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ABSTRACT

	

	 Frequent itemset mining is one of the fundamental but time-demanding tasks in data mining.  
It is used to find frequent patterns and generate association rules for these patterns.  With the 
availability of inexpensive storage and progress in data capture technology, the availability of 
data has reached exa-scale already.  But improvements in processor and network technology 
open up opportunity for parallel and distributed computing to be applied in frequent itemset 
mining to improve its performance in the light of the challenge of “big data”.  Thus, there are 
challenges in frequency itemset mining to fully harness the parallel processing capability of 
the computer hardware technologies. This paper reviews the development of current serial and 
parallel approaches to frequent itemset mining and discusses future research directions in this 
field.  

Keywords: Frequent itemset mining, Data mining, GPU computing, Multi-core computing, 
Distributed computing
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INTRODUCTION

Frequent itemset mining (FIM) is a 
fundamental task in the field of data mining 
such as association rule discovery (Agrawal, 
Imielinksi, & Swami, 1993), clustering 
(Kosters, Marchiori, & Oerlemans, 1999), 
classification (Hu, Lu, Zhou, & Shi, 1999), web 
mining (Woon, Ng, & Lim, 2002), and others. 
It aims to extract hidden patterns in large 
volumes of data by discovering frequently 
occurring groups of items in the database.  Once 
the hidden patterns are extracted and strong 
associations are found, useful information 
can be derived from these patterns. By going 
through volumes of data, valuable information 
can be extracted in commerce, bioinformatics, 
electronic commerce (Sarwar, Karypis, 
Konstan, & Riedl, 2000), network intrusion 
detection, and other real-world applications.

In recent years, vast amounts of data are 
generated in many fields (Lynch, 2008) (Szalay 
& Gray, 2006).  These range from commerce to 
scientific research data.  To put this number 
in perspective, Wal-Mart generates more than 
200 million transactions per day in all its 
stores worldwide and the volume of business 
data worldwide is estimated to double every 
1.2 years (Manyika, et al., 2012).   The data 
being generated by scientific research is also 
enormous. The large hadron collider (LHC), 
a particle accelerator, generates 60 terabytes 
of data per day while 32 petabytes of climate 
data are stored in the NASA discovery 
supercomputer cluster (Brumfiel, 2011).

Generating frequent itemsets is a time-
demanding task.  Its operation includes 
generating combinations of set given n items. 
This operation leads to an exponential time 
complexity (i.e., 
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technology is the redesigning of graphics 
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GPU from a traditional graphics coprocessor 
to a general-purpose programming processor. 
This paradigm shift is known as GPU 
computing (NVIDIA Corporation, 2015).  A 
GPU is composed of many cores and uses 
single-instruction multiple-thread (SIMT) 
model. The introduction of Compute Unified 
Device Architecture (CUDA) provides a 
platform to program GPU using various high 
level programming languages (Glaskowsky, 
2009).  This makes a GPU device, which are 
affordable and widely available, suitable for 
parallel computing as well (Barlas, 2015).

Improvement in network technology leads to 
the rise of cloud computing.  This technology 
promises a reliable software, hardware 
and infrastructure-as-a-service over the 
internet (Armburst, et al., 2010).  With cloud 
computing, off-the-shelf grid and cluster 
computing is now available as a service.  
This makes distributed computing, which is 
a form of parallel computing, a common and 
affordable option as well.

Parallel implementations of FIM algorithms 
using multi-core, GPU, as well as distributed 
computing have started to emerge (Zhang, 
Zhang, & Bakos, 2013), (Lu & Alaghband, 2014), 
(Lin & Chung, 2015).  Though, development 
of serial algorithms remain very much active 
(Deng & Wang, 2010) (Wang, Jiang, & Deng, 
2012) (Lv & Deng, 2014).  This paper surveys 
the current development of serial and parallel 
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approach to frequent itemset mining and 
discusses future research directions in this 
field.  

DEFINITIONS

This section discusses key terms and definitions 
of FIM (Goethals, 2003).  A more in-depth 
introduction can be found in (Gorunescu, 
2011).  

Frequent Itemset Mining

Formally, the task of FIM can be described 
as follows.  Let I = {i1,i2,…, in} be a set of all 
items.   A subset X = {i1,i2,…,ik} ⊆ Ι is called 
an itemset or k-itemset if it contains k items.  

A transaction over I is a pair T = (tid, J), 
where tid is the transaction identifier and J 
is an itemset.

A transaction database D = {T1,T2,…, Tm} 
contains a set of transactions over I.  

The cover of an itemset X in D consists of the 
set of tid of transaction in D that supports X: 

cover(X,D) := {tid | (tid,J)∈D, X⊆ Ι}

The support of an itemset X is the number of 
transactions in the cover of X in D (i.e., number 
of transactions that contain the itemset X):

support(X,D) := |cover(X,D)|

An itemset is frequent if its support is no 
less than a given minimal support threshold 
σ.  The threshold can either be absolute σabs, 
with 0 ≤ σabs ≤ |D| or relative σrel, with 0 ≤ 
σrel ≤ 1. In this paper, the relative threshold is 
used and omits the subscript rel unless stated 
otherwise.

The collection of frequent itemsets in D with 
respect to σ  is defined as: 
  

F(D,σ) := {X⊆ Ι | support(X,D) ≥ σ}

The task of frequent itemset mining is to find 
the set of itemsets F. 

Associative Rule Mining

Association rule is the form of XY where X 
is the rule antecedent a while Y is the rule 
consequent.  Thus, {diaper}{beer} means 
that customer who buys diapers tends to buy 
beer as well.   

Generating association rules involves two 
steps: (1) generate the frequent k-itemsets 
(i.e., frequent itemset mining), and (2) for each 
frequent k-itemset, generate all rules using the 
items in the k-itemset that meet the minimum 
specified confidence (i.e., associative rule 
generation).  The confidence of the association 
rule AàB is defined as the ratio of the number 
of transactions that include all items in the 
antecedent and consequent to the number 
of transactions that include all items in the 
antecedent only:
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Table 1. An Example of a Transaction Database

tid J
100 {a, b, d}
200 {a, b}
300 {c, d}
400 {b, c}

Table 2 shows all frequent itemsets in D with 
σabs of at least 1 or, equivalently, σrel of at least 
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25%.  Table 3 shows all frequent and confident 
association rules with σabs of at least 1 and γ 
of at least 50%.

