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ABSTRACT

Linear codes with complementary duals (LCD codes) are linear codes that intersect with 
their duals trivially. In this paper, we construct some families of LCD codes using Massey’s 
characterization of an LCD code. In particular, we obtain some classes of binary LCD codes using 
the permutation matrix and the all-one matrix. We also explicitly construct generator matrices 
of LCD codes using the generator matrices of self-dual codes and binary Hamming codes. For 

,73 ≤≤ r the binary LCD codes obtained using the Hamming matrix rH  are optimal. We also 
consider some known methods of combining two or more codes such as the direct product, direct 
sum, and Plotkin sum. We show that the direct product and the direct sum of two LCD codes 
are also LCD. We also prove that the permutation equivalence of codes preserves the LCD-ness 
of linear codes.

Keywords: LCD codes, complementary dual codes, construction of LCD codes, 
binary LCD codes, LCD codes from known linear codes
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1.  INTRODUCTION

Error-correcting codes play an important role 
in digital communication. All real systems 
that work with digitally represented data, 
such as CD players, TVs, fax machines, the 
internet, satellites, and mobile phones, require 
the use of error-correcting codes. Among all 
types of codes, linear codes are studied the 
most. Because of their algebraic structure, 
they are easier to describe, encode, and decode 
than nonlinear codes. In this paper, we study 
a subclass of linear codes known as LCD 
codes. Massey (1992) defined a linear code 
with complementary dual (LCD code) to be a 
linear code C  such that }0{=∩ ⊥CC . These 
codes have practical utility since they provide 
an optimum linear coding solution for a two-
user binary adder channel. They also play an 
important role in counter measures to passive 
and active side-channel analyses on embedded 
cryptosystems (Carlet & Guilley, 2015).
Massey (1992) pointed out that the class 
of LCD codes is rich enough to contain 
asymptotically good codes. Sendrier (2004) 
confirmed this by showing that LCD codes 
meet the Gilbert-Varshamov bound.
Dougherty et al. (2015) derived a linear 
programming bound on the largest size of 
an LCD code of given length and minimum 
distance. In the same paper, some combinatorial 
relations on the parameters of LCD codes were 
introduced. Some methods of constructing 
LCD codes were also given in Dougherty 
et al. (2015). Yang and Massey (1994) gave 
a necessary and sufficient condition for a 
cyclic code to have a complementary dual. 
Esmaeli and Yari (2009) derived necessary 
and sufficient conditions for some classes of 
quasi-cyclic codes to be LCD codes. Recently, 
LCD codes over finite chain rings were studied 
in Liu and Liu (2015).
In this paper, we construct LCD codes by 
applying Massey’s characterization of LCD 
codes. This is organized in the following way. 

Section 2 collects the background material 
that we need. Section 3 contains the result 
that the permutation equivalence of linear 
codes preserves the property of being LCD. 
Section 4 provides the construction of LCD 
codes using special types of matrices while 
Section 5 discusses construction of LCD codes 
using generator matrices of self-dual codes and 
binary Hamming codes. Section 6 recalls some 
classic ways of combining two linear codes 
and examines whether these constructions 
involving LCD codes will give rise to new LCD 
codes. 

2.  PRELIMINARIES

Let qF  be a finite field of order q. For a 
positive integer n, let n

qF  denote the vector 
space of all n-tuples over qF . A linear code 
C of length n and dimension k over qF  is a 
k-dimensional subspace of the vector space 

n
qF . The code C is called an [n, k] linear 

code over qF  .

Let ),...,,( 21 nxxxx =  and ),...,,( 21 nyyyy =  be 
vectors in n

qF . The (Hamming) distance, d(x, y), 
between x and y is the number of coordinates 
in which the vectors x and y differ, i.e.,

}|{),( ii yxiyxd ≠= .

The (Hamming) weight, wt(x), of a vector 
x is the number of nonzero components in 
x. We define the minimum weight of a code 
C to be the weight of the nonzero vector of 
smallest weight in C, i.e.,

wt(C) = min{wt(c) | c ∈ C,c ≠ 0}.

It is easy to see that d(x, y) = wt(x − y). The 
minimum distance of a code C is defined by
 

},({min)(
,,

yxdCdd
yxCyx ≠∈

== .
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For a linear code C, the minimum distance is 
also the minimum weight. We use the qdkn ],,[  
code as the notation for a k-dimensional linear 
code of length n over qF  with minimum 
distance d.
A code is called t-error-correcting if any 
received word which had t or fewer errors in 
transmission is correctly decoded by some 
maximum likelihood decoding scheme. (The 
method of decoding a received vector to 
the closest code vector is called maximum 
likelihood decoding.) For a code to be good, t 
should be large enough relative to the length 
n of the code. A code with minimum distance 
d can correct 





 − )1(
2
1 d  errors and can detect 






2
d  errors, where  r  denotes the greatest 

integer less than or equal to r (Pless, 1998).
The inner product of x and y is defined by

nnyxyxyx ++=• ...11 . The dual code or 
orthogonal code ⊥C  of a code C is the set of 
all vectors of length n that are orthogonal to 
all codewords of C, i.e., 

0|{ =•∈=⊥ yxFxC n
q for all }Cy ∈ .

A code C is self-orthogonal provided ⊥⊆ CC
and self-dual provided ⊥= CC . 
We can describe a linear code as a row space 
or as a null space of a matrix. A nk ×  matrix 
G whose rows form a basis for an ],[ kn  
linear code C is called a generator matrix of 
the code C. If G is a generator matrix for C, 
then 

0|{ =•∈=⊥ yxFxC n
q for all }Cy∈ . 

A code C is self-orthogonal provided 
⊥⊆ CC and self-dual provided ⊥= CC .  

We can describe a linear code as a row 
space or as a null space of a matrix. A 

nk×  matrix G whose rows form a basis 
for an ],[ kn  linear code C is called a 
generator matrix of the code C. If G is a 
generator matrix for C, then

}|{ k
qFaaGC ∈= . A code has a unique 

generator matrix of the form ]:[ AIk , 
where kI  is the kk ×  identity matrix. 
Such a generator matrix is in standard 
form. A parity check matrix for C is an 

nkn ×− )(  matrix H such that Cc∈  if 
and only if 0=TcH . 

