
Manila Journal of Science 9 (2016), pp. 115-135

Copyright © 2016 by De La Salle University Publishing House

Survey on the Current Status of Serial
and Parallel Algorithms of Frequent Itemset Mining

Roger Luis Uy1*, Merlin Teodosia C. Suarez2

1Computer Technology Department, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines
2Software Technology Department, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines

(*Corresponding Author) Email: roger.uy@dlsu.edu.ph

ABSTRACT

	

	 Frequent itemset mining is one of the fundamental but time-demanding tasks in data mining.
It is used to find frequent patterns and generate association rules for these patterns. With the
availability of inexpensive storage and progress in data capture technology, the availability of
data has reached exa-scale already. But improvements in processor and network technology
open up opportunity for parallel and distributed computing to be applied in frequent itemset
mining to improve its performance in the light of the challenge of “big data”. Thus, there are
challenges in frequency itemset mining to fully harness the parallel processing capability of
the computer hardware technologies. This paper reviews the development of current serial and
parallel approaches to frequent itemset mining and discusses future research directions in this
field.

Keywords: Frequent itemset mining, Data mining, GPU computing, Multi-core computing,
Distributed computing

116 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

INTRODUCTION

Frequent itemset mining (FIM) is a
fundamental task in the field of data mining
such as association rule discovery (Agrawal,
Imielinksi, & Swami, 1993), clustering
(Kosters, Marchiori, & Oerlemans, 1999),
classification (Hu, Lu, Zhou, & Shi, 1999), web
mining (Woon, Ng, & Lim, 2002), and others.
It aims to extract hidden patterns in large
volumes of data by discovering frequently
occurring groups of items in the database. Once
the hidden patterns are extracted and strong
associations are found, useful information
can be derived from these patterns. By going
through volumes of data, valuable information
can be extracted in commerce, bioinformatics,
electronic commerce (Sarwar, Karypis,
Konstan, & Riedl, 2000), network intrusion
detection, and other real-world applications.

In recent years, vast amounts of data are
generated in many fields (Lynch, 2008) (Szalay
& Gray, 2006). These range from commerce to
scientific research data. To put this number
in perspective, Wal-Mart generates more than
200 million transactions per day in all its
stores worldwide and the volume of business
data worldwide is estimated to double every
1.2 years (Manyika, et al., 2012). The data
being generated by scientific research is also
enormous. The large hadron collider (LHC),
a particle accelerator, generates 60 terabytes
of data per day while 32 petabytes of climate
data are stored in the NASA discovery
supercomputer cluster (Brumfiel, 2011).

Generating frequent itemsets is a time-
demanding task. Its operation includes
generating combinations of set given n items.
This operation leads to an exponential time
complexity (i.e.,

INTRODUCTION 31

Frequent itemset mining (FIM) is a 32
fundamental task in the field of data 33
mining such as association rule 34
discovery (Agrawal, Imielinksi, & 35
Swami, 1993), clustering (Kosters, 36
Marchiori, & Oerlemans, 1999), 37
classification (Hu, Lu, Zhou, & Shi, 38
1999), web mining (Woon, Ng, & Lim, 39
2002), and others. It aims to extract 40
hidden patterns in large volumes of 41
data by discovering frequently 42
occurring groups of items in the 43
database. Once the hidden patterns 44
are extracted and strong associations 45
are found, useful information can be 46
derived from these patterns. By going 47
through volumes of data, valuable 48
information can be extracted in 49
commerce, bioinformatics, electronic 50
commerce (Sarwar, Karypis, Konstan, 51
& Riedl, 2000), network intrusion 52
detection, and other real-world 53
applications. 54
 55
 In recent years, vast amounts of 56
data are generated in many fields 57
(Lynch, 2008) (Szalay & Gray, 2006). 58
These range from commerce to 59
scientific research data. To put this 60
number in perspective, Wal-Mart 61
generates more than 200 million 62
transactions per day in all its stores 63
worldwide and the volume of business 64
data worldwide is estimated to double 65
every 1.2 years (Manyika, et al., 66
2012). The data being generated by 67
scientific research is also enormous. 68
The large hadron collider (LHC), a 69
particle accelerator, generates 60 70
terabytes of data per day while 32 71
petabytes of climate data are stored 72
in the NASA discovery supercomputer 73
cluster (Brumfiel, 2011). 74
 75
 Generating frequent itemsets is a 76
time-demanding task. Its operation 77

includes generating combinations of 78
set given n items. This operation 79
leads to an exponential time 80
complexity (i.e., ∑ �𝑛𝑛𝑖𝑖�

𝑛𝑛
𝑖𝑖=1 = 2𝑛𝑛 − 1). 81

With the trends toward increase 82
volume of data, n is potentially a very 83
large number. 84
 85
 Computing hardware technologies 86
have also improved tremendously 87
during the past few decades. 88
Processor speed has improved to the 89
point that it has hit the power and 90
thermal wall constraints. This led to 91
the redesigning of processor 92
architecture which espouses lower 93
speed but with increased number of 94
processing cores (Uy, 2014). With the 95
widespread availability and 96
affordability of these multi-core 97
processor systems, using parallel 98
computing is now a viable solution 99
rather than an expensive option. 100
 101
 Another improvement in processor 102
technology is the redesigning of 103
graphics processing unit (GPU) as a 104
programmable processor. This 105
development transforms the GPU 106
from a traditional graphics 107
coprocessor to a general-purpose 108
programming processor. This 109
paradigm shift is known as GPU 110
computing (NVIDIA Corporation, 111
2015). A GPU is composed of many 112
cores and uses single-instruction 113
multiple-thread (SIMT) model. The 114
introduction of Compute Unified 115
Device Architecture (CUDA) provides 116
a platform to program GPU using 117
various high level programming 118
languages (Glaskowsky, 2009). This 119
makes a GPU device, which are 120
affordable and widely available, 121
suitable for parallel computing as 122
well (Barlas, 2015). 123
 124

With the
trends toward increase volume of data, n is
potentially a very large number.

Computing hardware technologies have
also improved tremendously during the past
few decades. Processor speed has improved

to the point that it has hit the power and
thermal wall constraints. This led to the
redesigning of processor architecture which
espouses lower speed but with increased
number of processing cores (Uy, 2014). With
the widespread availability and affordability
of these multi-core processor systems, using
parallel computing is now a viable solution
rather than an expensive option.

Another improvement in processor
technology is the redesigning of graphics
processing unit (GPU) as a programmable
processor. This development transforms the
GPU from a traditional graphics coprocessor
to a general-purpose programming processor.
This paradigm shift is known as GPU
computing (NVIDIA Corporation, 2015). A
GPU is composed of many cores and uses
single-instruction multiple-thread (SIMT)
model. The introduction of Compute Unified
Device Architecture (CUDA) provides a
platform to program GPU using various high
level programming languages (Glaskowsky,
2009). This makes a GPU device, which are
affordable and widely available, suitable for
parallel computing as well (Barlas, 2015).

Improvement in network technology leads to
the rise of cloud computing. This technology
promises a reliable software, hardware
and infrastructure-as-a-service over the
internet (Armburst, et al., 2010). With cloud
computing, off-the-shelf grid and cluster
computing is now available as a service.
This makes distributed computing, which is
a form of parallel computing, a common and
affordable option as well.

Parallel implementations of FIM algorithms
using multi-core, GPU, as well as distributed
computing have started to emerge (Zhang,
Zhang, & Bakos, 2013), (Lu & Alaghband, 2014),
(Lin & Chung, 2015). Though, development
of serial algorithms remain very much active
(Deng & Wang, 2010) (Wang, Jiang, & Deng,
2012) (Lv & Deng, 2014). This paper surveys
the current development of serial and parallel

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 117UY, R.L. & SUAREZ, M.T.

approach to frequent itemset mining and
discusses future research directions in this
field.

DEFINITIONS

This section discusses key terms and definitions
of FIM (Goethals, 2003). A more in-depth
introduction can be found in (Gorunescu,
2011).

