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ABSTRACT

A process is defined as a series of actions or steps taken in order to achieve a
particular end.  Currently, there are a wide range of studies involving different
types of processes ranging from engineering, business, biology, to information
theory.  We are interested in a new type of process study, labelled as Process
Based Strategy Model. The process specifically looks into the success probability
of an n-step process with n independent step probabilities. In our model, there are
exactly n steps that lead to the desired goal X n  a success in step i leads to step i +
1 but a failure in it only leads to goal X i−1  and thereby, a failure in achieving the
end goal X n . We want to maximize the success probabilities of each step in order
to assure the fulfillment of the end goal X n . We accomplish this by developing
theorems that adjust the success probabilities of each process' steps. Another
method of achieving our objective is by replacing a certain step of the process with
one or more steps which results to a higher overall success probability. We also
used some functions which possibly model real-life variables to correspond to
success probabilities. Lastly, we apply the process based strategy model on a
scenario which shows how elements of a population are moved through the process
with the concepts of saturation and cycles.  

Keywords: Process Based Strategy Model, Alternate Step(s) Approach, Success 
Functions, Target Saturation Number

1. INTRODUCTION

A process is defined as a series of actions or
steps taken in order to achieve a particular
end. In real life, especially in the work
place, there are a lot of processes involved
in achieving certain goals that a company,
person or any entity may have. In fact,
there are a wide range of studies involving
different types of processes, applied in
engineering, statistics, biology, computing,

information theory, and the like. This paper
will not talk about any of the processes
involved in these areas. Our interest deals
more with the success probability of an n-
step process with n independent step
probabilities. This model aims to move
objects from an initial step to an end goal
a n d w e n a m e i t a s Process Based
Strategy Model.  In this type of model
there is a weight in the form of a probability
value associated with each step. This value



tells us the chances of success that these
elements will move from one step to the
next and ultimately to the desired goal. In
real life there are already established
processes and have been used repeatedly in
achieving certain desired goals; while some
have just been newly created and are still
being developed as these are continually
used. For example, consider a network
marketing model. This network marketing
model relies on a person convincing another
person to become an agent for their
company while at the same time have the
option to sell their products. The more
people one gets in their company, the
higher his commission will be. If the person
he has convinced also decides to become an
agent by convincing other people to become
agents themselves, he gets a bigger
commission. The end goal is to get as many
people involved under their chain of
command and convince the people under
them to also get more people involved thus
earning an overall increased effect in their
commission. Another example would also
include a sales agent whose goal is to get as
many customers as he can to buy his
product or avail of his service. The starting
point of achieving the sales agent's end goal
would most likely be to 1) build his contact
base, 2) contact all people involved in his
contact base, and 3) convince them to buy
his product or avail of his service. Indeed,
as shown in our previous example, there are
a wide variation of processes involved in
achieving a person or a company's end goal.

For different situations of the process based
strategy model, the approaches and fields
may be different but it follows the same
pattern as that of Figure 1. There can
possibly be n steps that certain elements
will have to take before getting to our
desired goal of X n  . In the illustrated
model, there are exactly n steps that lead to
the desired goal X n  so that a success in
step i leads to step i + 1 but a failure in it
only leads to goal X i−1  and thereby, a

failure in achieving the end goal X n . An

interesting question to ask is this: What can
be done in each step in order to assure the
fulfillment of the end goal X n ?

Figure 1:  Process Based Strategy Model

In this paper, we wish to study and analyze
the process based strategy model so as to
find ways in order to reach the maximum
obtainable end and see how this model will
apply to a given scenario which involves
elements in a population. The goal of the
process based strategy model is to ensure
achieving the maximum results obtainable.
The primary focus is to move as many
objects as possible to the last step of our
model. Having said that, we now try to
answer the following questions in this
paper:

1. How do we increase the efficiency of
the model so that we get the best
possible returns?

2. How do we optimize our model with
limited resources?

3. How can this model be applicable to
real-life situations?

4. Are there ways wherein we will not
be limited to the current set-up of
our model and somehow change
something in the process to get
better overall results? If so, what are
some of the ways that we can do
this?

5. How does our model apply to a
c e r t a i n s c e n a r i o i n v o l v i n g



movements o f e lements in a
population through the model?

Our study is the first of its kind in looking
into the success probability of an n-step
p r o c e s s w i t h n independent s tep
probabilities. This paper will lay a
foundation on dealing with this type of
model with an approach that uses
probabilities. The mathematical theorems
and proofs of this paper are proven to be
solid and can be applied in the future for
real - l i fe appl ications in statist ics ,
economics, industrial engineering, business
processes, and even game theory. Of course,
further research needs to be done in those
areas but the mathematics of this paper
will prove to be very helpful. This paper can
also help managers, strategists, and the
like with guiding principles in creating
strategy models based on processes.