Database Layout

The transactional database, which is stored in 
the secondary storage, can be arranged either 
as horizontal layout or vertical layout.  For the 
horizontal layout, each row is composed of a 

transaction identifier and its corresponding 
items.  Thus, each row is equivalent to one 
transaction.  Table 1 illustrates an example 
of a horizontal layout.  For the vertical layout, 
each row is composed of an item and its 
corresponding cover.  Thus, each row contains 
complete transaction information of an item.  
Table 4 illustrates an example of a vertical 
layout.  

Table 2. Itemsets and Their Support

Itemset Cover Support (σabs) Frequency (σrel)
{} {100,200,300,400} 4 100%

{a} {100,200} 2 50%
{b} {100,200,400} 3 75%
{c} {300,400} 2 50%
{d} {100,300} 2 50%

{a,b} {100,200} 2 50%
{a,d} {100} 1 25%
{b,c} {400} 1 25%
{b,d} {100} 1 25%
{c,d} {300} 1 25%

{a,b,d} {100} 1 25%

Table 3. Association Rules and Their Support and Confidence

Rule Support (σabs) Frequency (σrel) Confidence
a→b 2 50% 100%
a→d 1 25% 50%
b→a 2 50% 66%
c→b 1 25% 50%
c→d 1 25% 50%
d→a 1 25% 50%
d→b 1 25% 50%
d→c 1 25% 50%

{a,b} →d 1 25% 50%
{a,d} →b 1 25% 100%
{b,d} →a 1 25% 100%
a→{b,d} 1 25% 50%
d→{a,b} 1 25% 50%
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Table 4. Example of a Vertical Data Layout

J Cover
a 100, 400
b 100, 200, 400
c 300, 400
d 100, 300

CLASSICAL FIM ALGORITHMS

This section discusses the three classical FIM 
algorithms on which majority of the existing 
algorithms are based.  These are Apriori 
(Agrawal & Srikant, 1994), ECLAT algorithm 
(Zaki, Parthasarathy, Ogihara, & Li, 1997), 
and FP-growth algorithm (Han, Pei, & Yin, 
2000).  

Apriori Algorithm

The concept of frequent itemset mining and 
association rule mining was first proposed by 
Agrawal, Imielinski and Swami (1993).  In 
this landmark paper, the authors analyzed 
the items purchased by the customers in a 
supermarket (i.e., market basket analysis) 
in order to correlate the buying behavior of 
the customers.   The algorithm, known as 
AIS, was improved by Agrawal and Srikant 
(1994) and later renamed as Apriori.  The 
algorithm introduces the concept of downward 
closure property known as Apriori. This anti-
monotonicity property states that a k-itemset 
is frequent if and only if all of its subsets (i.e., 
k-1) are frequent.  The same technique was 
separately proposed by Mannila, Toivonen, 
and Verkamo (1994).  The pseudocode of 
Apriori algorithm (Goethals, 2003) is listed 
in figure 1. 

Input: D, σ 
Output: F(D, σ) 
Method: Apriori(D, σ) 
1: C1 := { {i} | i ∈ I } 
2: k := 1 
3: while Ck ≠ { } do 
4:    // Compute the supports of all candidate itemsets 
5:    for all transactions (tid , I) ∈ D do 
6:        for all candidate itemsets X ∈ Ck do 
7:            if X ⊆ I then 
8:                X.support++ 
9:            end if 
10:      end for 
11:  end for 
12:  // Extract all frequent itemsets 
13:  Fk := { X | X.support ≥ σ } 
14:  // Generate new candidate itemsets 
15:  for all X, Y ∈ Fk, X[i] = Y [i] for 1 ≤ i ≤ k − 1, and X[k] < Y [k] do 
16:     I = X ∪ { Y[k] } 
17:     if  ∀J ⊂ I, |J| = k : J ∈ Fk then 
18:            Ck+1 := Ck+1 ∪ I 
19:     end if 
20:  end for 
21: k++ 
22: end while 

Figure 1. Pseudocode of Apriori Algorithm
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Initially, all items in the database serve 
as initial candidate k-itemsets (line 1).  The 
database, which is stored in horizontal layout, 
is scanned one transaction at a time and the 
support counts of the candidate itemsets 
are incremented (lines 6-10).  Based from 
the input σ, the frequent itemsets are then 
extracted (line 13).   From these k-itemsets, the 
candidate (k+1)-itemsets are then generated 
(line 15-18) and D is rescanned again to tally 
the support counts.  The process is repeated 
until there are no k-itemsets that can be 
generated anymore (line 3).  Thus, the number 
of candidate k-itemsets generated is reduced 
since not all combinations of k-itemsets are 
considered.  

Because of the breadth-first search technique, 
the database needs to be constantly rescanned 
to tally the support counts. This negates 
the advantage of having a reduced search 
space. Also, if σ is set too low, the number of 
frequent itemsets generated can be very large.   
There have been many variants to improve 
the algorithm either by further reducing the 
candidate itemsets or by minimizing database 
scan.  In dynamic hashing and pruning 
(DHP) (Park, Chen, & Yu, 1995), information 
regarding (k+1)-itemsets is gathered while 
performing support count of k-itemsets.  
This information, which is stored in a hash 
table, contains counters to represent how 
many itemsets have been hashed so far.  If 
the counter of the candidate (k+1)-itemset is 
below σ, then it is not generated.   Thus, fewer 
candidates are generated.  But this comes 
with a significant overhead of creating and 
maintaining a separate hash table.  

In dynamic itemset counting (DIC) (Brin, 
Motwani, Ullman, & Tsur, 1997), the database 
is divided into intervals of specific size to 
minimize the number of database scan. 
Candidate itemsets are generated and counted 
at every interval.  But the performance is 
heavily dependent on the heterogeneity of 
the data.    

Another improvement known as sampling 
technique (Toivonen, 1996) performs at most 
two scans to the database.  During the first 
scan, random samples are obtained and 
frequent itemsets are generated and verified 
with the rest of the database.  If the samples 
failed to generate all frequent itemsets, a 
second pass to the database is performed to 
generate the rest of the frequent itemsets.  
To minimize the sampling failure, the value 
of σ can be decreased gradually.  But a slight 
decrease in σ can cause large amount of 
candidate itemsets to be generated.