Frequent Itemset Mining

Formally, the task of FIM can be described
as follows. Let I = {i1,i2,…, in} be a set of all
items. A subset X = {i1,i2,…,ik} ⊆ Ι is called
an itemset or k-itemset if it contains k items.

A transaction over I is a pair T = (tid, J),
where tid is the transaction identifier and J
is an itemset.

A transaction database D = {T1,T2,…, Tm}
contains a set of transactions over I.

The cover of an itemset X in D consists of the
set of tid of transaction in D that supports X:

cover(X,D) := {tid | (tid,J)∈D, X⊆ Ι}

The support of an itemset X is the number of
transactions in the cover of X in D (i.e., number
of transactions that contain the itemset X):

support(X,D) := |cover(X,D)|

An itemset is frequent if its support is no
less than a given minimal support threshold
σ. The threshold can either be absolute σabs,
with 0 ≤ σabs ≤ |D| or relative σrel, with 0 ≤
σrel ≤ 1. In this paper, the relative threshold is
used and omits the subscript rel unless stated
otherwise.

The collection of frequent itemsets in D with
respect to σ is defined as:

F(D,σ) := {X⊆ Ι | support(X,D) ≥ σ}

The task of frequent itemset mining is to find
the set of itemsets F.

Associative Rule Mining

Association rule is the form of XY where X
is the rule antecedent a while Y is the rule
consequent. Thus, {diaper}{beer} means
that customer who buys diapers tends to buy
beer as well.

Generating association rules involves two
steps: (1) generate the frequent k-itemsets
(i.e., frequent itemset mining), and (2) for each
frequent k-itemset, generate all rules using the
items in the k-itemset that meet the minimum
specified confidence (i.e., associative rule
generation). The confidence of the association
rule AàB is defined as the ratio of the number
of transactions that include all items in the
antecedent and consequent to the number
of transactions that include all items in the
antecedent only:

frequent k-itemset, generate all rules 220
using the items in the k-itemset that 221
meet the minimum specified 222
confidence (i.e., associative rule 223
generation). The confidence of the 224
association rule AB is defined as 225
the ratio of the number of 226
transactions that include all items in 227
the antecedent and consequent to the 228
number of transactions that include 229
all items in the antecedent only: 230
 231

Confidence(AB, D) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴∪𝐵𝐵,𝐷𝐷)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴,𝐷𝐷)

 232

 233
 The rule is confident if its 234
confidence exceeds a given minimal 235
confidence threshold γ, with 0 ≤ γ ≤ 1. 236
 237
 An example is given to illustrate 238
these definitions. Table 1 shows an 239
example of a transaction database. 240
Assume that set of items I = {a,b,c,d} 241

 242
Table 1. An Example of a 243

Transaction Database 244
 245
 Table 2 shows all frequent 246
itemsets in D with σabs of at least 1 or, 247
equivalently, σrel of at least 25%. 248
Table 3 shows all frequent and 249
confident association rules with σabs of 250
at least 1 and γ of at least 50%. 251
 252
Table 2. Itemsets and Their Support 253
 254
Table 3. Association Rules and Their 255

Support and Confidence 256
 257

Database Layout 258
 259
The transactional database, which is 260
stored in the secondary storage, can 261
be arranged either as horizontal 262
layout or vertical layout. For the 263
horizontal layout, each row is 264
composed of a transaction identifier 265

and its corresponding items. Thus, 266
each row is equivalent to one 267
transaction. Table 1 illustrates an 268
example of a horizontal layout. For 269
the vertical layout, each row is 270
composed of an item and its 271
corresponding cover. Thus, each row 272
contains complete transaction 273
information of an item. Table 4 274
illustrates an example of a vertical 275
layout. 276
 277
Table 4. Example of a Vertical Data 278

Layout 279
 280

CLASSICAL FIM 281
ALGORITHMS 282

 283
This section discusses the three 284
classical FIM algorithms on which 285
majority of the existing algorithms 286
are based. These are Apriori 287
(Agrawal & Srikant, 1994), ECLAT 288
algorithm (Zaki, Parthasarathy, 289
Ogihara, & Li, 1997), and FP-growth 290
algorithm (Han, Pei, & Yin, 2000). 291

 292
Apriori Algorithm 293
 294
The concept of frequent itemset 295
mining and association rule mining 296
was first proposed by Agrawal, 297
Imielinski and Swami (1993). In this 298
landmark paper, the authors 299
analyzed the items purchased by the 300
customers in a supermarket (i.e., 301
market basket analysis) in order to 302
correlate the buying behavior of the 303
customers. The algorithm, known as 304
AIS, was improved by Agrawal and 305
Srikant (1994) and later renamed as 306
Apriori. The algorithm introduces the 307
concept of downward closure property 308
known as Apriori. This anti-309
monotonicity property states that a k-310
itemset is frequent if and only if all of 311
its subsets (i.e., k-1) are frequent. 312
The same technique was separately 313

The rule is confident if its confidence exceeds
a given minimal confidence threshold γ, with
0 ≤ γ ≤ 1.

An example is given to illustrate these
definitions. Table 1 shows an example of a
transaction database. Assume that set of
items I = {a,b,c,d}

Table 1. An Example of a Transaction Database

tid J
100 {a, b, d}
200 {a, b}
300 {c, d}
400 {b, c}

Table 2 shows all frequent itemsets in D with
σabs of at least 1 or, equivalently, σrel of at least

118 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

25%. Table 3 shows all frequent and confident
association rules with σabs of at least 1 and γ
of at least 50%.

Database Layout

The transactional database, which is stored in
the secondary storage, can be arranged either
as horizontal layout or vertical layout. For the
horizontal layout, each row is composed of a

transaction identifier and its corresponding
items. Thus, each row is equivalent to one
transaction. Table 1 illustrates an example
of a horizontal layout. For the vertical layout,
each row is composed of an item and its
corresponding cover. Thus, each row contains
complete transaction information of an item.
Table 4 illustrates an example of a vertical
layout.

Table 2. Itemsets and Their Support

Itemset Cover Support (σabs) Frequency (σrel)
{} {100,200,300,400} 4 100%

{a} {100,200} 2 50%
{b} {100,200,400} 3 75%
{c} {300,400} 2 50%
{d} {100,300} 2 50%

{a,b} {100,200} 2 50%
{a,d} {100} 1 25%
{b,c} {400} 1 25%
{b,d} {100} 1 25%
{c,d} {300} 1 25%

{a,b,d} {100} 1 25%

Table 3. Association Rules and Their Support and Confidence

Rule Support (σabs) Frequency (σrel) Confidence
a→b 2 50% 100%
a→d 1 25% 50%
b→a 2 50% 66%
c→b 1 25% 50%
c→d 1 25% 50%
d→a 1 25% 50%
d→b 1 25% 50%
d→c 1 25% 50%

{a,b} →d 1 25% 50%
{a,d} →b 1 25% 100%
{b,d} →a 1 25% 100%
a→{b,d} 1 25% 50%
d→{a,b} 1 25% 50%

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 119UY, R.L. & SUAREZ, M.T.

Table 4. Example of a Vertical Data Layout

J Cover
a 100, 400
b 100, 200, 400
c 300, 400
d 100, 300

CLASSICAL FIM ALGORITHMS

This section discusses the three classical FIM
algorithms on which majority of the existing
algorithms are based. These are Apriori
(Agrawal & Srikant, 1994), ECLAT algorithm
(Zaki, Parthasarathy, Ogihara, & Li, 1997),
and FP-growth algorithm (Han, Pei, & Yin,
2000).

Apriori Algorithm

The concept of frequent itemset mining and
association rule mining was first proposed by
Agrawal, Imielinski and Swami (1993). In
this landmark paper, the authors analyzed
the items purchased by the customers in a
supermarket (i.e., market basket analysis)
in order to correlate the buying behavior of
the customers. The algorithm, known as
AIS, was improved by Agrawal and Srikant
(1994) and later renamed as Apriori. The
algorithm introduces the concept of downward
closure property known as Apriori. This anti-
monotonicity property states that a k-itemset
is frequent if and only if all of its subsets (i.e.,
k-1) are frequent. The same technique was
separately proposed by Mannila, Toivonen,
and Verkamo (1994). The pseudocode of
Apriori algorithm (Goethals, 2003) is listed
in figure 1.