The scope of this paper includes the
following:

1. Provide a clear definition of a
process based strategy model.

2. Develop theorems, with rigorous
mathematical proofs, that determine
ways that can optimize the final
output of our model by way of
adjusting the probability values of
some steps or replacing certain steps
with additional ``smaller" steps, all
done with the consideration of
possible limited resources.

3. Analyze functions which can model
real-life situations of the success
p r o b a b i l i t i e s o f o u r s t e p s
corresponding to a particular
variable.

4. Show how the process based strategy
model can be applied to a certain
scenario involving elements in a
population.

2.  THE PROCESS BASED 
STRATEGY MODEL

In order to clearly describe the process
based strategy model, let us consider an
element E (which may be a person, a
company, or an entity) that is aiming to
reach the intended goal X n  by going
through n successive steps. E achieves only
X i   by going through steps 1, 2,… ,i

successfully while failing to go through the
rest of the steps i+1,…, n . Now, for every
i=1,2,…,n  we associate the probability of
success ( s i ) with step i (Si) . This tells us
that the probability of success for our
desired end output X n  is given by
 

        xn=∏
i=1

n

si                     (1)

With this equation, we assume that the
probability of success of the events
pertaining to all n steps are pairwise
independent. The probability that the goal
will fail on the first step is represented by

x0=1−s1

The probability for a result X j , where j is
not equal to 0 or n, is the complement of the
probability of step i + 1 times the product of
the probabilities of steps 1 to i. Thus, the
p r o b a b i l i t y o f r e a c h i n g g o a l X i is
represented by

xi=(1−si+1)∏
j=1

i

s j  where j=1,2,…,n−1 .

Our interest is in Equation (1) with the aim
of increasing its value by adjusting the
different success probabilities ( s i ) where
i=1,…,n . W e a d j u s t t h e s u c c e s s
probabilities of the steps in our model that
will have a direct impact on (1) and develop
theorems that will help us in achieving our
objective.



Theorem 1.  If (s1, s2,…, sn) is the sequence 
of independent step probabilities in an n-
step process, then the success probability xn
of the desired output X n  satisfies

an−1b≤xn≤ab
n−1

where 
  

a=min {s1, s2,…, sn}
b=max {s1,s2,…, sn} .

Proof. The value of xn  is given by

xn=∏
i=1

n

si

with 0≤si≤1  for all i=1,2,…,n . If we let
a=min {s1, s2,…, sn}  and
b=max {s1,s2,…, sn}  then we have,

xn=s1 s2⋯a⋯b⋯sn .

but s i≥a  for all i=1,2,…,n . Thus, we 
have

an−1b≤xn

and also at the same time we have s i≤b
for all i=1,2,…,n . Thus, we have

xn≤b
n−1a

and therefore, we have the inequality

an−1b≤xn≤ab
n−1 .



Corollary 1.1 I f (s1, s2,…, sn)  i s the
sequence of independent step probabilities
in an n-step process, then the success
probability xn  of the desired output X n

satisfies

an≤xn≤a

where a=min {s1, s2,…, sn} .

Proof.  From Theorem 1 we have

an−1b≤xn

but an≤an−1b . Therefore, we have

an≤xn .

N o w f o r a n y p a i r , s j , sk  w e h a v e
s j sk≤min {s j , sk } .  Therefore,

xn=∏
i=1

n

si≤min {s1, s2,…, sn}=a .

Thus, we have

an≤xn≤a .



In order to see how the theorems,
corollaries, and algorithms of this section
works, we will look at a hypothetical
scenario below.

A Typical Sales Process Scenario 

In Examples 2.1 to 2.5 below, we consider a
company whose goal is to sell its product to
potential customers. The company does not
rely on above-the-line marketing (this
includes: advertisements, billboards, T.V.
commercials, and social media) but rather
mobilizes a sales force to sell their products.
N o w t h e c o m p a n y h a s c r e a t e d a
standardized four-step process for each
sales agent that they have. The four-step
process is as follows: 1) contact potential
customers through phone calls (given a
specif ied target l ist) , 2) set-up an
appointment with potential customers, 3)
meet the customers face-to-face, and lastly
4) sell the product to customers with the



customer choosing between buying the
product or not. If the last step is successful
then we can say that we have achieved the
desired end goal of the company. Suppose
that the company has been tracking the
success ratios of each sales agent and have
come up with historical averages of the
success rates from one step to the next. The
success probabilities are given below.

1) The probability of successfully
contacting a potential customer from
a specified target list is 5%.

2) The probability of successfully
setting-up an appointment with the
contacted potential customer is 45%.

3) The probability of meeting up the
potential customer whom we have
set-up the appointment is 30%.

4) The probability of presenting and
selling the product to the customer is
22%.