 In the partitioning technique (Savasere, 
Omiecinski, & Navathe, 1995), the database 
is divided into multiple non-overlapping 
partitions and the frequent itemsets mining 
is done in two phases.  In the first phase, each 
partition scanned the database and generates 
its own local frequent itemsets.  Since the 
local frequent itemsets may not be frequent 
in relation to the entire database, they are 
merged together in preparation for the next 
stage.  In the second stage, the merged 
itemsets now serve as candidate itemsets.  
Their support counts are tallied against the 
entire database and the frequent itemsets 
are then generated.  A unique feature of this 
algorithm is the use of vertical layout for the 
database.  The data of k-itemsets are read from 
the secondary storage and stored in the main 
memory.  The support counts of candidate 
itemsets are computed by intersecting the 
covers of the corresponding k-itemsets.  This 
operation performs faster than the scan-and-
tally operation of horizontal layout.   There is 
a possibility though that during the generation 
of local frequent itemsets, the covers of all 
local candidate k-itemsets cannot fit the 
main memory. Also, it is highly dependent on 
the distribution of data in the database and 
may cause too many frequent itemsets to be 
generated in one partition. 
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ECLAT Algorithm

The equivalence class clustering and bottom-
up lattice traversal (ECLAT) algorithm 
(Zaki, Parthasarathy, Ogihara, & Li, 1997) 
uses depth-first search and vertical database 
layout to generate frequent itemsets.  Using 
depth-first strategy minimizes the number of 
candidate k-itemsets generated as compared 
to the partitioning technique.  The pseudocode 
of ECLAT algorithm (Goethals, 2003) is listed 
in figure 2. 

The candidate k-itemsets are generated by 
intersecting two (k-1) frequent itemsets (lines 
6-7) and the support counts are calculated 
and determine if it is frequent (line 8).  The 
vertical database layout is then updated to 
reflect the updated frequent itemsets (line 
9).  The process is repeated using depth-first 
recursion (lines 13-14) until all the itemsets 
are covered.  Since this algorithm does not use 
the anti-monotonicity property, the candidate 
itemsets generated are larger than that of 
Apriori. 

As compared to Apriori algorithm, the 
database needs only to be scanned once 

since the vertical layout carries the complete 
information required for support counting.  
The computation of support count is faster 
since it is done by intersecting the covers of 
the two k-itemsets. But, this is offset by the 
need for more memory space since it needs 
to maintain a separate vertical database 
layout.  Also, depth-first search prevents the 
implementation of algorithm in parallel.

FP-Growth Algorithm

Both the Apriori and ECLAT algorithms 
uses the methodology known as candidate 
generation and support counting.  Another 
algorithm proposed by Han, Pei and Yin (2000) 
generates frequent itemsets without the need 
for candidate generation. The frequent-pattern 
(FP)-growth algorithm instead generates a 
FP-growth tree, which stores the compressed 
version of the database.  The frequent 
itemsets are then generated based from the 
FP-growth tree using a method known as FP-
growth pattern. The pseudocode of FP-growth 
algorithm (Goethals, 2003) is listed in figure 3. 

Input: D, σ, I  
Output: F[I](D, σ) 
Method: ECLAT(D, σ, I) 
1: F[I] := {} 
2: for all i occurring in D do 
3:   F[I] := F[I] ∪ {I ∪ {i}} 
4:   // Create Di 
5:   Di := {} 
6:   for all j ∈ I occurring in D such that j > i do 
7:      C := cover({i}) ∩ cover({j}) 
8:      if |C| ≥ σ then 
9:         Di := Di ∪ {(j,C)} 
10:    end if 
11: end for 
12:   // Depth-first recursion 
13:   Compute F[I ∪ {i}](Di, σ) 
14:   F[I] := F[I] ∪ F[I ∪ {i}] 
15: end for 

Figure 2. Pseudocode of ECLAT Algorithm Figure 2. Pseudocode of ECLAT Algorithm
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This algorithm only needs to scan the 
database twice to generate the FP-growth 
tree.  During the first scan, the database is 
scanned to obtain the 1-itemsets.  These are 
then sorted in frequency-descending order 
(line 3). During the second scan, the items in 
each transaction are processed based on the 
sorted 1-itemset order and the FP-growth tree 
is then built based on the 1-itemset and the 
transactions of the database (lines 7-9).  A 
separate header structure is also created (line 
5) which contains support counts and links to 
the initial 1-itemset.  Once the tree is created, 
the frequent itemsets are then generated by 
recursively building a sub-tree starting from 
the initial 1-itemset with the lowest frequency 
(lines 16-17).  The sub-tree consists of set 
of prefix paths co-occurring with the suffix 
pattern.    Thus this algorithm is composed 
of two steps.  These are FP-tree generation 
and frequent itemset generation through FP-
growth method.

The advantage of FP-growth algorithm 
over Apriori and ECLAT is that there is no 
need for candidate generation and support 
count.  Also, the database is converted 
to a more compact data structure, which 
contains the complete information, thus 
eliminating repeated database scans. But 
the compact data structure is also a complex 
data structure composed of linked lists with 
each node consisting of a counter, a pointer 
to the next node, a pointer to its branches, 
and a point to the parent node.  Adding to the 
complexity is that using pointers requires a 
lot of dereferencing.  Whereas for ECLAT, the 
vertical data layout can only be implemented 
using a simpler array data structure.

Several variations to this algorithm include 
using depth-first method (Agarwal, Aggarwal, 
& Prasad, 2000) and using an array-based 
instead of linked list implementation of the 
FP tree (Grahne & Zhu, 2003).