Input: D, σ
Output: F(D, σ)
Method: Apriori(D, σ)
1: C1 := { {i} | i ∈ I }
2: k := 1
3: while Ck ≠ { } do
4: // Compute the supports of all candidate itemsets
5: for all transactions (tid , I) ∈ D do
6: for all candidate itemsets X ∈ Ck do
7: if X ⊆ I then
8: X.support++
9: end if
10: end for
11: end for
12: // Extract all frequent itemsets
13: Fk := { X | X.support ≥ σ }
14: // Generate new candidate itemsets
15: for all X, Y ∈ Fk, X[i] = Y [i] for 1 ≤ i ≤ k − 1, and X[k] < Y [k] do
16: I = X ∪ { Y[k] }
17: if ∀J ⊂ I, |J| = k : J ∈ Fk then
18: Ck+1 := Ck+1 ∪ I
19: end if
20: end for
21: k++
22: end while

Figure 1. Pseudocode of Apriori Algorithm

120 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

Initially, all items in the database serve
as initial candidate k-itemsets (line 1). The
database, which is stored in horizontal layout,
is scanned one transaction at a time and the
support counts of the candidate itemsets
are incremented (lines 6-10). Based from
the input σ, the frequent itemsets are then
extracted (line 13). From these k-itemsets, the
candidate (k+1)-itemsets are then generated
(line 15-18) and D is rescanned again to tally
the support counts. The process is repeated
until there are no k-itemsets that can be
generated anymore (line 3). Thus, the number
of candidate k-itemsets generated is reduced
since not all combinations of k-itemsets are
considered.

Because of the breadth-first search technique,
the database needs to be constantly rescanned
to tally the support counts. This negates
the advantage of having a reduced search
space. Also, if σ is set too low, the number of
frequent itemsets generated can be very large.
There have been many variants to improve
the algorithm either by further reducing the
candidate itemsets or by minimizing database
scan. In dynamic hashing and pruning
(DHP) (Park, Chen, & Yu, 1995), information
regarding (k+1)-itemsets is gathered while
performing support count of k-itemsets.
This information, which is stored in a hash
table, contains counters to represent how
many itemsets have been hashed so far. If
the counter of the candidate (k+1)-itemset is
below σ, then it is not generated. Thus, fewer
candidates are generated. But this comes
with a significant overhead of creating and
maintaining a separate hash table.

In dynamic itemset counting (DIC) (Brin,
Motwani, Ullman, & Tsur, 1997), the database
is divided into intervals of specific size to
minimize the number of database scan.
Candidate itemsets are generated and counted
at every interval. But the performance is
heavily dependent on the heterogeneity of
the data.

Another improvement known as sampling
technique (Toivonen, 1996) performs at most
two scans to the database. During the first
scan, random samples are obtained and
frequent itemsets are generated and verified
with the rest of the database. If the samples
failed to generate all frequent itemsets, a
second pass to the database is performed to
generate the rest of the frequent itemsets.
To minimize the sampling failure, the value
of σ can be decreased gradually. But a slight
decrease in σ can cause large amount of
candidate itemsets to be generated.

 In the partitioning technique (Savasere,
Omiecinski, & Navathe, 1995), the database
is divided into multiple non-overlapping
partitions and the frequent itemsets mining
is done in two phases. In the first phase, each
partition scanned the database and generates
its own local frequent itemsets. Since the
local frequent itemsets may not be frequent
in relation to the entire database, they are
merged together in preparation for the next
stage. In the second stage, the merged
itemsets now serve as candidate itemsets.
Their support counts are tallied against the
entire database and the frequent itemsets
are then generated. A unique feature of this
algorithm is the use of vertical layout for the
database. The data of k-itemsets are read from
the secondary storage and stored in the main
memory. The support counts of candidate
itemsets are computed by intersecting the
covers of the corresponding k-itemsets. This
operation performs faster than the scan-and-
tally operation of horizontal layout. There is
a possibility though that during the generation
of local frequent itemsets, the covers of all
local candidate k-itemsets cannot fit the
main memory. Also, it is highly dependent on
the distribution of data in the database and
may cause too many frequent itemsets to be
generated in one partition.

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 121UY, R.L. & SUAREZ, M.T.

ECLAT Algorithm

The equivalence class clustering and bottom-
up lattice traversal (ECLAT) algorithm
(Zaki, Parthasarathy, Ogihara, & Li, 1997)
uses depth-first search and vertical database
layout to generate frequent itemsets. Using
depth-first strategy minimizes the number of
candidate k-itemsets generated as compared
to the partitioning technique. The pseudocode
of ECLAT algorithm (Goethals, 2003) is listed
in figure 2.

The candidate k-itemsets are generated by
intersecting two (k-1) frequent itemsets (lines
6-7) and the support counts are calculated
and determine if it is frequent (line 8). The
vertical database layout is then updated to
reflect the updated frequent itemsets (line
9). The process is repeated using depth-first
recursion (lines 13-14) until all the itemsets
are covered. Since this algorithm does not use
the anti-monotonicity property, the candidate
itemsets generated are larger than that of
Apriori.

As compared to Apriori algorithm, the
database needs only to be scanned once

since the vertical layout carries the complete
information required for support counting.
The computation of support count is faster
since it is done by intersecting the covers of
the two k-itemsets. But, this is offset by the
need for more memory space since it needs
to maintain a separate vertical database
layout. Also, depth-first search prevents the
implementation of algorithm in parallel.

FP-Growth Algorithm

Both the Apriori and ECLAT algorithms
uses the methodology known as candidate
generation and support counting. Another
algorithm proposed by Han, Pei and Yin (2000)
generates frequent itemsets without the need
for candidate generation. The frequent-pattern
(FP)-growth algorithm instead generates a
FP-growth tree, which stores the compressed
version of the database. The frequent
itemsets are then generated based from the
FP-growth tree using a method known as FP-
growth pattern. The pseudocode of FP-growth
algorithm (Goethals, 2003) is listed in figure 3.

Input: D, σ, I
Output: F[I](D, σ)
Method: ECLAT(D, σ, I)
1: F[I] := {}
2: for all i occurring in D do
3: F[I] := F[I] ∪ {I ∪ {i}}
4: // Create Di
5: Di := {}
6: for all j ∈ I occurring in D such that j > i do
7: C := cover({i}) ∩ cover({j})
8: if |C| ≥ σ then
9: Di := Di ∪ {(j,C)}
10: end if
11: end for
12: // Depth-first recursion
13: Compute F[I ∪ {i}](Di, σ)
14: F[I] := F[I] ∪ F[I ∪ {i}]
15: end for

Figure 2. Pseudocode of ECLAT Algorithm Figure 2. Pseudocode of ECLAT Algorithm

122 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

This algorithm only needs to scan the
database twice to generate the FP-growth
tree. During the first scan, the database is
scanned to obtain the 1-itemsets. These are
then sorted in frequency-descending order
(line 3). During the second scan, the items in
each transaction are processed based on the
sorted 1-itemset order and the FP-growth tree
is then built based on the 1-itemset and the
transactions of the database (lines 7-9). A
separate header structure is also created (line
5) which contains support counts and links to
the initial 1-itemset. Once the tree is created,
the frequent itemsets are then generated by
recursively building a sub-tree starting from
the initial 1-itemset with the lowest frequency
(lines 16-17). The sub-tree consists of set
of prefix paths co-occurring with the suffix
pattern. Thus this algorithm is composed
of two steps. These are FP-tree generation
and frequent itemset generation through FP-
growth method.

The advantage of FP-growth algorithm
over Apriori and ECLAT is that there is no
need for candidate generation and support
count. Also, the database is converted
to a more compact data structure, which
contains the complete information, thus
eliminating repeated database scans. But
the compact data structure is also a complex
data structure composed of linked lists with
each node consisting of a counter, a pointer
to the next node, a pointer to its branches,
and a point to the parent node. Adding to the
complexity is that using pointers requires a
lot of dereferencing. Whereas for ECLAT, the
vertical data layout can only be implemented
using a simpler array data structure.