Definition 1. A linear code with 
complementary dual (LCD) is a linear 
code C satisfying }0{=∩ ⊥CC . 

Remark. Let C be a linear code. 
i. If C is an LCD code, then so 

is ⊥C  since CC =⊥⊥ )( .  
ii. If C is an LCD code of length 

n over qF , then ⊥⊕= CCF n
q .  

Let CΠ  be the orthogonal projector from 
n
qF  onto C, i.e., the linear mapping from 
n
qF  onto n

qF defined by  







∉

∈
=Π ⊥Cvif

Cvifv
v C 0

.  

The following theorem gives a complete 
characterization of LCD codes. 
Theorem 1. (Massey, 1992) If G is a 
generator matrix for the linear code C, 
then C is an LCD code if and only if the 

kk×  matrix TGG  is nonsingular. 
Moreover, if C is an LCD code, then 

GGGG TT
C

1)( −=Π  is the orthogonal 
projector from n

qF  onto C. 

The following corollary to Theorem 1 
follows from the fact that the dual code 

⊥C  of C is LCD whenever C is LCD.  

Corollary 2. Let C be a linear code and 
let H be a parity-check matrix of C. Then 
C is an LCD code if and only if THH  is 
invertible.  
Recall that the determinant of a matrix 
A, denoted by det(A), is nonzero if and 
only if A is nonsingular. Thus, the 
following corollary is easy to see. 
Corollary 3. Let C be a linear code and 
let G and H be respectively a generator 
matrix and a parity-check matrix of C. 
Then the following statements are 
equivalent: 

i. C is an LCD code. 
ii. det 0)( ≠TGG . 

iii. det 0)( ≠THH . 

3. LCD CODES AND 
PERMUTATION 
EQUIVALENCE 

Often we are interested in properties of 
codes, such as weight distribution, that 
remain unchanged when passing from one 
code to another that is essentially the 
same. Since linear codes are vector spaces 
over qF , we might be tempted to look at 
codes as “essentially the same” if they are 
isomorphic as vector spaces. Though 
vector space isomorphism preserves 
linearity and dimension, under this case, 
the concept of weight, which is important 
in the study and use of codes, is lost. 
Codewords of one weight may be sent to 
codewords of a different weight via 
isomorphism. The term equivalence is 
used when comparing two codes that are 
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Often we are interested in properties of 
codes, such as weight distribution, that 
remain unchanged when passing from one 
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over qF , we might be tempted to look at 
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The following theorem gives a complete 
characterization of LCD codes.

Theorem 1. (Massey, 1992) If G is a generator 
matrix for the linear code C, then C is an 
LCD code if and only if the kk ×  matrix GGT 
is nonsingular. Moreover, if C is an LCD 
code, then ΠC =  GT (GGT)-1G is the orthogonal 
projector from n

qF  onto C.

The following corollary to Theorem 1 follows 
from the fact that the dual code ⊥C  of C is 
LCD whenever C is LCD. 

Corollary 2. Let C be a linear code and let H 
be a parity-check matrix of C. Then C is an LCD 
code if and only if HHT is invertible. 

Recall that the determinant of a matrix A, 
denoted by det(A), is nonzero if and only if A 
is nonsingular. Thus, the following corollary 
is easy to see.

Corollary 3. Let C be a linear code and let G 
and H be respectively a generator matrix and 
a parity-check matrix of C. Then the following 
statements are equivalent:
C is an LCD code.

i. 	 C is an LCD code.
ii. 	 det (GGT) ≠ 0.
iii. 	det (HHT) ≠ 0.
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3.  LCD CODES AND 
PERMUTATION EQUIVALENCE

Often we are interested in properties of codes, 
such as weight distribution, that remain 
unchanged when passing from one code to 
another that is essentially the same. Since 
linear codes are vector spaces over qF , we might 
be tempted to look at codes as “essentially the 
same” if they are isomorphic as vector spaces. 
Though vector space isomorphism preserves 
linearity and dimension, under this case, the 
concept of weight, which is important in the 
study and use of codes, is lost. Codewords 
of one weight may be sent to codewords of a 
different weight via isomorphism. The term 
equivalence is used when comparing two codes 
that are “essentially the same.” In this section, 
we recall the simplest form of equivalence, 
called permutation equivalence, and prove 
that it preserves the LCD-ness of linear codes.

Definition 2. Two codes C and C’ of length 
n are said to be permutation equivalent 
provided there is a permutation of coordinates 
which sends C to C’. Equivalently, C and C’ 
are permutation equivalent if there exists a 
permutation σ  of the n symbols {1, 2, …, n} 
such that '' Cc ∈  if and only if )(' cc σ= for some

Cc ∈ , where
),...,,(),...,,()( )()2()1(21 nn ccccccc σσσσσ == .

Note that equivalent codes have the same 
minimum distance and so the same error 
detection/correction capability. Hence, for 
studying error detection/correction, we may 
work with equivalent codes if that helps our 
study. Any linear code over a finite field is 
equivalent to a code generated by a matrix 
in standard form. In this paper, most of 
the constructions use generator matrices in 
standard form. Therefore, it is important to 
find out whether the permutation equivalence 
of codes preserves the property of being linear 
with complementary dual.

Theorem 4. Suppose 1C and 2C are two 
permutation equivalent linear codes. If 1C is 
LCD, then 2C  is also LCD.