Input: D, σ, I  
Output: F[I](D, σ) 
Method: FPgrowth(D, σ, I) 
1: F[I] := {} 
2: for all i occurring in D do 
3:   F[I] := F[I] ∪ {I ∪ {i}} 
4:   // Create Di 
5:   Di := {} 
6:   H := {} 
7:   for all j ∈ I occurring in D such that j > i do 
8:      if support(I ∪ {i,j }) ≥ σ then 
9:         H := H ∪ {j} 
10:    end if 
11: end for 
12: for all (tid, X) with i do 
13:    Di := Di ∪ {(tid, X∩H)} 
14: end for        
15:   // Depth-first recursion 
16:   Compute F[I ∪ {i}](Di, σ) 
17:   F[I] := F[I] ∪ F[I ∪ {i}] 
18: end for 

Figure 3. Pseudocode of FP-growth Algorithm 
Figure 3. Pseudocode of FP-growth Algorithm
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CURRENT SERIAL FIM 
ALGORITHMS

Several algorithms have been proposed in 
recent years to further improve the frequent 
itemset mining.  These range from improving 
the data structure to limiting the search space.  
The following subsections provide an overview 
of the recent work of these algorithms.

Improvement of Data Structure

Most of the improvements in frequent itemset 
mining are focused on FP-growth algorithm 
and vertical data layout.  This is due to the 
advantage of not having to generate candidate 
itemsets as well as using intersection of covers 
instead of scan-and-tally method, which 
results in faster execution.  One algorithm 
combining these strong points was proposed by 
Deng and Wang (2010).  A new data structure 
called Node-list was proposed to improve on 

the FP-growth tree.  It is based on the PPC-
tree data structure, which is a prefix-based 
tree to store the compressed version of the 
database.   The PPC-tree added preorder and 
postorder traversal sequence information 
of each node.  This eliminates the need to 
maintain a separate header table structure.  
Each node N consists of five fields: N.name, 
N.count, N.child, N.preorder and N.postorder.  
Compare this with a node in the FP-tree that 
contains more than five fields.  The pseudocode 
in creating the PPC-tree is listed in figure 4 
(Deng & Wang, 2010).

Before the PPC tree is generated, all 
1-itemsets are first generated.  Those itemsets 
that are frequent are retained and sorted 
in support descending order (lines 1-3). The 
PPC-tree is then generated by first creating 
a root node that is labelled as “null” (line 5).  
The leaf nodes are then created based on the 
support order of the frequent itemsets (lines 
6-9, 13-21).  Once the PPC tree is generated, 

Input: A transaction database D and a minimum support σ 
Output: A PPC-tree and F1 (the set of frequent 1-itemsets). 
Method: Construct-PPC-tree(D, σ) 
1: //Frequent 1-itemsets generation 
2: According to σ , scan DB once to find F1, the set of frequent 1-itemsets  and their supports. 
3: Sort F1 in support descending order as L1, which is the list of ordered frequent items.  
4: //PPC-tree construction 
5: Create the root of a PPC-tree, Tr , and label it as “null”. 
6: for each transaction Trans in DB do 
7:     Select the frequent items in Trans and sort out them according to the order of F1. Let 
the sorted frequent-item list in Trans be [p|P], where p is the first element and P is the 
remaining list. 
8:    Call insert tree([p|P],Tr). 
9: end for 
10: //Pre-Post code generation 
11: Scan PPC-tree to generate the pre-order and the post-order of each node. 
12: //Function insert tree([p|P],Tr) 
13: if Tr has a child N such that N.item-name = p.item-name then 
14:      increase N’s count by 1; 
15: else 
16:     create a new node N, with its count initialized to 1, and add it to Tr’s children-list; 
17:     if P is nonempty then 
18:         call insert tree(P,N) recursively. 
19:     end if 
20: end if 

Figure 4. Pseudocode of PPC-Tree Construction Figure 4. Pseudocode of PPC-Tree Construction
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the tree is traverse twice to generate the 
preorder and postorder traversal information 
(lines 10-11).  The PP code of each node N in 
the PPC tree is then created.  The structure of 
the PP code is in in the form of <(N.preorder, 
N.postorder): N.count>.  The Node-list is then 
created based from the PP code.  A Node-list 
contains the sequence of all PP codes of a 
particular 1-itemset node in the PPC tree.  
Thus, a Node-list is denoted by {<(N.preorder1, 
N.postorder1): N.count1>, <(N.preorder2, 
N.postorder2): N.count2>,…, <(N.preordern, 
N.postordern): N.countn>}.   These 1-itemsets 
are sorted in support ascending rank, while 
the PP codes within the Node-list are sorted 
in preorder ascending rank.  Once the Node-
lists of all 1-itemsets are generated, the PPC 
tree can then be deleted to free up memory 
space.  The PPV algorithm is then used for 
frequent itemset mining. The pseudocode of 
PPV algorithm (Deng & Wang, 2010) is listed 
in Figure 5. 

The Node-list of a candidate k-itemset is 
generated by finding the ancestor-descendant 
relationship of the Node-lists of two (k-1)-
itemsets.  The Node-list of the candidate 
k-itemset is the descendant Node-list of the 
two (k-1)-itemsets.  The support count of the 
candidate k-itemset is computed by adding the 
support count of each PP-code in the Node-list 
and those support count below σ are removed.  
This process is repeated until all frequent 
itemsets are found.

The algorithm benefitted from the PPC-tree 
data structure as well as the intersection-
based approach of vertical data layout.  But, 
it still inherits the weakness of candidate 
generation-and-test of Apriori-like methods.    
The PrePost algorithm proposed by Wang, 
Jiang and Deng (2012) eliminates the need for 
candidate generation.  A new data structure 
called N-list is proposed in this algorithm.  
The generation of N-list is similar to that 
of the Node-list except that the N-lists of 
the candidate k-itemsets are based from the 

ancestor N-list instead.  Thus, the length 
of the N-list is shorter than Node-list.  This 
makes N-list more compact than Node-list.  
Also, N-list has a property known as single-
path property, which allows the generation 
of frequent itemsets without generating the 
equivalent candidate itemset.  The PrePost 
algorithm is used to generate frequent 
itemsets using the N-list data structure.  The 
pseudocode of PrePost algorithm (Wang, 
Jiang, & Deng, 2012) is listed in Figure 6.

Both Node-list and N-list store preorder 
and postorder information, which result 
in higher memory consumption. Another 
approach proposed by Lv and Deng (2014) is 
to store either preorder or postorder traversal 
information only.  The new data structure 
is known as Node-set.  The number of fields 
in each node is now reduced to four, which 
translates to lesser memory requirements.  
The Node-set is generated based from POC 
tree.  The POC tree is similar to PPC tree 
except only the preorder traversal information 
is stored.  The pseudocode in creating the POC 
tree (Lv & Deng, 2014) is listed in Figure 7.