Several variations to this algorithm include
using depth-first method (Agarwal, Aggarwal,
& Prasad, 2000) and using an array-based
instead of linked list implementation of the
FP tree (Grahne & Zhu, 2003).

Input: D, σ, I
Output: F[I](D, σ)
Method: FPgrowth(D, σ, I)
1: F[I] := {}
2: for all i occurring in D do
3: F[I] := F[I] ∪ {I ∪ {i}}
4: // Create Di
5: Di := {}
6: H := {}
7: for all j ∈ I occurring in D such that j > i do
8: if support(I ∪ {i,j }) ≥ σ then
9: H := H ∪ {j}
10: end if
11: end for
12: for all (tid, X) with i do
13: Di := Di ∪ {(tid, X∩H)}
14: end for
15: // Depth-first recursion
16: Compute F[I ∪ {i}](Di, σ)
17: F[I] := F[I] ∪ F[I ∪ {i}]
18: end for

Figure 3. Pseudocode of FP-growth Algorithm
Figure 3. Pseudocode of FP-growth Algorithm

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 123UY, R.L. & SUAREZ, M.T.

CURRENT SERIAL FIM
ALGORITHMS

Several algorithms have been proposed in
recent years to further improve the frequent
itemset mining. These range from improving
the data structure to limiting the search space.
The following subsections provide an overview
of the recent work of these algorithms.

Improvement of Data Structure

Most of the improvements in frequent itemset
mining are focused on FP-growth algorithm
and vertical data layout. This is due to the
advantage of not having to generate candidate
itemsets as well as using intersection of covers
instead of scan-and-tally method, which
results in faster execution. One algorithm
combining these strong points was proposed by
Deng and Wang (2010). A new data structure
called Node-list was proposed to improve on

the FP-growth tree. It is based on the PPC-
tree data structure, which is a prefix-based
tree to store the compressed version of the
database. The PPC-tree added preorder and
postorder traversal sequence information
of each node. This eliminates the need to
maintain a separate header table structure.
Each node N consists of five fields: N.name,
N.count, N.child, N.preorder and N.postorder.
Compare this with a node in the FP-tree that
contains more than five fields. The pseudocode
in creating the PPC-tree is listed in figure 4
(Deng & Wang, 2010).

Before the PPC tree is generated, all
1-itemsets are first generated. Those itemsets
that are frequent are retained and sorted
in support descending order (lines 1-3). The
PPC-tree is then generated by first creating
a root node that is labelled as “null” (line 5).
The leaf nodes are then created based on the
support order of the frequent itemsets (lines
6-9, 13-21). Once the PPC tree is generated,

Input: A transaction database D and a minimum support σ
Output: A PPC-tree and F1 (the set of frequent 1-itemsets).
Method: Construct-PPC-tree(D, σ)
1: //Frequent 1-itemsets generation
2: According to σ , scan DB once to find F1, the set of frequent 1-itemsets and their supports.
3: Sort F1 in support descending order as L1, which is the list of ordered frequent items.
4: //PPC-tree construction
5: Create the root of a PPC-tree, Tr , and label it as “null”.
6: for each transaction Trans in DB do
7: Select the frequent items in Trans and sort out them according to the order of F1. Let
the sorted frequent-item list in Trans be [p|P], where p is the first element and P is the
remaining list.
8: Call insert tree([p|P],Tr).
9: end for
10: //Pre-Post code generation
11: Scan PPC-tree to generate the pre-order and the post-order of each node.
12: //Function insert tree([p|P],Tr)
13: if Tr has a child N such that N.item-name = p.item-name then
14: increase N’s count by 1;
15: else
16: create a new node N, with its count initialized to 1, and add it to Tr’s children-list;
17: if P is nonempty then
18: call insert tree(P,N) recursively.
19: end if
20: end if

Figure 4. Pseudocode of PPC-Tree Construction Figure 4. Pseudocode of PPC-Tree Construction

124 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

the tree is traverse twice to generate the
preorder and postorder traversal information
(lines 10-11). The PP code of each node N in
the PPC tree is then created. The structure of
the PP code is in in the form of <(N.preorder,
N.postorder): N.count>. The Node-list is then
created based from the PP code. A Node-list
contains the sequence of all PP codes of a
particular 1-itemset node in the PPC tree.
Thus, a Node-list is denoted by {<(N.preorder1,
N.postorder1): N.count1>, <(N.preorder2,
N.postorder2): N.count2>,…, <(N.preordern,
N.postordern): N.countn>}. These 1-itemsets
are sorted in support ascending rank, while
the PP codes within the Node-list are sorted
in preorder ascending rank. Once the Node-
lists of all 1-itemsets are generated, the PPC
tree can then be deleted to free up memory
space. The PPV algorithm is then used for
frequent itemset mining. The pseudocode of
PPV algorithm (Deng & Wang, 2010) is listed
in Figure 5.

The Node-list of a candidate k-itemset is
generated by finding the ancestor-descendant
relationship of the Node-lists of two (k-1)-
itemsets. The Node-list of the candidate
k-itemset is the descendant Node-list of the
two (k-1)-itemsets. The support count of the
candidate k-itemset is computed by adding the
support count of each PP-code in the Node-list
and those support count below σ are removed.
This process is repeated until all frequent
itemsets are found.

The algorithm benefitted from the PPC-tree
data structure as well as the intersection-
based approach of vertical data layout. But,
it still inherits the weakness of candidate
generation-and-test of Apriori-like methods.
The PrePost algorithm proposed by Wang,
Jiang and Deng (2012) eliminates the need for
candidate generation. A new data structure
called N-list is proposed in this algorithm.
The generation of N-list is similar to that
of the Node-list except that the N-lists of
the candidate k-itemsets are based from the

ancestor N-list instead. Thus, the length
of the N-list is shorter than Node-list. This
makes N-list more compact than Node-list.
Also, N-list has a property known as single-
path property, which allows the generation
of frequent itemsets without generating the
equivalent candidate itemset. The PrePost
algorithm is used to generate frequent
itemsets using the N-list data structure. The
pseudocode of PrePost algorithm (Wang,
Jiang, & Deng, 2012) is listed in Figure 6.

Both Node-list and N-list store preorder
and postorder information, which result
in higher memory consumption. Another
approach proposed by Lv and Deng (2014) is
to store either preorder or postorder traversal
information only. The new data structure
is known as Node-set. The number of fields
in each node is now reduced to four, which
translates to lesser memory requirements.
The Node-set is generated based from POC
tree. The POC tree is similar to PPC tree
except only the preorder traversal information
is stored. The pseudocode in creating the POC
tree (Lv & Deng, 2014) is listed in Figure 7.

Once the POC tree is generated, the tree is
traverse once to generate either the preorder
or postorder information. The N-info of
each node N in the POC tree is then created.
The structure of N-info is in in the form of
(N.preorder, N.count). The Node-set is then
created based from the N-info. A Node-set
contains the sequence of all N-infos of a
particular 1-itemset in the POC tree. Thus, a
Node-set is denoted by {(N.preorder1, N.count1),
(N.preorder2, N.count2),…, (N.preordern,
N.countn) }. These 1-itemsets are sorted in
support- ascending rank, while the N-infos
within the Node-set are sorted in preorder
ascending order. Once the Node-sets of all
1-itemsets are generated, the POC tree can
then be deleted to free up memory usage.
The FIN algorithm is then used to generate
the frequent itemsets. The pseudocode of
FIN algorithm (Lv & Deng, 2014) is listed in
Figure 8.

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 125UY, R.L. & SUAREZ, M.T.