Proof. Assume that }0{22 ≠⊥CC  . Then 
there is a nonzero vector u such that 2Cu ∈   
and ⊥∈ 2Cu . By Definition 2, since 2C is 
permutation equivalent to 1C , there exists 
a permutation of coordinates σ  such that 

}|)({ 12 CccC ∈= σ . Hence )(xu σ= , for some 
vector 1Cx ∈ . Since ⊥∈ 2Cu , we have 0=• vu  
for all 2Cv ∈ . This implies that 0)()( =• yx σσ  
for  al l 1Cy ∈ .  Let  ),...,,( 21 nxxxx =  and

),...,,( 21 nyyyy = . Observe 

.0

,0

,0),...,,(),...,,(
,0),...,,(),...,,(

1

1
)()(

)()2()1()()2()1(

2121

=

=

=•

=•

∑

∑

=

=
n

i
ii

n

i
ii

nn

nn

yx

yx

yyyxxx
yyyxxx

σσ

σσσσσσ

σσ

We have shown that 0=• yx  for all .1Cy ∈  

Thus, ⊥∈ 1Cx , and so, ⊥∩∈ 11 CCx . Since 1C  
is an LCD code, 0=x . This contradicts our 
assumption that )(xu σ=  is a nonzero vector. 
Therefore, 2C  is an LCD code. 

4.  LCD CODES FROM 
ORTHOGONAL, 

ANTIORTHOGONAL, AND SELF-
ORTHOGONAL MATRICES

In this section, we construct LCD codes 
using the characterization given in Theorem 
1. This theorem provides a concrete way 
of constructing LCD codes, i.e., by finding 
a generator matrix G such that GGT is 
nonsingular. We note however that this 
condition does not imply that G is nonsingular. 
In fact, G may not even be a square matrix. On 
the other hand, it is easy to see that the matrix 
GGT is nonsingular whenever G is nonsingular. 
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Thus, by Theorem 1, every nonsingular matrix 
generates an LCD code. Now, we determine 
whether or not invertible matrices generate 
interesting LCD codes. 
Let C be a code over qF  generated by an nn ×  
invertible matrix G. Recall that the rows of a 
generator matrix G form a basis of a linear 
code C. So, rank G = dim C = n since G is 
nonsingular. Consequently, n

qFC = , and thus, 
C is the linear code with parameters [n, n, 1]. 
This proves the following proposition.

Proposition 5. If G is a nonsingular matrix, 
then G generates the trivial [n, n, 1] LCD code. 

This result shows that a nonsingular generator 
matrix generates an LCD code with the most 
number of codewords but lacks the error-
correction capability. This type of code is less 
interesting. Hence, to construct good LCD 
codes, we should avoid generator matrices G, 
which are invertible.
One way to construct a generator matrix G 
such that GGT is invertible is to force GGT = 
I. Such a matrix is called orthogonal. Massey 
(1998) defined orthogonal, antiorthogonal, 
and self-orthogonal matrices over arbitrary 
fields together with their nonsquare analogs. 
Hereafter, we use F to denote an arbitrary 
field.

Definition 3. Let A be square matrix A over 
F.  Then

i.	 A is said to be orthogonal if AAT = I  
where I denotes an identity matrix of 
appropriate order.

ii.	 A is self-orthogonal if  AAT = O, where O 
denotes the zero matrix of appropriate 
dimension.

iii.	 A is antiorthogonal if  AAT = -I 

Definition 4. Let B be an nm× matrix over 
F. Then 

i. 	 B is said to be row-orthogonal if BBT = 
I.

ii.	 B is row-self-orthogonal if BBT = O.
iii.	 B is row-antiorthogonal if BBT = -I.

In view of Theorem 1, it is apparent that 
orthogonal matrices generate LCD codes as 
indicated in the following corollary.

Corollary 6. Let G be a generator matrix 
for a code over a finite field qF . If G is a row-
orthogonal matrix, then G generates an LCD 
code.

Notice that a matrix A is nonsingular whenever 
A is orthogonal since AAT = I  implies TAA =−1

. As pointed out in the earlier part of this 
section, this type of matrix does not generate 
good LCD codes. On the other hand, a row-
orthogonal matrix is not necessarily square 
and thus a plausible generator matrix of an 
LCD code with good parameters. 
We state the following results by Massey 
(1998), which give generator matrices of LCD 
codes using the matrices in Definition 4.

Proposition 7. Let G = [ AI : ] be a generator 
matrix in standard form of a linear code 
C. Then C is an LCD code if A is row-
self-orthogonal or, equivalently, if G is row-
orthogonal.

Proposition 8. If B is any m × m antiorthogonal 
matrix and Q is any k × m matrix, then G = [I : 
Q : QB] is a generator matrix of an LCD code 
of length n = k + 2m and dimension k.

Proposition 9. If Q is any k ×  k matrix, 
C is any k × m row-self-orthogonal matrix, 
and A is any m × m orthogonal matrix, then 

]:[ QCAIG =  is a generator matrix of an 
LCD code of length n = k + m and dimension 
k. The same holds true if A is any m × m 
antiorthogonal matrix. 

The following examples illustrate the 
constructions given above.
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easy to check that C is self-orthogonal and 
A is orthogonal. The matrix [ QCAI : ] 
generates a binary LCD code with 
parameters [8, 4, 2]. 
Now, we present a method of constructing 
orthogonal/row-orthogonal matrices from 
existing ones. A type of matrix 
multiplication known as the Kronecker 
product provides a noteworthy 
construction. Let )(, FM nm  denote the 
space of all nm×  matrices over the field 
F. 
Definition 5. (Broxson, 2006) The 
Kronecker product of )(][ , FMaA nmij ∈=  
and )(][ , FMbA srij ∈= , denoted by BA ⊗ , 
is defined to be the block matrix 
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Proposition 10. Let )(, FMA nm∈  and
)(, FMB sr∈ . If A and B are row-

orthogonal matrices, then BA ⊗  is also 
row-orthogonal.  