Once the POC tree is generated, the tree is 
traverse once to generate either the preorder 
or postorder information.  The N-info of 
each node N in the POC tree is then created.  
The structure of N-info is in in the form of 
(N.preorder, N.count).  The Node-set is then 
created based from the N-info.  A Node-set 
contains the sequence of all N-infos of a 
particular 1-itemset in the POC tree.  Thus, a 
Node-set is denoted by {(N.preorder1, N.count1), 
(N.preorder2, N.count2),…, (N.preordern, 
N.countn) }.   These 1-itemsets are sorted in 
support- ascending rank, while the N-infos 
within the Node-set are sorted in preorder 
ascending order.  Once the Node-sets of all 
1-itemsets are generated, the POC tree can 
then be deleted to free up memory usage.   
The FIN algorithm is then used to generate 
the frequent itemsets.  The pseudocode of  
FIN algorithm (Lv & Deng, 2014) is listed in 
Figure 8.
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Input: the threshold σ, the frequent 1-patterns L
1
 and their Node-lists NL

1
 

Output: The complete set of frequent patterns.  
Method: PPV (σ, L

1
, NL

1
)  

1: L
1 

= {frequent 1-patterns};  

2: NL
1 

= {the Node-lists of L
1
};  

3: For ( k = 2; L
k-1
≠∅; k++) do begin {  

4:      For all p∈L
k-1 

and q∈L
k-1

, where p.i
1 

= q.i
1
,…, p.i

k-2 
= q.i

k-2
, p.i

k-1 
q.if

k-1 
do begin {  

5:                  l = p.i
1
, p.i

2
,…,p.i

k-1
,q.i

k-1
; // Candidate k-pattern  

6:                  If all k-1 subsets l of are in L
k-1 

{  

7:                      l.Node-list = code-intersection(p.Node-list, q.Node-list);  
8:                      If (l.count ≥|DB|×ξ) { // Use Property 5 to get l.count from l.Node-list  
9:                                 L

k 
= L

k 
∪{l};  

10:                              NL
k 
= NL

k 
∪ {l.Node-list}; }  

11:                   }  
12:       end For; }  
13:      Delete NL

k-1
;  

14: end For; }  
15: Answer = ∪

k 
L

k
; 

Figure 5. Pseudocode of PPV Algorithm Figure 5. Pseudocode of PPV Algorithm

Input: the minimum support σ, the frequent 1-itemsets L1 and their N-lists NL1  
Output: The frequent itemset F 
Method: PrePost(L1, NL1) 
1: for i ← Lk.size() − 1 to 1 do 
2:     Lk

i+1← ∅; 
3:     NLk

i+1← ∅; 
4:     for j ← i − 1 to 0 do 
5              Assume Lk[i] = x1x2 … xk and Lk[j] = yx2 … xk(y > x1 > x2> · · · >xk) 
6:             l ← yx1x2 … xk;  
7:             l.N − list ← NL_intersection(NLk [i],NLk[j]); 
8:            if l.count ≥ |DB| × σ then 
9:                Lk

i+1← Lk
i+1 ∪ {l}; 

10:             F ← F ∪ {l}; 
11:            NLk

i+1← NLk
i+1∪ {l.N − list}; 

12:         end if 
13:   end for 
14:   if Lk

i+1 ≠ 0 then 
15:          if NLk[i].length() = 1 then 
16:              Assume Lk

i+1= {P1, . . . , Pn} where Pi = yix1x2 … xk 
17:             for any p = yv1yv2… yvux1x2 … xk(1 ≤ v1 < v2 < … < vu ≤ n) do 
18:                p.count ← NLk[i].count; 
19:                F ← F ∪ {p}; 
20:             end for 
21:         else 
22:            Call PrePost(Lk+1

i,NLk+1
i); 

23:         end if 
24:   end if 
25: end for 

Figure 6.  Pseudocode of PrePost Algorithm Figure 6. Pseudocode of PrePost Algorithm
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Input: A transaction database D and a minimum support σ 
Output: A POC-tree and F1 (the set of frequent 1-itemsets) 
Method: Construct-POC-tree(D, σ) 
1: [Frequent 1-itemsets Generation] 
According to σ, scan D once to find F1, the set of frequent 1-itemsets, and their supports.  
Sort F1 in support descending order as L1, which is the list of ordered frequent items.  
2: [POC-tree Construction] 
Create the root of a POC-tree, Tr, and label it as ‘‘null’’.  For each transaction Trans in D do 
the following: 

• Select the frequent items in Trans and sort them according to the order of F1. Let the 
sorted frequent-item list in Trans be [p | P], where p is the first element and P is the 
remaining list. Call insert_tree ([p | P], Tr).

• The function insert_tree([p | P], Tr) is performed as follows:
o If Tr has a child N such that N.item-name = p.item-name, then increase N’s 

count by 1; 
o else create a new node N, with its count initialized to 1, and add it to Tr’s 

children-list. If P is nonempty, call insert_tree(P, N) recursively.
3: [Pre-code Generation] 
Scan the POC-tree to generate the pre (or post) -order of each node by the pre (or post)-
order traversal. 

 

Figure 7. Pseudocode of POC-Tree Construction Figure 7. Pseudocode of POC-Tree Construction