Input: the threshold σ, the frequent 1-patterns L
1
 and their Node-lists NL

1

Output: The complete set of frequent patterns.
Method: PPV (σ, L

1
, NL

1
)

1: L
1

= {frequent 1-patterns};

2: NL
1

= {the Node-lists of L
1
};

3: For (k = 2; L
k-1
≠∅; k++) do begin {

4: For all p∈L
k-1

and q∈L
k-1

, where p.i
1

= q.i
1
,…, p.i

k-2
= q.i

k-2
, p.i

k-1
q.if

k-1
do begin {

5: l = p.i
1
, p.i

2
,…,p.i

k-1
,q.i

k-1
; // Candidate k-pattern

6: If all k-1 subsets l of are in L
k-1

{

7: l.Node-list = code-intersection(p.Node-list, q.Node-list);
8: If (l.count ≥|DB|×ξ) { // Use Property 5 to get l.count from l.Node-list
9: L

k
= L

k
∪{l};

10: NL
k
= NL

k
∪ {l.Node-list}; }

11: }
12: end For; }
13: Delete NL

k-1
;

14: end For; }
15: Answer = ∪

k
L

k
;

Figure 5. Pseudocode of PPV Algorithm Figure 5. Pseudocode of PPV Algorithm

Input: the minimum support σ, the frequent 1-itemsets L1 and their N-lists NL1
Output: The frequent itemset F
Method: PrePost(L1, NL1)
1: for i ← Lk.size() − 1 to 1 do
2: Lk

i+1← ∅;
3: NLk

i+1← ∅;
4: for j ← i − 1 to 0 do
5 Assume Lk[i] = x1x2 … xk and Lk[j] = yx2 … xk(y > x1 > x2> · · · >xk)
6: l ← yx1x2 … xk;
7: l.N − list ← NL_intersection(NLk [i],NLk[j]);
8: if l.count ≥ |DB| × σ then
9: Lk

i+1← Lk
i+1 ∪ {l};

10: F ← F ∪ {l};
11: NLk

i+1← NLk
i+1∪ {l.N − list};

12: end if
13: end for
14: if Lk

i+1 ≠ 0 then
15: if NLk[i].length() = 1 then
16: Assume Lk

i+1= {P1, . . . , Pn} where Pi = yix1x2 … xk
17: for any p = yv1yv2… yvux1x2 … xk(1 ≤ v1 < v2 < … < vu ≤ n) do
18: p.count ← NLk[i].count;
19: F ← F ∪ {p};
20: end for
21: else
22: Call PrePost(Lk+1

i,NLk+1
i);

23: end if
24: end if
25: end for

Figure 6. Pseudocode of PrePost Algorithm Figure 6. Pseudocode of PrePost Algorithm

126 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

Input: A transaction database D and a minimum support σ
Output: A POC-tree and F1 (the set of frequent 1-itemsets)
Method: Construct-POC-tree(D, σ)
1: [Frequent 1-itemsets Generation]
According to σ, scan D once to find F1, the set of frequent 1-itemsets, and their supports.
Sort F1 in support descending order as L1, which is the list of ordered frequent items.
2: [POC-tree Construction]
Create the root of a POC-tree, Tr, and label it as ‘‘null’’. For each transaction Trans in D do
the following:

• Select the frequent items in Trans and sort them according to the order of F1. Let the
sorted frequent-item list in Trans be [p | P], where p is the first element and P is the
remaining list. Call insert_tree ([p | P], Tr).

• The function insert_tree([p | P], Tr) is performed as follows:
o If Tr has a child N such that N.item-name = p.item-name, then increase N’s

count by 1;
o else create a new node N, with its count initialized to 1, and add it to Tr’s

children-list. If P is nonempty, call insert_tree(P, N) recursively.
3: [Pre-code Generation]
Scan the POC-tree to generate the pre (or post) -order of each node by the pre (or post)-
order traversal.

Figure 7. Pseudocode of POC-Tree Construction Figure 7. Pseudocode of POC-Tree Construction

Input: A transaction database D and a minimum support σ
Output: F, the set of all frequent itemsets
Method: FIN(D, σ)
1: F  Ø;
2: Construct the POC-tree and find F1, the set of all frequent 1-itemset;
3: F2  Ø;
4: Scan the POC-tree by the pre-order traversal do
5: N  currently visiting Node;
6: iy  the item registered in N;
7: For each ancestor of N, Na, do
8: ix  the item registered in Na;
9: If ixiy ∈ F2, then
10: ixiy.support  ixiy.support + N.account;
11: Else
12: ixiy.support  N.account;
13: F2  F2 ∪ {ixiy};
14: Endif
15: Endfor
16: For each itemset, P, in F2 do
17: If P.support < σ x |D|, then
18: F2  F2 - {P};
19: Else
20: P.Nodeset  Ø;
21: Endif
22: Endfor
23: Scan the POC-tree by the pre-order traversal do
24: Nd  currently visiting Node;
25: iy  the item registered in Nd;
26: For each ancestor of Nd, Nda, do
27: ix  the item registered in Nda;
28: If ixiy ∈ F2, then
29: ixiy.Nodeset  ixiy.Nodeset ∪ Nd.N_info;
30: Endif
31: Endfor
32: F F ∪ F1;
33: For each frequent itemset, isit, in F2 do
34: Create the root of a tree, Rst, and label it by isit;
35: Constructing_Pattern_Tree(Rst, {i | i ∈ F1, i > ii}, Ø);
36: Endfor
37: Return F;

Figure 8. Pseudocode of FIN Algorithm

 Figure 8. Pseudocode of FIN Algorithm

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 127UY, R.L. & SUAREZ, M.T.

The Node-set of a candidate k-itemset is
generated by finding the ancestor-descendant
relationship of the Node-sets of two (k-1)-
itemsets. The Node-set of the candidate
k-itemset is the descendant Node-set of the
two (k-1)-itemsets. The support count of the
k-itemset is computed by adding the support
count of the Node-set. The process is repeated
until all frequent itemsets are found.

To limit the search space of the data, the
set-enumeration search tree (Rymon, 1992)
is used. This tree generated is based from the
Node-sets created.

Limiting Search Space

Another approach to improve the frequent
itemset mining is to limit the search space by
placing additional constraints. Some of the
methods are closed frequent itemset (CFI),
maximally frequent itemset (MFI) and top-
rank-k frequent itemset (TRI).

A k-itemset β is closed frequent if β is
frequent in D and there exists no proper
superset α such that α has the same support
count as β in D. On the other hand, a
k-itemset β is maximal frequent if β is
frequent in D and no proper superset α
is frequent in D. Thus, the relationship is
maximal frequent itemset ⊆ closed frequent
itemset ⊆ frequent itemset.

Top-rank-k frequent itemset is defined as
follows. The rank Rx of a frequent itemset
X is defined as Rx = |{ σy | Y⊆I and σy ≥
σx}|, where |Y| is the number of items in
Y. Given the database D and a threshold of
k, the top-rank-k frequent itemsets are the
set of frequent itemsets whose ranks are no
greater than k (i.e., Rx ≤ k). This means that if
a frequent itemset has a higher support count,
its rank is higher.

A-Close (Pasquer, Bastide, Taouil, &
Lakhal, 1999), which is based on the Apriori
algorithm, is one of the earliest algorithms to
limit the search space by using CFI. Other

related works include CLOSET (Pei, Han,
& Mao, 2000) and CLOSET+ (Wang, Pei, &
Han, 2003). The FPClose (Grahne & Zhu,
2003) algorithm is based on the FP-growth
approach. There are some algorithms such
as CHARM (Zaki & Hsiao, 2002) and AFOPT
(Liu, Lu, Lou, & Yu, 2003) that use a hybrid
approach. The NAFCP algorithm (Le & Vo,
2015) is a recent work on CFI, which is based
on the N-list data structure. The algorithm
is similar to the PrePost algorithm but uses
CFI instead.

MAFIA (Burdick, Calimlim, Flannick,
Gehrke, & Yiu, 2005) is a pioneer algorithm
that is based on MFI. It uses vertical bitset
representation to compute for support count.
An additional constraint to maximal frequent
itemset was introduced by the MWFIM
algorithm (Yun, Shin, Ryu, & Yoon, 2012).
The algorithm added a weight constraint to
each item. The weight of an item is a non-
negative number that is assigned to reflect
the importance of each item in the database.
This algorithm employs the same vertical
bitmap representation as MAFIA to compute
for support count.