It is assumed that the probabilities of
successes of the events pertaining to all four
steps are pairwise independent. We have a
process based strategy model with n=4
steps where s1= 5%, s2= 45%, s3=  30%,
and s4= 22%.

Example 2.1 An upper bound for xn  is
0.05 since min {s1, s2, s3, s4}=0.05 . In fact,

 
xn=(s1)(s2)(s3)(s4)
=(0.05)(0.45)(0.30)(0.22)
=0.001485

Theorem 2. The increase in xn  as a result
of an increase in a probability value s j by

a n  a m o u n t F ( w i t h =∏
j=1

n

s j−
∏
j=1

n

s j

sk

F +
∏
j=1

n

s j

si

F −
∏
j=1

n

s j

sk si

F 2) i s
maximized when

s j=min {s1, s2,…, sn} .

Proof.  We intend to get the highest possible
value of the new product

xnew=s1 s2⋯(s j+F)⋯sn
      =s1⋯s j−1 s j s j+1⋯sn+s1⋯s j−1 F s j+1⋯sn

  =∏
i=1

n

si+
∏
i=1

n

si

s j
F

  =xn+
xn
s j
F

The last expression is maximized when we
choose s j=min {s1,… , sn} .



Example 2.2 Suppose we can increase the
probability of success of any step in our
given model by an additive constant of
F =0.05 . Which step in our model, will

give us the biggest overall increase for xn ?

By Theorem 2, increasing the probability of
success of step 1 will give us the highest
o v e r a l l i n c r e a s e f o r xn because the
probability of success of step 1 is the lowest
amongst all the other steps.

If we increase s1  by 0.05 then the new
probability of success for s1  denoted by
s1new  is now equal to$0.10. Thus,

xnew=(0.10)(0.45)(0.30)(0.22)=0.00297 .

If we compare this to the other scenarios
where we increase the probability of success
of the other steps by 0.05 instead we can
see that it will yield a different and lower
result.

Scenar
io

s1 s2 s3 s4 xnew

1 0.05 0.50 0.30 0.22 0.001650

2 0.05 0.45 0.35 0.22 0.001733

3 0.05 0.45 0.30 0.27 0.001823



Theorem 3. An increase s i+F  resulting to
a decrease sk−F  produces the highest
increase in the desired output xnew  and is
a c h i e v e d w h e n s i=min{s1, s2,…, sn} and
sk=max {s1, s2,… , sn} .

Proof.  We note here that s i+F≤1  and
sk−F≥0 .   To maintain our assumptions

that these are probability values associated
with the success in steps i a n d k,
respectively:

xnew=s1s2⋯(si+F )⋯(sk – F )⋯sn

      =s1 s2⋯(s i sk−F si+F sk−F
2)⋯sn

      =∏
j=1

n

s j−
∏
j=1

n

s j

sk

F +
∏
j=1

n

s j

si

F −
∏
j=1

n

s j

sk si

F 2

      =xn–
xn
sk
F+
xn
s i
F –
xn
sk si

F2

      =[xn+xnsi F ]−Fsk [ xn+xns i F ]
      =[xn+xnsi F ][1– Fsk ] .

 We see that xnew  is maximized when we
choose 

s i=min{s1, s2,…, sn}  and
sk=max {s1, s2,… , sn} .



Example 2.3 Suppose we can increase the
probability of success in any of our steps in
our model by an amount of 0.03. However,
this would lead to a decrease of the
probability of success by the same amount
of another step in our model. What two
combination of steps in our model will give
us the biggest overall increase for xn ?

By Theorem 3, increasing the probability of
success of step 1 by a factor of 0.03 and
decreasing the probability of success of step
2 by a factor of 0.03 will yield the highest
overall increase for xn . If we increase s1

by 0.03 then the new probability of success
for s1 denoted by s1new  is now equal to 0.08
and if we decrease s2  by 0.03 then the new
probability of success for s2  denoted by
s2new  i s now equal to 0 .42 . Thus ,
xnew=(0.08)(0.42)(0.30)(0.22)=0.002218 .

 Comparing this to the other possible
combinations of increase and decrease of
the probability of successes by 0.03 for any
two distinct step shows that increase s1

and decreasing s2  will yield the highest

probability of success for xn .  The other
combinations can be seen in Table 1.

Table 1. Some Combinations of Success
Probabilities

Scenar
io

s1 s2 s3 s4 xnew

1 8% 45% 27% 22% 0.2138%

2 8% 45% 30% 19% 0.2052%

3 5% 48% 27% 22% 0.1426%

4 5% 48% 30% 19% 0.1368%

5 5% 45% 33% 19% 0.1411%

6 2% 48% 30% 22% 0.0634%

7 2% 45% 33% 22% 0.0653%

8 2% 45% 30% 25% 0.0657%

9 2% 42% 33% 22% 0.1525%

10 2% 42% 30% 25% 0.1575%

11 2% 45% 27% 25% 0.1519%

Remark 1.  Suppose we can multiply a 
factor F to any of the s i 's where
i=1,2,…,n , 0≤si≤1 ,  F≤1 and satisfies 
the inequalities:  F(max(s1, s2,…, sn))≤1  
and F(min(s1, s2,…, sn))≤1  where the new 
value of s i  is denoted by s inew=s i(F) . Then
the new probability of success for our 
desired output X n , which is denoted by
xnew , will have the same increase in value 



regardless of which s i  we multiply the 
factor F to.