Input: A transaction database D and a minimum support σ 
Output: F, the set of all frequent itemsets 
Method: FIN(D, σ) 
1: F  Ø; 
2: Construct the POC-tree and find F1, the set of all frequent 1-itemset; 
3: F2  Ø; 
4: Scan the POC-tree by the pre-order traversal do 
5:    N  currently visiting Node; 
6:     iy  the item registered in N; 
7:     For each ancestor of N, Na, do 
8:          ix  the item registered in Na; 
9:          If ixiy ∈ F2, then 
10:               ixiy.support  ixiy.support + N.account; 
11:        Else 
12:               ixiy.support  N.account; 
13:               F2  F2 ∪ {ixiy}; 
14:        Endif 
15:   Endfor 
16: For each itemset, P, in F2 do 
17:      If P.support < σ x |D|, then 
18:          F2  F2 - {P}; 
19:      Else 
20:           P.Nodeset  Ø; 
21:       Endif 
22: Endfor 
23: Scan the POC-tree by the pre-order traversal do 
24:    Nd  currently visiting Node; 
25:    iy  the item registered in Nd; 
26:    For each ancestor of Nd, Nda, do 
27:          ix  the item registered in Nda; 
28:          If ixiy ∈ F2, then 
29:             ixiy.Nodeset  ixiy.Nodeset ∪ Nd.N_info; 
30:          Endif 
31:     Endfor 
32: F F ∪ F1; 
33: For each frequent itemset, isit, in F2 do 
34:    Create the root of a tree, Rst, and label it by isit; 
35:     Constructing_Pattern_Tree(Rst, {i | i ∈ F1, i > ii}, Ø); 
36: Endfor 
37: Return F; 

Figure 8. Pseudocode of FIN Algorithm 
 

 Figure 8. Pseudocode of FIN Algorithm
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The Node-set of a candidate k-itemset is 
generated by finding the ancestor-descendant 
relationship of the Node-sets of two (k-1)-
itemsets. The Node-set of the candidate 
k-itemset is the descendant Node-set of the 
two (k-1)-itemsets. The support count of the 
k-itemset is computed by adding the support 
count of the Node-set. The process is repeated 
until all frequent itemsets are found.  

To limit the search space of the data, the 
set-enumeration search tree (Rymon, 1992) 
is used. This tree generated is based from the 
Node-sets created.

Limiting Search Space

Another approach to improve the frequent 
itemset mining is to limit the search space by 
placing additional constraints.  Some of the 
methods are closed frequent itemset (CFI), 
maximally frequent itemset (MFI) and top-
rank-k frequent itemset (TRI).

A k-itemset β is closed frequent if β is 
frequent in D and there exists no proper 
superset α such that α has the same support 
count as β in D.   On the other hand, a 
k-itemset β is maximal frequent if β is 
frequent in D and no proper superset α 
is frequent in D. Thus, the relationship is 
maximal frequent itemset ⊆ closed frequent 
itemset ⊆ frequent itemset.

Top-rank-k frequent itemset is defined as 
follows.  The rank Rx of a frequent itemset 
X is defined as Rx = |{ σy | Y⊆I and σy ≥ 
σx}|, where |Y| is the number of items in 
Y.  Given the database D and a threshold of 
k, the top-rank-k frequent itemsets are the 
set of frequent itemsets whose ranks are no 
greater than k (i.e., Rx ≤ k).  This means that if 
a frequent itemset has a higher support count, 
its rank is higher.

A-Close (Pasquer, Bastide, Taouil, & 
Lakhal, 1999), which is based on the Apriori 
algorithm, is one of the earliest algorithms to 
limit the search space by using CFI.  Other 

related works include CLOSET (Pei, Han, 
& Mao, 2000) and CLOSET+ (Wang, Pei, & 
Han, 2003). The FPClose (Grahne & Zhu, 
2003) algorithm is based on the FP-growth 
approach.  There are some algorithms such 
as CHARM (Zaki & Hsiao, 2002) and AFOPT 
(Liu, Lu, Lou, & Yu, 2003) that use a hybrid 
approach.  The NAFCP algorithm (Le & Vo, 
2015) is a recent work on CFI, which is based 
on the N-list data structure.  The algorithm 
is similar to the PrePost algorithm but uses 
CFI instead.

MAFIA (Burdick, Calimlim, Flannick, 
Gehrke, & Yiu, 2005) is a pioneer algorithm 
that is based on MFI. It uses vertical bitset 
representation to compute for support count. 
An additional constraint to maximal frequent 
itemset was introduced by the MWFIM 
algorithm (Yun, Shin, Ryu, & Yoon, 2012).  
The algorithm added a weight constraint to 
each item.  The weight of an item is a non-
negative number that is assigned to reflect 
the importance of each item in the database. 
This algorithm employs the same vertical 
bitmap representation as MAFIA to compute 
for support count.   

The FAE (“Filtering and Extending”) 
algorithm is one of the first algorithms to use 
top-rank-k frequent itemset (Deng & Fan, 
2007) and is based on the Apriori algorithm.   
The NTK algorithm (Deng Z., 2014) combines 
Node-list data structure and PPV algorithm 
with top-rank-k frequent itemsets.  On the 
other hand, the iNTK algorithm (Huynh-Thi-
Le, Le, Vo, & Le, 2015) uses N-list and subsume 
index (Song, Yang, & Xu, 2008) instead to mine 
top-rank-k frequent itemsets.  The algorithm 
is thus similar to PrePost algorithm, except 
for the constraint search space.   

Putting the constraint search space in 
perspective, the improvement factor is due 
to fewer candidate itemsets generated, which 
translates to lesser execution time.  But this is 
offset by the concern that there might be some 
important information that may be left out.   
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Any existing serial FIM algorithms can be 
modified to use with constraint search space. 

CURRENT PARALLEL 
IMPLEMENTATIONS OF FIM 

ALGORITHMS

In recent years, there have been many 
developments in parallel implementations 
of FIM algorithm to take advantage of the 
improvement of processor and network 
technology.  The availability of OpenMP 
library for multi-core processor and cloud 
computing and  Nvidia CUDA and ATI 
OpenCL library for GPU have make it easier 
to implement algorithms in parallel paradigm.  
The following subsections provide an overview 
of the recent works in parallel implementation 
of FIM algorithms.

GPU Computing

One the earliest FIM implementation to 
utilized GPU computing was proposed by Fang, 
Lu, Xiao, He, and Luo (2009)  and is based on 
the Apriori algorithm.  It uses vertical data 
layout instead and is implemented as bitset 
representation.  Since the Apriori algorithm 
uses breadth-the first search method, each 
candidate generation and support count can 
be viewed as one thread and can be processed 
in parallel.   

The PBI algorithm is a pure GPU 
implementation for performing both candidate 
generation and support counting in the GPU.  
The pseudocode of PBI algorithm (Fang, Lu, 
Xiao, He, & Luo, 2009) is listed in Figure 9.