The FAE (“Filtering and Extending”)
algorithm is one of the first algorithms to use
top-rank-k frequent itemset (Deng & Fan,
2007) and is based on the Apriori algorithm.
The NTK algorithm (Deng Z., 2014) combines
Node-list data structure and PPV algorithm
with top-rank-k frequent itemsets. On the
other hand, the iNTK algorithm (Huynh-Thi-
Le, Le, Vo, & Le, 2015) uses N-list and subsume
index (Song, Yang, & Xu, 2008) instead to mine
top-rank-k frequent itemsets. The algorithm
is thus similar to PrePost algorithm, except
for the constraint search space.

Putting the constraint search space in
perspective, the improvement factor is due
to fewer candidate itemsets generated, which
translates to lesser execution time. But this is
offset by the concern that there might be some
important information that may be left out.

128 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

Any existing serial FIM algorithms can be
modified to use with constraint search space.

CURRENT PARALLEL
IMPLEMENTATIONS OF FIM

ALGORITHMS

In recent years, there have been many
developments in parallel implementations
of FIM algorithm to take advantage of the
improvement of processor and network
technology. The availability of OpenMP
library for multi-core processor and cloud
computing and Nvidia CUDA and ATI
OpenCL library for GPU have make it easier
to implement algorithms in parallel paradigm.
The following subsections provide an overview
of the recent works in parallel implementation
of FIM algorithms.

GPU Computing

One the earliest FIM implementation to
utilized GPU computing was proposed by Fang,
Lu, Xiao, He, and Luo (2009) and is based on
the Apriori algorithm. It uses vertical data
layout instead and is implemented as bitset
representation. Since the Apriori algorithm
uses breadth-the first search method, each
candidate generation and support count can
be viewed as one thread and can be processed
in parallel.

The PBI algorithm is a pure GPU
implementation for performing both candidate
generation and support counting in the GPU.
The pseudocode of PBI algorithm (Fang, Lu,
Xiao, He, & Luo, 2009) is listed in Figure 9.

Since the vertical bitset representation
is viewed as an array of bits, a candidate
k-itemset is generated by performing a bitwise
OR operation of two (k-1) itemsets (lines 4-6)
while the corresponding transaction is obtained
by performing a bitwise AND operation. The
support count is done by performing a binary

search on a lookup table. The lookup table
contains the mapping of an integer and the
number of 1s in its binary equivalent.

Pure GPU implementation eliminates the
need to transfer data from the main memory
to GPU memory. But if the number of items
is large, then it will generate a significant
overhead in accessing the lookup table. As an
alternative, the TBI algorithm implemented
using CPU-GPU combination. This algorithm
uses trie data structure to represent the data
set. It uses CPU to generate candidate itemsets
and GPU to perform parallel support count.
The pseudocode of TBI algorithm (Fang, Lu,
Xiao, He, & Luo, 2009) is listed in Figure 10.

Another Apriori-based GPU algorithm was
proposed by Zhang, Zhang and Bakos (2011).
The GPApriori preprocesses the dataset and
stores it as vertical bitset representation.
Candidate generation is done by the CPU
while the support count is performed in
the GPU by intersecting the bitset and the
results are copied back to the main memory.
The process is almost identical to the PBI
algorithm except for the process involving
support count.

ECLAT-based GPU implementation of GPU
was proposed by Zhang, Zhang, and Bakos
(2013). The Frontier Expansion algorithm
preprocesses the dataset stores as vertical
bitset representation using stack. The process
of candidate itemsets generation is done by
the CPU while the support count is done in
parallel by the GPU. The pseudocode of the
Frontier Expansion algorithm (Zhang, Zhang,
& Bakos, 2013) is listed in Figure 11.

Most of the current implementations of
GPU computing are based on the Apriori or
ECLAT algorithm. This is due to the fact that
candidate generation and support count are
two independent tasks that can be executed
in parallel. Also, data are preprocessed and
store as vertical bitset structure instead of
the traditional horizontal structure. Vertical
bitset structure can take advantage of the

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 129UY, R.L. & SUAREZ, M.T.

Input: Lx represents the x-th (K-1)-itemset (i.e, the x-th row vector in the bitmap for (K-1)-
itemsets)
Output: the set of all frequent itemsets
Method: PBI(Lx)
1: for each Li in parallel do
2: for each Lj where j = i + 1 to m do
3: if Li and Lj are joinable then
4: //Join
5: Union on Li and Lj to obtain a candidate k-itemset by performing a bitwise OR
operation
6: //Pruning
7: (K - 1)-subset test on the candidate k-itemset by a binary search in the (K-1)-itemset
bitmap.
8: else
9: break
10: end if
11: end for
12: end for

Figure 9. Pseudocode of PBI Algorithm

Input: u represents a node at depth K-1 in the trie
Output: the set of all frequent itemsets
Method: TBI(u)
1: for each u at depth K - 1 do
2: for each w that is a right sibling of u do
3: //Join
4: Union on the two (k - 1)-itemsets represented by u and w to obtain a candidate k-
itemset
5: //Pruning
6: (k - 1)-subset test on the candidate K-itemset by following the path of the trie with the
same prefix
7: end for
8: end for

Figure 10. Pseudocode of TBI Algorithm

Figure 9. Pseudocode of PBI Algorithm

Figure 10. Pseudocode of TBI Algorithm

Input: frontier_stack, ε, σ
Output: the set of all frequent itemsets
Method: Frontier(frontier_stack, ε, σ)
1: if frontier_stack is empty
2: return false
3: expansion_size = 0
4: frequent_itemset = Ø
5: while expansion_size < ε
6: pop equivalent class s_eqv from stack
7: t_eqv = expand(s_eqv)
8: expansion_size = expansion_size + size(t_eqv)
9: support_count(t_eqv)
10: remove infrequent nodes from t_eqv
11: add t_eqv to frequent_itemset
12: push t_eqv to frontier_stack
13: return true

Figure 11. Pseudocode of Frontier Expansion Algorithm

Figure 11. Pseudocode of Frontier Expansion Algorithm

130 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

built-in popcount and intersect operation of
the GPU hardware to process support count.

Multi-Core Processor

One of the earliest works involving multi-core
processor was proposed by Liu, Li, Zhang, and
Tang (2007) and is based on the FP-growth
algorithm. Since, the strength of multi-core
micro-architecture is in the cache structure,
the algorithm uses array data structure to
make it cache conscious. Also the data are
rearrange in such a way the data are temporal
locality aware in order to maximize cache
access.

The SHAFEM algorithm (Lu & Alaghband,
2014) uses a different approach. It dynamically
chose between two algorithms to handle
sparse and dense database. Both algorithms
are based on FP-growth algorithm. The
MineFPTree algorithm uses XFP tree data
structure to handle sparse data set. XFP tree
are composed of multiple local FP-growth trees
that are merged together. On the other hand,
MineBitVector converts the XFP tree data
structure to vertical bitset data structure to
handle dense data sets. The pseudocode of
the MineFPTree algorithm is listed in Figure

12 while the pseudocode of MineBitVector
algorithm is listed in Figure 13.

In multi-core implementation, the focus is
to make the data more cache conscious. The
idea is to limit the communication between
tasks by having all related data fetched in the
same cache line.

Distributed Computing

One the earliest FIM algorithms to utilized
distributed computing was proposed by Yu
and Zhou (2008), which is based on the FP-
growth algorithm. The algorithm known as
tidset-based parallel FP-tree algorithm divides
the database into a number of partitions
depending on the available nodes in the
cluster. Each local computer node creates a
vertical bitset representation of its partition
as well as the corresponding 1-itemsets and
returns the results back to the main node. The
main node then creates a global header table
and distributes the mining set information
equally among the nodes. Each node then
creates its local FP-growth tree and mines the
frequent pattern. The main node then collects
all result from all the nodes and integrates the
frequent itemsets.

