

g2,g3, g4, g5, g6, g7, g8, g9 0
ρ2,ρ3,r4,r5,r6,r7,r8,r9 0.13

Table S6. Value of variables and parameters in 
Fig. 5b and Fig. S9b.

Variable/Parameter Value
X1 2+2sin(time) (Fig. 5b), 

2r (Fig. S9b)
β2, β3 1.5
b4,b5,b6,b7,b8 1
b9 2
c2, c3, c4, c5, c6, c7, c8, c9, 
c2,1, c2,4, c2,5, c3,1, c3,4, c3,6, 
c4,2, c4,3, c4,7, c4,8, c5,2, c5,7, 
c6,3, c6,8, c7,4, c7,5, c7,9, c8,4, 
c8,6, c8,9, c9,7, c9,8

1

γ2,1,γ3,1 4
γ2,4,γ2,5,γ3,4,γ3,6,γ4,7,γ4,8,γ5,7,
γ6,8,γ7,4,γ7,5,γ7,9,γ8,4,γ8,9,

0.1

γ4,2,γ4,3,γ5,2,γ6,3 0.5
γ9,7,γ9,8 4
g2,g3, g4, g5, g6, g7, g8, g9 0
ρ2,ρ3,r4,r5,r6,r7,r8,r9 0.13

Table S7. Value of variables and parameters in 
Fig. 5c and Fig. S9c.

Parameters Value
X1 1+1sin(time) (Fig. 5c), 

r (Fig. S9c)
β2, β3 1.5
b4,b5,b6,b7,b8 1
b9 2
c2, c3, c4, c5, c6, c7, c8, c9, 
c2,1, c2,4, c2,5, c3,1, c3,4, c3,6, 
c4,2, c4,3, c4,7, c4,8, c5,2, c5,7, 
c6,3, c6,8, c7,4, c7,5, c7,9, c8,4, 
c8,6, c8,9, c9,7, c9,8

1

γ2,1,γ3,1 4
γ2,4,γ2,5,γ3,4,γ3,6,γ4,7,γ4,8,γ5,7,
γ6,8,γ7,4,γ7,5,γ7,9,γ8,4,γ8,9,

0.1

γ4,2,γ4,3,γ5,2,γ6,3 0.5
γ9,7,γ9,8 4
g2,g3, g4, g5, g6, g7, g8, g9 0.01
ρ2,ρ3,r4,r5,r6,r7,r8,r9 0.13