Since the vertical bitset representation 
is viewed as an array of bits, a candidate 
k-itemset is generated by performing a bitwise 
OR operation of two (k-1) itemsets (lines 4-6) 
while the corresponding transaction is obtained 
by performing a bitwise AND operation.  The 
support count is done by performing a binary 

search on a lookup table.  The lookup table 
contains the mapping of an integer and the 
number of 1s in its binary equivalent. 

Pure GPU implementation eliminates the 
need to transfer data from the main memory 
to GPU memory.  But if the number of items 
is large, then it will generate a significant 
overhead in accessing the lookup table.  As an 
alternative, the TBI algorithm implemented 
using CPU-GPU combination. This algorithm 
uses trie data structure to represent the data 
set. It uses CPU to generate candidate itemsets 
and GPU to perform parallel support count.  
The pseudocode of TBI algorithm (Fang, Lu, 
Xiao, He, & Luo, 2009) is listed in Figure 10. 

Another Apriori-based GPU algorithm was 
proposed by Zhang, Zhang and Bakos (2011).  
The GPApriori preprocesses the dataset and 
stores it as vertical bitset representation. 
Candidate generation is done by the CPU 
while the support count is performed in 
the GPU by intersecting the bitset and the 
results are copied back to the main memory.  
The process is almost identical to the PBI 
algorithm except for the process involving 
support count.

ECLAT-based GPU implementation of GPU 
was proposed by Zhang, Zhang, and Bakos 
(2013). The Frontier Expansion algorithm 
preprocesses the   dataset stores as vertical 
bitset representation using stack.  The process 
of candidate itemsets generation is done by 
the CPU while the support count is done in 
parallel by the GPU.  The pseudocode of the 
Frontier Expansion algorithm (Zhang, Zhang, 
& Bakos, 2013) is listed in Figure 11.

Most of the current implementations of 
GPU computing are based on the Apriori or 
ECLAT algorithm.  This is due to the fact that 
candidate generation and support count are 
two independent tasks that can be executed 
in parallel. Also, data are preprocessed and 
store as vertical bitset structure instead of 
the traditional horizontal structure.  Vertical 
bitset structure can take advantage of the 
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Input: Lx represents the x-th (K-1)-itemset (i.e, the x-th row vector in the bitmap for (K-1)-
itemsets) 
Output: the set of all frequent itemsets 
Method: PBI(Lx) 
1: for each Li in parallel do 
2:      for each Lj where j = i + 1 to m do 
3:        if Li and Lj are joinable then 
4:           //Join 
5:          Union on Li and Lj to obtain a candidate k-itemset by performing a bitwise OR 
operation 
6:          //Pruning 
7:           (K - 1)-subset test on the candidate k-itemset by a binary search in the (K-1)-itemset 
bitmap. 
8:        else 
9:           break 
10:     end if 
11:   end for 
12: end for 

Figure 9. Pseudocode of PBI Algorithm 

Input: u represents a node at depth K-1 in the trie 
Output: the set of all frequent itemsets 
Method: TBI(u) 
1: for each u at depth K - 1 do 
2:     for each w that is a right sibling of u do 
3:       //Join 
4:       Union on the two (k - 1)-itemsets represented by u and w to obtain a candidate k-
itemset 
5:       //Pruning 
6:      (k - 1)-subset test on the candidate K-itemset by following the path of the trie with the 
same prefix 
7:     end for 
8: end for 

Figure 10. Pseudocode of TBI Algorithm 

Figure 9. Pseudocode of PBI Algorithm

Figure 10. Pseudocode of TBI Algorithm

Input: frontier_stack, ε, σ 
Output: the set of all frequent itemsets 
Method: Frontier(frontier_stack, ε, σ) 
1: if frontier_stack is empty 
2:     return false 
3: expansion_size = 0 
4: frequent_itemset = Ø 
5: while expansion_size < ε 
6:    pop equivalent class s_eqv from stack 
7:    t_eqv = expand(s_eqv) 
8:  expansion_size = expansion_size + size(t_eqv) 
9:      support_count(t_eqv) 
10:    remove infrequent nodes from t_eqv 
11:    add t_eqv to frequent_itemset 
12:    push t_eqv to frontier_stack 
13:  return true   

Figure 11. Pseudocode of Frontier Expansion Algorithm 

 
Figure 11. Pseudocode of Frontier Expansion Algorithm
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built-in popcount and intersect operation of 
the GPU hardware to process support count.

Multi-Core Processor

One of the earliest works involving multi-core 
processor was proposed by Liu, Li, Zhang, and 
Tang (2007) and is based on the FP-growth 
algorithm.  Since, the strength of multi-core 
micro-architecture is in the cache structure, 
the algorithm uses array data structure to 
make it cache conscious.  Also the data are 
rearrange in such a way the data are temporal 
locality aware in order to maximize cache 
access.

The SHAFEM algorithm (Lu & Alaghband, 
2014) uses a different approach. It dynamically 
chose between two algorithms to handle 
sparse and dense database. Both algorithms 
are based on FP-growth algorithm. The 
MineFPTree algorithm uses XFP tree data 
structure to handle sparse data set.  XFP tree 
are composed of multiple local FP-growth trees 
that are merged together. On the other hand, 
MineBitVector converts the XFP tree data 
structure to vertical bitset data structure to 
handle dense data sets.  The pseudocode of 
the MineFPTree algorithm is listed in Figure 

12 while the pseudocode of MineBitVector 
algorithm is listed in Figure 13.

In multi-core implementation, the focus is 
to make the data more cache conscious.  The 
idea is to limit the communication between 
tasks by having all related data fetched in the 
same cache line.

Distributed Computing

One the earliest FIM algorithms to utilized 
distributed computing was proposed by Yu 
and Zhou (2008), which is based on the FP-
growth algorithm.  The algorithm known as 
tidset-based parallel FP-tree algorithm divides 
the database into a number of partitions 
depending on the available nodes in the 
cluster.  Each local computer node creates a 
vertical bitset representation of its partition 
as well as the corresponding 1-itemsets and 
returns the results back to the main node.  The 
main node then creates a global header table 
and distributes the mining set information 
equally among the nodes.  Each node then 
creates its local FP-growth tree and mines the 
frequent pattern.  The main node then collects 
all result from all the nodes and integrates the 
frequent itemsets.