Input: FP-tree T, suffix, minsup
Output: the set of all frequent itemsets
Method: MineFPTree(FP-tree T, suffix, minsup)
1: If T contains a single path P then
2: For each combination x of the items in P
3: Output β = x ∪ suffix
4: Compute and update threshold Ki

5: Else For each item α in the header table for FP-tree T
6: Output β = Ki ∪ suffix
7: Size = the size of α’s conditional pattern base
8: Compute and update threshold Ki

9: If Size > Ki then
10: Construct α’s conditional FP-tree T’
11: Call MineFPTree(T’, β, minsup)
12: else
13: Construct α’s private bit vectors V and w
14: Call MineBitVector(V,w, β, minsup)
15: Endif
16: Endif

Figure 12. Pseudocode of MineFPTree Algorithm Figure 12. Pseudocode of MineFPTree Algorithm

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 131UY, R.L. & SUAREZ, M.T.

Input: vectors V, vec.w, suffix, minsup
Output: the set of all frequent itemsets
Method: MineBitVector(vectors V, vec.w, suffix, minsup)
1: Sort V in support-descending order of their items
2: For each vector vk in V
3: Output β = item of vk ∪ suffix
4: For each vector vj in V with j < k
5: uj = vk AND vj
6: supj = support of uj computed using w
7: If supj ≥ minsup then add uj into U
8: If all uj inU are identical to vk
9: Then For each combination x of the items in U
10: Output β’ = x ∪ β
11: Else if U is not empty
12: Call MineBitVector(U, w, β ,minsup)

Figure 13. Pseudocode of MineBitVector Algorithm

Figure 13. Pseudocode of MineBitVector Algorithm

An improved version of the algorithm
known as balanced tidset-based parallel FP-
tree algorithm was proposed by the same
proponents (Zhou and Yu, 2008). Instead of
dividing the mining set equally among the
nodes, a performance index is collected among
the nodes, which act as a load- balancing
metric. This metric is then use to determine
the amount of mining set workload to be sent
to each node.

The algorithm proposed by Lin and
Luo (2009) focused on data privacy in the
distributed cloud computing environment.
The FD-mine algorithm assigns a kernel or
trusted node within the intranet to have full
access to the database. Within each cloud, a
connection node is assigned to communicate
with the kernel node. If another node within
the cloud needs data, it will coordinate with
the connection node of its cloud. The algorithm
is also based on FP-growth algorithm.

The FLR-mining algorithm proposed by
Lin and Chung (2015) improved the FD-
mine algorithm by adding load balancing to
the algorithm. It iteratively estimates the
workload based on the number of header
items. The pseudocode of the FLR-mining
algorithm is listed in figure 14.

Distributed computing is concerned with
mainly with load balancing and data privacy.
As the nodes are heterogeneous, the workload
of each node is different. Also, once the data
leaves the host computer and transfer to
an other node, there is no guarantee on the
security and privacy of that particular data.

FUTURE RESEARCH DIRECTIONS

With the volume of data reaching exa-scale
level, there is a need to take advantage of all
available computing resources. Improvement
in computer hardware technology and its
widespread availability has made parallel
computing a viable option in implementing
FIM algorithm.

Implementations of existing FIM algorithms
have to take advantage of the parallel
capabilities of the computing hardware or it
will be useless. It requires a novel approach as
it is not a mere one-to-one mapping approach.
It requires programmers to have a good
working knowledge of multi-core computing,
GPU computing, cloud computing and other
parallel computing paradigm in order to take
full advantage of it.

132 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

Some of the challenges in parallel
implementations include finding ways to look
for independent tasks, communication issues
between tasks load balancing, and defining
tasks as multi-thread. Finding independent
tasks in FIM is a challenge as both data and
control dependencies are fundamental in FIM
algorithms.

Most of the attempts to implement FIM
algorithm in parallel are based either on Apriori
or ECLAT algorithm. Both of these algorithms
use generate-and-count methodology, which
involves two independent tasks. Furthermore,
vertical representation of dataset using bitset
is preferred due to the availability of parallel
join operation as primitive which allows
support count to be computed in parallel.

But these types of algorithms need to
generate candidate itemsets before coming
up with frequent itemsets. This is opposed to
tree-based projection algorithms such as FP
growth and Pre-post, which generates frequent
itemsets without the need for candidate

itemsets. That is why most of the current
algorithms are geared towards improving
this type of algorithm. But tree-based
projection algorithm is inherently difficult to
implement in parallel as it uses pointer and
recursion. Novel solutions are needed to solve
the problems. These include changing data
structure from pointer to array and tiling the
program structure in such a way to make it
cache-conscious.

Thus, the challenge of future research
in FIM is come up with algorithms and
implementations that will harness the full
capability of current computer hardware
technology in parallel processing. In multi-
core processor, the focus should be on its cache
structure. In GPU processor, its strength lies
in multi-thread execution. While in distributed
computing, its strength is in the availability
of multiple computer nodes for processing.
Other feature such as limiting the search space
can be incorporated to further improve FIM
operation performances.

Input: D, σ, CN
Output: FP the set of all frequent itemsets
Method: FLR_mine(D, σ, CN)
1: HT = getHT(D,S);
2: tree = buildFPtree (D,S);
3: tt = getTreeTransmissionTime();
4: FP = Ø;
5: tcn = 0;
6: tn = 0;
7: tavg = 0;
8: While (isCompleted(HT) == false)
9: n = getAvailableNode(CN);
10: transmitTree(tree,n);
11: x = calculateNumOfHeaderItems(tt, tavg);

12: hi = selectIIS(x,HT);
13: HT = HT – hi;
14: n.BeginMining(hi);
15: End While
16: Return FP

Figure 14. Pseudocode of FLR-Mining Algorithm Figure 14. Pseudocode of FLR-Mining Algorithm

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 133UY, R.L. & SUAREZ, M.T.

REFERENCES

Agarwal, R. C., Aggarwal, C. C., & Prasad,
V. (2000). Depth first generation of long
patterns. Proceedings of the sixth ACM SIGKDD
international conference on knowledge discovery
and data mining (pp. 108-118). New York.

Agrawal, R., & Srikant, R. (1994). Fast algorithms
for mining association rules. Proceedings of the
1994 international conference on very large data
bases (VLDB’94) (pp. 487-499). Santiago.

Agrawal, R., Imielinksi, T., & Swami, A. (1993).
Mining association rules between sets of items
in large databases. Proceedings of the 1993
ACM-SIGMOD international conference on
management of data (SIGMOD ‘93) (pp. 207-
216). Washington D.C.

Armburst, M., Fox, A., Griffith, R., Joseph, A. D.,
Katz, R., Konwinski, A., . . . Zaharia, M. (2010).
A view of cloud computing. Communications of
the ACM, 50-58.

Barlas, G. (2015). Multicore and GPU programming:
An integrated approach. Waltham, MA, USA:
Morgan Kaufmann.

Brin, S., Motwani, R., Ullman, J. D., & Tsur,
S. (1997). Dynamic itemset counting and
implication rules for market basket data.
Proceedings of the 1997 ACM-SIGMOD
international conference on management of data
(SIGMOD ‘97) (pp. 255-264). Tucson.

Brumfiel, G. (2011). High-energy physics: down the
petabyte highway. Nature, 282-283.

Burdick, D., Calimlim, M., Flannick, J., Gehrke, J.,
& Yiu, T. (2005, November). MAFIA: A maximal
frequent itemset algorithm. IEEE transactions
on knowledge and data engineering, 17(11),
1490-1504.

Deng, Z. (2014). Fast mining Top-Rank-k frequent
patterns using Node-lists. Expert Systems with
Applications, 41, 1763-1768.

Deng, Z., & Fan, G.-D. (2007). Mining top-rank-k
frequent patterns. Proceedings of the Sixth
International Conference on Machine Learning
Cybernetics, (pp. 851-856). Hong Kong.

Deng, Z., & Wang, Z. (2010, December). A new fast
vertical method for mining frequent patterns.
International Journal of Computational
Intelligence Systems, 3(6), 733-744.

Fang, W., Lu, M., Xiao, X., He, B., & Luo, Q. (2009).
Frequent itemset mining on graphics processors.
Proceedings of the 5th international workshop on
data management on new hardware (DaMon’09)
(pp. 34-42). Providence.

Glaskowsky, P. N. (2009). NVIDIA’s Fermi: The
first complete GPU computing architecture.
White paper, NVIDIA Corporation.