Proof. Since A and B are row-orthogonal, 
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Broxson (2006, Theorem 5 and Theorem 
7), we have 

( ) ( )

mr

rm

TT

TTT

I

II

BBAA

BABABABA

=

⊗=

⊗=

⊗⊗=⊗⊗ )()(

 

This completes the proof.  
■ 

Since every orthogonal matrix is row-
orthogonal, the following corollary follows 
directly from Proposition 10. 
Corollary 11. If A and B are orthogonal 
matrices, then BA ⊗  is also an 
orthogonal matrix. 
Now we construct some classes of binary 
LCD codes using the permutation matrix 
and the all-one matrix.  
A permutation matrix is known to be 
orthogonal and hence nonsingular. By 
Proposition 5, a permutation matrix P of 
order n generates the trivial [n, n, 1] LCD 
code. We use this information to construct 
a class of 1-error correcting LCD codes of 
rate 1/3. 
Theorem 12. Let P be the permutation 
matrix of size n. Then ]::[ PPPG =  
generates a binary LCD code of 
parameters ].3,,3[ nn  

Proof.  Clearly, G is row-orthogonal since 
.IPPGG TT ==  Let C be the code 

generated by G. By Corollary 6, C is an 
LCD code. It is clear from the construction 
of G that the length of the codewords in C 
is 3n. Since the rows of P are linearly 
independent, it follows that rank G = dim 
C = n. Each column of G has exactly one 1, 
and each row of G has exactly three 1s. 
This implies that every row of G has 
exactly three 1s, which are located in 
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This completes the proof.  
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Since every orthogonal matrix is row-
orthogonal, the following corollary follows 
directly from Proposition 10. 
Corollary 11. If A and B are orthogonal 
matrices, then BA ⊗  is also an 
orthogonal matrix. 
Now we construct some classes of binary 
LCD codes using the permutation matrix 
and the all-one matrix.  
A permutation matrix is known to be 
orthogonal and hence nonsingular. By 
Proposition 5, a permutation matrix P of 
order n generates the trivial [n, n, 1] LCD 
code. We use this information to construct 
a class of 1-error correcting LCD codes of 
rate 1/3. 
Theorem 12. Let P be the permutation 
matrix of size n. Then ]::[ PPPG =  
generates a binary LCD code of 
parameters ].3,,3[ nn  

Proof.  Clearly, G is row-orthogonal since 
.IPPGG TT ==  Let C be the code 

generated by G. By Corollary 6, C is an 
LCD code. It is clear from the construction 
of G that the length of the codewords in C 
is 3n. Since the rows of P are linearly 
independent, it follows that rank G = dim 
C = n. Each column of G has exactly one 1, 
and each row of G has exactly three 1s. 
This implies that every row of G has 
exactly three 1s, which are located in 

This completes the proof. 
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Since every orthogonal matrix is row-
orthogonal, the following corollary follows 
directly from Proposition 10.

Corollary 11. If A and B are orthogonal 
matrices, then BA ⊗  is also an orthogonal 
matrix.

Now we construct some classes of binary LCD 
codes using the permutation matrix and the 
all-one matrix. 
A permutation matrix is known to be orthogonal 
and hence nonsingular. By Proposition 5, a 
permutation matrix P of order n generates 
the trivial [n, n, 1] LCD code. We use this 
information to construct a class of 1-error 
correcting LCD codes of rate 1/3.

Theorem 12. Let P be the permutation matrix 
of size n. Then ]::[ PPPG =  generates a 
binary LCD code of parameters ].3,,3[ nn

Proof.  Clearly, G is row-orthogonal since      
GGT = PPT = I . Let C be the code generated by 
G. By Corollary 6, C is an LCD code. It is clear 
from the construction of G that the length of 
the codewords in C is 3n. Since the rows of P 
are linearly independent, it follows that rank G 
= dim C = n. Each column of G has exactly one 
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1, and each row of G has exactly three 1s. This 
implies that every row of G has exactly three 
1s, which are located in distinct columns, and 
thus, every linear combination of two or more 
rows of G contains at least three 1s. Hence, 
the minimum distance of C is 3. 

■

We generalize this result to a class of binary 
LCD codes with rate 1/k and minimum 
distance k in the following proposition. 
The proof follows the same argument as in 
Theorem 12. 

Theorem 13. Let P be a permutation matrix of 
size n and let k be a positive odd integer. Then 
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generates a binary LCD code 
		        with parameters [kn,n,k].  

Let nJ denote the all-one nn ×  matrix. We 
use this matrix to construct a class of binary 
LCD codes of rate 1/2.

Theorem 14. Let nJ  be the all-one matrix, 
where n is even. Then ]:[ nn JIG =  generates 
a binary LCD code with parameters [2n, n, 2].

Proof. Let Aij  denote the ij-entry of the matrix 
A. Then

).2(mod0

1

)()()(

1

1

=
=

=

=

∑

∑

=

=

n

JJJJ

n

k

kj
T

n
n

k
iknij

T
nn

Thus, nJ  is row-orthogonal. By Proposition 
7, G generates an LCD code. From the 
construction of G, it is easy to see that the code 
C generated by G has length 2n, dimension n 
and minimum distance 2. 

■

Example 3.  ]:[ 66 JIG =  generates a 
[12, 6, 2] binary LCD code. The weight 
distribution of this code is given by 

distinct columns, and thus, every linear 
combination of two or more rows of G 
contains at least three 1s. Hence, the 
minimum distance of C is 3.  

■ 
We generalize this result to a class of 
binary LCD codes with rate 1/k and 
minimum distance k in the following 
proposition. The proof follows the same 
argument as in Theorem 12.  
Theorem 13. Let P be a permutation 
matrix of size n and let k be a positive odd 
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Thus, nJ  is row-orthogonal. By 
Proposition 7, G generates an LCD code. 
From the construction of G, it is easy to 
see that the code C generated by G has 
length 2n, dimension n and minimum 
distance 2.  

■ 
 

Example 3. ]:[ 66 JIG =  generates a [12, 
6, 2] binary LCD code. The weight 
distribution of this code is given by 

.620615151 1197642 xxxxxx ++++++  
Let nn IJA −= . Note that nJ and nI are 
symmetric matrices. Suppose n is even. 
Then n

T IAA =  and thus orthogonal. 
Since A is a square matrix, the 
orthogonality of this matrix also implies 
that it is nonsingular. The following 
corollary to Theorem 1, which follows 
from the fact the A is nonsingular, gives 
an alternative generator matrix of an 
LCD code. 
Corollary 15. (Dougherty et al., 2015) Let 
G be a generator matrix for a code over a 
finite field. If nn

T IJGG −= , n even, then 
G generates an LCD code.  