Input: FP-tree T, suffix, minsup 
Output: the set of all frequent itemsets 
Method: MineFPTree(FP-tree T, suffix, minsup) 
1: If T contains a single path P then  
2:         For each combination x of the items in P 
3:             Output β = x ∪ suffix 
4:             Compute and update threshold Ki 

5: Else For each item α in the header table for FP-tree T 
6:             Output β = Ki ∪ suffix 
7:             Size = the size of α’s conditional pattern base 
8:             Compute and update threshold Ki 

9:            If Size > Ki then 
10:                 Construct α’s conditional FP-tree T’ 
11:                 Call MineFPTree(T’, β, minsup) 
12:           else 
13:                  Construct α’s private bit vectors V and w 
14:                  Call MineBitVector(V,w, β, minsup) 
15:           Endif 
16: Endif 

Figure 12. Pseudocode of MineFPTree Algorithm Figure 12. Pseudocode of MineFPTree Algorithm
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Input: vectors V, vec.w, suffix, minsup 
Output: the set of all frequent itemsets 
Method: MineBitVector(vectors V, vec.w, suffix, minsup) 
1: Sort V in support-descending order of their items  
2:         For each vector vk in V 
3:             Output β = item of vk ∪ suffix 
4:             For each vector vj in V with j < k 
5:                  uj = vk AND vj 
6:                  supj = support of uj computed using w 
7:                  If supj ≥ minsup then add uj into U  
8:             If all uj inU are identical to vk  
9:            Then For each combination x of the items in U 
10:                 Output β’ = x ∪ β 
11:            Else if U is not empty 
12:               Call MineBitVector(U, w, β ,minsup) 

Figure 13. Pseudocode of MineBitVector Algorithm 

 

Figure 13. Pseudocode of MineBitVector Algorithm

An improved version of the algorithm 
known as balanced tidset-based parallel FP-
tree algorithm was proposed by the same 
proponents (Zhou and Yu, 2008).  Instead of 
dividing the mining set equally among the 
nodes, a performance index is collected among 
the nodes, which act as a load- balancing 
metric.  This metric is then use to determine 
the amount of mining set workload to be sent 
to each node.

The algorithm proposed by Lin and 
Luo (2009) focused on data privacy in the 
distributed cloud computing environment. 
The FD-mine algorithm assigns a kernel or 
trusted node within the intranet to have full 
access to the database.  Within each cloud, a 
connection node is assigned to communicate 
with the kernel node.  If another node within 
the cloud needs data, it will coordinate with 
the connection node of its cloud.  The algorithm 
is also based on FP-growth algorithm.

The FLR-mining algorithm proposed by 
Lin and Chung (2015) improved the FD-
mine algorithm by adding load balancing to 
the algorithm. It iteratively estimates the 
workload based on the number of header 
items. The pseudocode of the FLR-mining 
algorithm is listed in figure 14.

Distributed computing is concerned with 
mainly with load balancing and data privacy.  
As the nodes are heterogeneous, the workload 
of each node is different.  Also, once the data 
leaves the host computer and transfer to 
an other node, there is no guarantee on the 
security and privacy of that particular data.

FUTURE RESEARCH DIRECTIONS

With the volume of data reaching exa-scale 
level, there is a need to take advantage of all 
available computing resources.  Improvement 
in computer hardware technology and its 
widespread availability has made parallel 
computing a viable option in implementing 
FIM algorithm.

Implementations of existing FIM algorithms 
have to take advantage of the parallel 
capabilities of the computing hardware or it 
will be useless.  It requires a novel approach as 
it is not a mere one-to-one mapping approach. 
It requires programmers to have a good 
working knowledge of multi-core computing, 
GPU computing, cloud computing and other 
parallel computing paradigm in order to take 
full advantage of it.
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Some of the challenges in parallel 
implementations include finding ways to look 
for independent tasks, communication issues 
between tasks load balancing, and defining 
tasks as multi-thread.  Finding independent 
tasks in FIM is a challenge as both data and 
control dependencies are fundamental in FIM 
algorithms.   

Most of the attempts to implement FIM 
algorithm in parallel are based either on Apriori 
or ECLAT algorithm.  Both of these algorithms 
use generate-and-count methodology, which 
involves two independent tasks.  Furthermore, 
vertical representation of dataset using bitset 
is preferred due to the availability of parallel 
join operation as primitive which allows 
support count to be computed in parallel.

But these types of algorithms need to 
generate candidate itemsets before coming 
up with frequent itemsets.  This is opposed to 
tree-based projection algorithms such as FP 
growth and Pre-post, which generates frequent 
itemsets without the need for candidate 

itemsets.  That is why most of the current 
algorithms are geared towards improving 
this type of algorithm.  But tree-based 
projection algorithm is inherently difficult to 
implement in parallel as it uses pointer and 
recursion. Novel solutions are needed to solve 
the problems.  These include changing data 
structure from pointer to array and tiling the 
program structure in such a way to make it 
cache-conscious.  

Thus, the challenge of future research 
in FIM is come up with algorithms and 
implementations that will harness the full 
capability of current computer hardware 
technology in parallel processing.  In multi-
core processor, the focus should be on its cache 
structure.  In GPU processor, its strength lies 
in multi-thread execution. While in distributed 
computing, its strength is in the availability 
of multiple computer nodes for processing.  
Other feature such as limiting the search space 
can be incorporated to further improve FIM 
operation performances.

Input: D, σ, CN 
Output: FP the set of all frequent itemsets 
Method: FLR_mine(D, σ, CN) 
1: HT = getHT(D,S); 
2: tree = buildFPtree (D,S); 
3: tt = getTreeTransmissionTime(); 
4: FP = Ø; 
5: tcn = 0; 
6: tn = 0; 
7: tavg = 0; 
8: While (isCompleted(HT) == false) 
9:    n = getAvailableNode(CN); 
10:    transmitTree(tree,n); 
11:    x = calculateNumOfHeaderItems(tt, tavg); 

12:    hi = selectIIS(x,HT); 
13:    HT = HT – hi; 
14:    n.BeginMining(hi); 
15:  End While 
16: Return FP 

Figure 14. Pseudocode of FLR-Mining Algorithm Figure 14. Pseudocode of FLR-Mining Algorithm
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