Goethals, B. (2003). Survey on frequent pattern
mining. Helsinki.

Gorunescu, F. (2011). Data mining: concepts,
models and techniques, ISRL 12. Berlin,
Germany: Springer-Verlag.

Grahne, G., & Zhu, J. (2003). Efficiently using prefix-
trees in mining frequent itemsets. Proceeding of
the ICDM’03 international workshop on frequent
itemset mining implementations (FIMI’03) (pp.
123-132). Melbourne, Florida.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent
patterns without candidate generation.
Proceedings of the 2000 ACM-SIGMOD
international conference on management of
data (SIGMOD ‘00) (pp. 1-12). Dallas.

Hu, K., Lu, Y., Zhou, L., & Shi, C. (1999).
Integrating classification and association
rule mining: A concept lattice framework.
Proceedings of the 7th international workshop on
new directions in rough Sets, data mining, and
granular-soft computing (pp. 443-447). London:
Springer-Verlag.

Huynh-Thi-Le, Q., Le, T., Vo, B., & Le, B. (2015,
January). An efficient and effective algorithm
for mining top-rank-k frequent patterns. Expert
Systems With Applications, 42(1), 156-164.

Kosters, W. A., Marchiori, E., & Oerlemans, A. A.
(1999). Mining clusters with association rules.
Proceedings of the 3rd international symposium
on advances in intelligent data analysis (pp. 39-
50). London: Springer-Verlag.

Le, T., & Vo, B. (2015, May). An N-list-based
algorithm for mining frequent closed patterns.
Expert Systems with Applications, 42, 6648-
6857.

Lin, K. W., & Luo, Y.-C. (2009). A fast parallel
algorithm for discovering frequent patterns.
IEEE international conference on granular
computing (pp. 398-403). Nanchang.

Lin, K., & Chung, S.-H. (2015, May). A fast
and resource efficient mining algorithm for

134 VOLUME 9 (2016)MANILA JOURNAL OF SCIENCE

discovering frequent patterns in distributed
computing environments. Future Generation
Computer Systems, 52, 49-58.

Liu, G., Lu, H., Lou, W., & Yu, J. X. (2003). On
computing, storing and querying frequent
patterns. Proceeding of the 2003 ACM SIGKDD
international conference on knowledge discovery
and data mining (KDD’03) (pp. 607-612).
Washington, DC.

Liu, L., Li, E., Zhang, Y., & Tang, Z. (2007).
Optimization of frequent itemset mining on
multiple-core processor. Proceedings 33th
international conference on very large data
bases, (pp. 1275-1285). Vienna.

Lu, V., & Alaghband, G. (2014, December). Novel
parallel method for association rule mining on
multi-core shared memory systems. Parallel
Computing, 40(10), 768-785.

Lv, S.-L., & Deng, Z.-H. (2014). Fast mining
frequent itemsets using Nodesets. Expert
Systems with Applications, 41, 4505-4512.

Lynch, C. (2008). Big Data: How do your data grow?
Nature, 28-29.

Mannila, H., Toivonen, H., & Verkamo, A. (1994).
Efficient algorithms for discovering association
rules. Proceedings of the AAAI’94 workshop
knowledge discovery in databases (KDD’94) (pp.
181-192). Seattle.

Manyika, J., Chui, M., Brown, B., Baughin, J.,
Dobbs, R., Roxburgh, C., & Byers, A. (2012).
Big data: The next frontier for innovation,
competition and productivity. McKinsey Global
Institute.

NVIDIA Corporat ion . (2015) . CUDA C
programming guide. Programming Guide,
NVIDIA Corporation.

Park, J., Chen, M.-S., & Yu, P. S. (1995). An effective
hash-based algorithm for mining association
rules. Proceedings of the 1995 ACM-SIGMOD
international conference on management of data
(SIGMOD ‘95), (pp. 175-186). San Jose.

Pasquer, N., Bastide, Y., Taouil, R., & Lakhal, L.
(1999). Discovering frequent closed itemsets
for association rules. Proceedings of the 7th
international conference on database theory
(ICDT’99) (pp. 398-416). Jerusalem.

Pei, J., Han, J., & Mao, R. (2000). CLOSET: an
efficient algorithm for mining frequent closed

itemsets. Proceeding of the 2000 ACM-SIGMOD
international workshop data mining and
knowledge discovery (DMKD’00) (pp. 11-20).
Dallas.

Rymon, R. (1992). Search through systematic
set enumeration. International conference
on priciples of knowledge representation and
reasoning (pp. 539-550).

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J.
(2000). Analysis of recommendation algorithms
for e-commerce.Proceedings of the 2nd ACM
conference on electronic commerce (pp. 158-167).
Ney York: ACM Press.

Savasere, A., Omiecinski, E., & Navathe, S. (1995).
An efficient algorithm for mining association
rules in large databases. Proceedings of the 1995
international conference on very large data bases
(VLDB’95) (pp. 432-444). Zurich.

Song, W., Yang, B., & Xu, Z. (2008, August). Index-
BitTableFI: An improved algorithm for mining
frequent itemsets. Knowledge-Based Systems,
21(6), 507-513.

Szalay, A., & Gray, J. (2006). Science in an
exponential world. Nature, 23-24.

Toivonen, H. (1996). Sampling large databases
for association rules. Proceedings of the 1996
international conference on very large data bases
(VLDB’96) (pp. 134-145). Bombay.

Uy, R. (2014). Beyond multi-core: A survey of
architectural innovations on microprocessor.
2014 international conference on humanoid,
nanotechnology, information technology,
communication and control, environment
and management (HNICEM 2014) (pp. 1-6).
Palawan.

Wang, J., Pei, J., & Han, J. (2003). CLOSET+:
Searching for the best strategies for mining
frequent closed itemsets. Proceeding of the
2003 ACM SIGKDD international conference
on knowledge discovery and data mining (pp.
236-245). Washington D.C.

Wang, Z.-H., Jiang, J., & Deng, Z.-H. (2012). A new
algorithm for fast mining frequent itemsets
using N-lists. Science China Information
Services, 55(9), 2008-2030.

Woon, Y., Ng, W., & Lim, E.-P. (2002). Online
and incremental mining of separately-grouped
web access logs. Proceedings of the 3rd

CURRENT STATUS OF SERIAL AND PARALLEL ALGORITHMS 135UY, R.L. & SUAREZ, M.T.

international conference on web information
systems engineering (pp. 53-62). Washington
D.C.: IEEE Computer Society.

Yu, K.-M., & Zhou, J. (2008). Tidset-based parallel
FP-tree for the frequent pattern mining problem
on PC cluster. In S. Wu, L. T. Yang, & T. L. Xu,
Lecture notes in computer science 5036 (pp. 18-
28). Berlin: Springer-Verlag.

Yun, U., Shin, H., Ryu, K., & Yoon, E. (2012,
February). An efficient mining algorithm
for maximal weighted frequent patterns in
transactional databases. Knowledge-Based
Systems, 33, 53-64.

Zaki, M. J., & Hsiao, C.-J. (2002). CHARM: an
efficient algorithm for closed itemset mining.
Proceeding of the 2002 SIAM international
conference on data mining (SDM’02) (pp. 457-
473). Arlington.

Zaki, M., Parthasarathy, S., Ogihara, M., & Li,
W. (1997). New algorithms for fast discovery
of association rules. Proceedings of 3rd
international conference on knowledge discovery
and data mining (pp. 283-286). Newport Beach.

Zhang, F., Zhang, Y., & Bakos, J. (2011). GPApriori:
GPU-accelerated frequent itemset mining.
IEEE international conference on cluster
computing (pp. 590-594). Austin.

Zhang, F., Zhang, Y., & Bakos, J. (2013, October).
Accelerating frequent itemset mining on graphics
processing units. Journal of Supercomputing,
66(1), 94-117.

Zhou, J., & Yu, K.-M. (2008). Balanced tidset-
based parallel FP-tree algorithm for the
frequent pattern mining on grid system.
Fourth international conference on semantics,
knowledge and grid (pp. 103-108). Beijing.