5. LCD CODES FROM 
GENERATOR MATRICES OF 

OTHER LINEAR CODES 

Massey (1992) showed that the 
asymptotic goodness of LCD codes follows 
trivially from that of general linear codes. 
He showed that for every linear code C, 
there always exists a corresponding LCD 
code by modifying an arbitrary [n, k] 
linear code to produce an LCD code whose 
minimum Hamming distance is at least as 
good. In this section, we construct LCD 
codes using the generator matrices of 
other known codes, namely self-dual codes 
and binary Hamming codes.  

5.1 Arbitrary Linear [n, k, d] 
Code 

As a motivation, we revisit the 
construction given by Massey. The first 
proposition is a construction of LCD codes 
over a field of characteristic 2 while the 
latter gives a more general result. 

Let nn IJA −= . Note that nJ and nI are 
symmetric matrices. Suppose n is even. Then 
AAT = In  and thus orthogonal. Since A is 
a square matrix, the orthogonality of this 
matrix also implies that it is nonsingular. The 
following corollary to Theorem 1, which follows 
from the fact the A is nonsingular, gives an 
alternative generator matrix of an LCD code.

Corollary 15. (Dougherty et al., 2015) Let G 
be a generator matrix for a code over a finite 
field. If GGT = Jn — In, n even, then G generates 
an LCD code. 

5.  LCD CODES FROM GENERATOR 
MATRICES OF OTHER LINEAR 

CODES

Massey (1992) showed that the asymptotic 
goodness of LCD codes follows trivially from 
that of general linear codes. He showed that 
for every linear code C, there always exists 
a corresponding LCD code by modifying an 
arbitrary [n, k] linear code to produce an LCD 
code whose minimum Hamming distance is 
at least as good. In this section, we construct 
LCD codes using the generator matrices of 
other known codes, namely self-dual codes and 
binary Hamming codes. 

5.1  Arbitrary Linear [n, k, d] Code

As a motivation, we revisit the construction 
given by Massey. The first proposition is 
a construction of LCD codes over a field of 
characteristic 2 while the latter gives a more 
general result.

Proposition 16. (Massey, 1992) Let [ ]AIG k :=  
be the generator matrix of a linear ],,[ dkn  
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code C over the field F of characteristic 2. 
Then [ ]AAIG k ::=  is a generator matrix of 
a ]',,2[ dkkn −  linear code over F with dd ≥' .

Proposition 17. (Massey, 1992) For any 
linear ],,[ dkn  code C over the field F of prime 
characteristic p, there exists a corresponding 

]',,45[ dkkn −  LCD code C’ with dd ≥' .

5.2  Self-Dual Codes

A self-dual code cannot be LCD; however, 
we can take advantage of its properties to 
construct LCD codes. Recall that a linear code 
C is self-dual if ⊥= CC . This implies that a 
generator matrix G of a self-dual code C is also 
a generator matrix of its dual code ⊥C . Thus, 
GGT = O  and so G is row-self-orthogonal. Let

]:[' GIG = . We have,

[ ][ ] .'' IGIGIGG TT ==

Hence, IGG T ='' .	

Theorem 18. Let G be a nk ×  generator 
matrix of a self-dual ],,[ dkn  code over qF . 
Then [ ]GIG :' =  is a generator matrix of an 
LCD code over qF of length n + k, dimension k 
and minimum distance d + 1.

Proof. Let C be the code generated by G’. 
From the preceding discussion, G’ is a row-
orthogonal matrix. Then C is an LCD code by 
Proposition 7. It is clear from the construction 
of G’ that dim C = k and the length of the codes 
in C is n + k. Moreover, since the minimum 
distance of the self-dual code generated by G 
is d and the rows of I are distinct, any linear 
combination of the rows of G’ gives a vector 
with weight of at least d + 1.  

■

Example 4. Consider the binary Golay code of 
length 24. It is a self-dual code with generator 
matrix [ ]AI : , where 
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The matrix A is orthogonal since AAT = I12. 
Now, let ]::[ AIIG = . It is easy to see that G 
is a row-orthogonal matrix and G generates a 
binary LCD code with parameters [36, 12, 9].

Let ]:[ AIG =  be a generator matrix in 
standard form of a binary self-dual code. By 
self-duality, we have
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have, 
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an LCD code over qF of length n + k, 
dimension k and minimum distance d + 1. 
Proof. Let C be the code generated by G'. 
From the preceding discussion, G' is a 
row-orthogonal matrix. Then C is an LCD 
code by Proposition 7. It is clear from the 
construction of G’ that dim C = k and the 
length of the codes in C is n + k. 
Moreover, since the minimum distance of 
the self-dual code generated by G is d and 
the rows of I are distinct, any linear 
combination of the rows of G' gives a 
vector with weight of at least d + 1.   
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The matrix A is orthogonal since

12IAAT = . Now, let ]::[ AIIG = . It is 
easy to see that G is a row-orthogonal 
matrix and G generates a binary LCD 
code with parameters [36, 12, 9]. 
Let ]:[ AIG =  be a generator matrix in 
standard form of a binary self-dual code. 
By self-duality, we have 
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This implies that IAAT = , and so, A is 
either orthogonal or row-orthogonal. By 
Corollary 6, A generates an LCD code. 
Moreover, since IAAT = , each row of A is 
orthogonal to every other row of A but has 
a scalar product of 1 with itself. This 
means that any collection of rows of A 
forms a matrix which generates a binary 
LCD code. This proves the following 
result. 
Theorem 19. Let ]:[ AIG =  be a 
generator matrix in standard form of a 
binary self-dual code. Then 

i. A generates a binary LCD code. 

This implies that AAT = I, and so, A is either 
orthogonal or row-orthogonal. By Corollary 
6, A generates an LCD code. Moreover, since   
AAT = I, each row of A is orthogonal to every 
other row of A but has a scalar product of 1 
with itself. This means that any collection of 
rows of A forms a matrix which generates a 
binary LCD code. This proves the following 
result.

Theorem 19. Let ]:[ AIG =  be a generator 
matrix in standard form of a binary self-dual 
code. Then

i.	 A generates a binary LCD code.
ii.	 Any matrix whose rows are a collection 

of rows of A generates a binary LCD 
code.
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This result indicates that we can randomly 
choose rows of A to form a generator matrix 
of a binary LCD code with high rate and good 
error-correction capability. In general, if 

]:[ AIG =  is a generator matrix in standard 
form of a self-dual code over ,qF  then A is 
an antiorthogonal or a row-antiorthogonal 
matrix. Hence, by Propositions 8 and 9, we 
can use A to generate an LCD code over qF .

Example 5. LCD codes with parameters [12, 
6, 3], [12, 8, 2], and [12, 4, 5] can be constructed 
using the rows of the matrix A in Example 4.

5.3  Binary Hamming Codes

Binary Hamming codes are a class of binary 
linear codes. Let 12 −= rn , with .2≥r  Then 
the )12( −× rr  matrix rH , whose columns, 
in order, are the numbers 12,,2,1 −r

  
written as binary numerals, is the parity 
check matrix of an ],12[ rnkn r −=−=  binary 
code. Any rearrangement of columns of rH  
gives an equivalent code, and hence, any one 
of these equivalent codes will be called the 
binary Hamming code of length 12 −= rn . 
Moreover, any binary code with parameters 

]3,12,12[ −−− rrr  is equivalent to the binary 
Hamming code (Huffman & Pless, 2003, p. 29). 
As mentioned earlier, a convenient way of 
constructing the parity check matrix rH
is by forming a matrix whose ith column is 
the binary representation of the number i 
(when necessary, we put leading 0s to have 
an r-tuple). Consider the following examples.

Example 6.  

1.	 If r = 2, then 2H  is a 32 ×  matrix given 

	 by 



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
=

101
110

2H . This is a parity 

	 check matrix of the [3, 1, 3] binary 
Hamming code.

2.	 If r = 3, then 3H  is a 73 × matrix given 

	 by .
1010101
1100110
1111000

3
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
=H The 

	
	 matrix 3H  is a parity check matrix of 

the [7, 4, 3] binary Hamming code.

The following lemma gives a recursive 
construction of the parity check matrix .rH

Lemma 20. Let rH  be a parity check matrix 
of a binary Hamming code of length 12 −= rn  
with 2≥r . Suppose that the ith column of rH  
represents the binary representation of the 
number i. Then

)1.5(,
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×

−×−×
+

rrr
r HOH

JO
H rr

where nmO ×  denotes an nm × zero matrix and 
nmJ ×  an nm ×  all-one matrix.

Proof. The matrix 1+rH  has 12 1 −+r columns. 
It suffices to show that the columns of 1+rH  
correspond to the binary representations of 
the numbers, in order, 1, 2,…, 12 1 −+r . We 
decompose the matrix in (5.1) into three 
submatrices: 


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rH

O r 121 ; 
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1
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; and 

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

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 −×
rH

J r 121

Since the columns of rH  correspond to the 
numbers 1, 2,…, 12 −r , in that order, it follows 
that the columns of 








 −×
rH

O r 121
 represent the 

same set of numbers.

Clearly, the column matrix 








+1

1
rO

represents 

the number r2 . Now, let us consider 






 −×
rH

J r 121

Each of the 1s in the row matrix 121 −× rJ  has 
value r2 . Once again, since the columns of 

rH correspond to the numbers 1, 2,…, 12 −r

in that order, the columns of 






 −×
rH

J r 121  

represent the numbers ...,,22,12 ++ rr

12122 1 −=−+ +rrr . Therefore, 1+rH is a 
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parity-check matrix of the binary Hamming 
code of length .12 1 −+r  

■

The next lemma counts the number of 1s in 
the rows of the matrix rH .

Lemma 21. Let rH  be a parity check matrix 
of a binary Hamming code of length 12 −= rn , 
with 2≥r . Then, the number of 1s in each row 
of rH  is even. In particular, the number of 1s 
in each row of rH  is .2 1−r

Proof. We proceed by induction on r. The 
assertion is true for r = 2 since each row of 2H  
has 22 12 =−  1s. Assume that each row of rH  
has 12 −r  1s. We show that each row of 1+rH  
has r2  1s. By Lemma 20,

.
1

1
1211211 








=

×
−×−×+

rrr
r HOH

JO
H rr

Clearly, the first row of 1+rH has r2  1s. From 
our assumption, each row of rH  has 12 −r 1s. 
Hence, each of the remaining rows of 1+rH  
has rr 222 1 =⋅ −  1s. 
Therefore, the number of 1s in each row of the 
parity-check matrix rH  of a binary Hamming 
code is 12 −r , which is even. 

■

Lemma 22. For 3≥r , the parity check matrix 
rH  of a binary Hamming code is row-

orthogonal over 2F .

Proof. We proceed by induction on r. If r = 3, 
we have .333 OHH T =
Assume that r

T
rr OHH = . We show that 

111 +++ = r
T

rr OHH . By Lemma 20, 

.
1

1
1211211 








=

×
−×−×+

rrr
r HOH

JO
H rr

 N o w , 

)2.5(,
0

110

1
1

11

11

121

1
121

1
12112111









=









++++

++++
=

























=

×××

××

−×

×

−×

×

−×−×
++

r

T
rrrr

T
rrrr

rr

r

r

r

rrr

T
rr

OY
X

HHOHHYOO
XOO

HJ
O
HO

HOH
JO

HH
r

r
rr

where T
rHJX r )12(1 −×

=  and 1)12( ×−
= rJHY r . 

Now, observe that X is a r×1  matrix whose ith 
entry corresponds to the sum of the entries in 
ith row of rH . Similarly, Y is an 1×r  matrix 
whose jth entry corresponds to the sum of 
the entries in the jth row of rH . By Lemma 
21, )2(mod02 1

1 == −r
jX  for rj ≤≤1  and 

)2(mod02 1
1 == −r
iY  for ri ≤≤1 . From (5.2), 

111 +++ = r
T

rr OHH . This completes the proof. 

■

We now state the main result in this subsection, 
which gives another family of binary LCD 
codes.

Theorem 23. Let rH  be a parity check matrix 
of a binary Hamming code of length 12 −= rn  
where 3≥r . Then, ]:[ rr HIG =  generates 
a binary LCD code of length 12 −+ rr  and 
dimension r. 

Proof. The statement that ]:[ rr HIG =  
generates an LCD code follows from Lemma 
22 and Proposition 7. The length and the 
dimension of the code generated by G is clear 
from the construction of G. 

■

For ,73 ≤≤ r  we list the parameters of the 
binary LCD codes generated by ]:[ rr HIG =  
in Table 1. We note that the dual codes of 
these codes are also LCD. It is interesting to 
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note that the LCD codes in Table 1 are optimal 
based on the database of codes compiled in 
Grassl (n.d.)

6.  NEW LCD CODES FROM OLD

Many interesting and important codes will 
arise by modifying or combining existing codes. 
In this section, we examine if such modification 

Table 1. Optimal binary LCD codes obtained using Hamming matrix

r The parameters of the code C 
generated by G = [Ir : Hr]  

The parameters of the dual code C┴

3 [10, 3, 5] [10, 7, 2]
4 [19, 4, 9] [19, 15, 2]
5 [36, 5, 17] [36, 31, 2]
6 [69, 6,33] [69, 63, 2]
7 [134, 7, 65] [134, 127, 2]

or combination of LCD codes will result to 
linear codes with complementary duals. To 
this end, we recall some classic methods of 
constructing new codes using known codes.

6.1  Direct Product

Consider a block code of length 21nnn = . 
Instead of writing the codewords as row vectors 
of length n, we can represent the codewords by 

21 nn ×  matrices. One way of doing this is by 
representing the codeword ),,,( 110 −= naaaa   
by the matrix ],[ ijaA = ,1,,2,1,0 1 −= ni 

1,,2,1,0 2 −= nj  , where jinij aa += 2 . This 
is called the canonical ordering.

Definition 6. Let 1C  and 2C  be linear codes of 
parameters ],[ 11 kn  and ],[ 22 kn , respectively. 

Let C  be a code of length 21nn  represented by 
21 nn ×  matrices with the canonical ordering. 

We say that C  is the direct product of 1C
and ,2C  denoted by 21 CC ⊗ , if and only if C  
consists of all codewords for which the matrix 
representation has the following properties: 

i.	 each column of a matrix is the transpose 
of a codeword of 1C ,

ii.	 each row of the matrix is a codeword of 
2C . 

Remark. The product code of 1C and 2C can 
also be defined by













=⊗
≤≤

≤≤
≤≤≤≤

iallfornjij

jallforniij
njniij

c

c
cCC

,1

,1
1,121

2

1
21 )(

)(
)( .

In the literature, the direct product is also 
called the Kronecker product or tensor product.

Remark. It is easy to see that the direct product 
of two linear codes is again a linear code. 

We also note that 21 CC ⊗  is equivalent to
12 CC ⊗ . The following result gives the 

parameters of the direct product of two linear 
codes.

Proposition 24. (van Lint, 1973) Let 1C and 
2C be linear codes with parameters ],,[ 111 dkn  

and ],,[ 222 dkn , respectively. Then, 21 CC ⊗  
has parameters ],,[ 212121 ddkknn .

In this subsection, we aim to show that the 
product code of two LCD codes is again an 
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LCD code. To this end, we need to describe 
the generator matrix of the direct product of 
two linear codes.

Lemma 25. (van Lint, 1973, p. 38) Let 1G  
and 2G  be generator matrices of 1C and 2C  
respectively. Then, 21 GG ⊗ is a generator 
matrix of 21 CC ⊗ .

Now, we are ready to prove the desired result 
in this subsection.

Theorem 26. If 1C and 2C are LCD codes, then 
21 CC ⊗ is also LCD.

Proof. Let 1G  and 2G , respectively, be 
generator matrices of 1C  and 2C . Then, 

21 GGG ⊗=  generates 21 CC ⊗  by Lemma 25. 
We show that GGT  is invertible. By Broxson 
(2006, Theorem 5 and Theorem 7), we have

( )( )
( )( )

.2211

2121

2121

TT

TT

TT

GGGG

GGGG

GGGGGG

⊗=

⊗⊗=

⊗⊗=

Since 1C  and 2C  are LCD codes, TGG 11  and 
TGG 22 are both nonsingular by Theorem 

1. By Broxson (2006, Corollary 10), GGT is 
nonsingular. Thus, 21 CC ⊗  is an LCD code 
by Theorem 1. 

■

To illustrate this construction, we look at the 
following example.

Example 7. Let 1C be the binary linear code 

generated by 







=

1110
1101

1G  and let 

2C be the binary linear code generated by 









=

111000
000111

2G . By observing that 

22211 IGGGG TT == , then 1C and 2C  are 
binary LCD codes with parameters [4, 2, 2] and 
[6, 2, 3], respectively. The matrix 21 GGG ⊗=  
generates the direct product 21 CC ⊗ , which is 
a binary LCD code with parameters [24, 4, 6].

6.2  Direct Sum

In the preceding subsection, we have seen 
that given an ],,[ 111 dkn  LCD code 1C and an 

],,[ 222 dkn  LCD code 2C , by direct product 
construction, we get an LCD code with 
parameters ],,[ 212121 ddkknn . The product 
code has rate )/()( 2121 nnkk , which is equal 
to the product of the code rates of 1C  and 2C  
In this subsection, we recall another known 
method of construction that is simpler than 
the direct product. This construction gives new 
code with greater rate from two given codes. 

Definition 7. Given an ],[ 11 kn  code 1C and an 
],[ 22 kn  code 2C . Their direct sum 21 CC ⊕  is 

defined by

{ }22112121 |),( CcandCcccCC ∈∈=⊕ .

Remark. If 1C and 2C is linear so is .21 CC ⊕

Lemma 27. (Huffman & Pless, 2003) Let 1G  
and 2G  be generator matrices of the linear 
codes 1C  and 2C , respectively. Then, the 
generator matrix of 21 CC ⊕  is given by 

.
2

1
21 








=⊕

GO
OG

GG

The following corollary is clear from the 
structure of the generator matrix of the direct 
sum of two linear codes given in Lemma 27.

Corollary 28. Given linear codes 1C  and 2C  
with parameters ],,[ 111 dkn  and ],,[ 222 dkn  
respectively. Then, 21 CC ⊕  is a linear 

],,[ 2121 dkknn ++  code where }.,min{ 21 ddd =

GGT
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Theorem 29. If 1C and 2C  are LCD codes, 
then the direct sum 21 CC ⊕  is also an LCD 
code.

Proof. By Lemma 27, the generator matrix of 
21 CC ⊕ is given by









=⊕=

2

1
21 GO

OG
GGG .

It suffices to show that GGT is invertible. Now, 

.
22

11

2

1
2

1












=




















=

T

T

T

T
T

GGO
OGG

GO
OG

GO
OG

GG

Note that TGG 11  and TGG 22  are invertible 
matrices since 1G  and 2G are generator 
matrices of LCD codes. Thus, G is invertible 
since the inverse of a block diagonal matrix is 
another block diagonal matrix, composed of 
the inverses of each block. The desired result 
follows from Theorem 1. 

						      ■

The rate of the direct sum is )/()( 2121 nnkk ++
, which is greater than ),/()( 2121 nnkk  the rate 
of the product code. However, the minimum 
distance of the direct sum of two codes does 
not exceed the minimum distance of either of 
the given codes.

We note that Theorem 26 and Theorem 29 
were also proved in Carlet and Guilley (2015). 
However, in this paper, we obtain these results 
using different proofs (i.e., using Massey’s 
(1992) characterization of LCD codes).

6.3  The Plotkin Sum or (u|u|+|v)
Construction

Two codes of the same length can be combined 

to form a third code of twice the length in a 
way similar to the direct sum construction. 
Here, we recall the (u|u  +  v) construction 
also known as the Plotkin sum. We give a 
counterexample to show that the Plotkin sum 
of two LCD codes is not always an LCD code. 
We also mention a result by Carlet and Guilley 
(2015), which gives sufficient conditions for 
the Plotkin sum of two linear codes to be LCD.

Definition 8. Let 1C  and 2C  be linear codes 
over qF  with parameters ],,[ 111 dkn and

],,[ 222 dkn , respectively. The Plotkin sum of 1C
and 2C  or the (u|u + v) construction produces 
the code { }21,|,( CvCuvuuC ∈∈+= .

Proposition 30. (Pellikaan et al., 2015, 
Theorem 2.1.45) Let iC be an ],,[ ii dkn
code with generator matrix iG  for 2,1=i
. Then, the Plotkin sum of 1C and 2C is a 

}],2min{,,2[ 2121 ddkkn + }]  code with generator 

matrix 








2

11
GO
GG

.

In the preceding subsections, we have just 
shown that the direct product and the direct 
sum of two LCD codes are again LCD codes. 
On the contrary, the Plotkin sum of two LCD 
codes does not in every case give rise to a new 
LCD code. Consider the following example. 

Example 8. Let 1C  be the binary linear code 

generated by 







=

1110
1101

1G  and let 

.12
⊥= CC  It was shown in Example 7 that 1C  

is a [6, 2, 3] binary LCD code. Then 2C is also 
a binary LCD code with parameters [6, 4, 2] 

that is generated by



















=

000011
000101
011000
101000

2G

GGT
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Let C be the code obtained by taking the 
Plotkin sum of 1C and 2C . Then by Proposition 
30, the matrix



























=









=

000011000000
000101000000
011000000000
101000000000
111000111000
000111000111

2

11
GO
GG

G

is a generator matrix of C. However, det(GGT) 
= 0 over 2F . This implies that the binary 
linear code C is not an LCD code by Corollary 
3 though both 1C and 2C are LCD codes.

Example 8 serves as a counterexample to show 
that the Plotkin sum of two LCD codes is not 
necessarily an LCD code. Despite this result, 
we can still employ the (u|u + v) construction 
to construct LCD codes. Carlet and Guilley 
(2015) gave an interesting construction of 
LCD codes using the Plotkin sum. Given linear 
codes 1C  and 2C , they gave a sufficient double 
condition for the Plotkin sum of 1C and 2C  to 
be LCD. We state this result as follows.

Proposition 31. (Carlet & Guilley, 2015) If 
1C and 2C  are linear codes with parameters 

[ ]11,, dkn  and [ ]22,, dkn , respectively, and if 
⊥∩ 12 CC   is LCD (i.e., ⊥+ 21 CC  is LCD) and 

}0{21 =∩ ⊥CC , then the Plotkin sum of 1C  and 
2C  is an LCD code.

In some cases, the construction specified in 
Proposition 31 gives rise to an LCD code with 
better rate (Carlet & Guilley, 2015).

7.  SUMMARY AND 
RECOMMENDATION

This paper is devoted to construction of LCD 
codes. Constructions based on orthogonal/row-
orthogonal matrices and generator matrices of 
self-dual codes binary Hamming codes were 
presented. Optimal binary LCD codes were 
obtained from the construction based on the 
Hamming matrix. We also proved that the 
permutation equivalence of codes preserves 
the property of being LCD and that the direct 
sum and direct product of two LCD codes are 
also LCD codes. 
It is worthwhile to consider other known 
linear codes to construct LCD codes with good 
parameters. It would be interesting to present 
a systematic construction of row-orthogonal 
matrices that will yield an LCD code with high 
rate and large minimum distance. It is also 
noteworthy to see codes from designs and codes 
from graphs in the construction of LCD codes.
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