     In order to see this, choose any s i  such
that s i  will be replaced by F(si)  thus

xn=∏
j=1

n

s j  will now be

xnew=s1 s2⋯si(F)⋯sn=xn(F) .

for every s i  where  i=1,2,…,n .

In the following discussions we use the
Arithmetic Mean - Geometric Mean
inequality (AM-GM inequality) which is
stated as follows:

AM-GM inequality

If x1, x2,…, xn≥0 , then

x1+x2+⋯+xn
n

≥ n√x1 x2⋯xn

with equality if and only if
 x1=x2=⋯=xn .

The reader may find the proof of the above
in any standard textbooks (Herman,
Kucera, Simsa, and Dilcher, 2000).

In the following theorem, we factor in the
possibility of having limited resources in
undergoing through a process set to fulfill a
certain goal.

Theorem 4. Suppose we can increase and
decrease the probability values of each s j

by certain values such that the following
equations are satisfied:

∑
j=1

n

s j=W =∑
j=1

n

s jnew

w h e r e s jnew  are now the new success
probability values of each step depending

whether they had an increase or decrease of
probability values.

The new probability of success for our
desired output X n  which will is denoted by

xnew , will have the biggest increase if we

choose to make each s j=
W
n

.

Proof. S u p p o s e w e h a v e s j 's where

0≤si≤1  for all i=1, 2,… ,n

 ∑
j=1

n

s j=W  

where W is a constant.

There are an infinite number of possibilities
for the s j 's which will satisfy the equation
above. By the AM-GM inequality we have:

∑
j=1

n

s j

n
≥n√s1 s2⋯sn

W
n

≥
n√∏j=1

n

s j

(W
n )

n

≥∏
j=1

n

s j .

If we have s1=s2=…=sn , by the AM-GM
inequality, we have 

(W
n )

n

=∏
j=1

n

s j .

Thus, all other combinations of the si 's tell
us that:

∏
j=1

n

s j<(W
n )

n

.

However,



∏
j=1

n

s j=(si )
n
.

Thus we have,

(si)
n=(W

n )
n

si=W n



Example 2.4 Suppose we can reallocate
the probabilities of our given model such
that the sum of the new probabilities of
success for all four steps will still be equal
to

∑
i=1

4

si=0.05+0.45+0.30+0.22=1.02 .

What would be the new values of the
probability of success now associated for
each step so that it will give us the highest
possible chance of success for X n ?

By Theorem 4, the probability of success
that should now be associated for each step
si  should be 0.255 because we have

W =1.02  and n=4 thus

 
W
n

=1.02
4

=0.255 ,

xn=(s1new)(s2new)(s3new)(s4new)
=(0.255)(0.255)(0.255)(0.255)
=0.004228

.

All of our above basic theorems show us
fundamental principles when dealing with a
process based strategy model. Based on the
above theorems, we have created an
algorithm which will be very helpful for
maximizing and optimizing our process
based strategy model. This can be seen in
Algorithm 1 which is one of the main
results of this paper.

Algorithm 1

Suppose we can increase ∑
j=1

n

s j=W  where

0≤W ≤n   by a total of F by choosing to
increase any combination of the s j 's such
that

∑ j=1

n
s jnew=W +F  

where 0≤F ≤n−W .

Then the new probability of success for our
desired output X n  which will be denoted

by xnew  will have the biggest increase if we
choose to follow the following step-by-step
procedure:

Step 1. List the probabilities s1, s2,… , sn  in

non-decreasing order, say u1,u2,…,un .
Thus,

u1≤u2≤…un   and  ∑
i=1

n

ui=W .

Step 2. If nun≤W +F , we let

 ui '=
W +F

n
  

be the new value of ui , for i=1, 2,… ,n . 

Otherwise, go to Step 3.

Step 3. W e h a v e nun>W +F . W e
determine the largest integer l satisfying

lul+ ∑
i=l+1n

ui≤W +F .

Clearly, l exists and 1≤l≤n . We update
the values of u1,u2,…,μl  to



u j '=
W +F− ∑

i=l+1

n

ui

l
,   j=1,2,… ,l .

On the other hand, for each i>l , we retain
the value of ui .

Rationale for Algorithm 1

Step 1 prepares us into finding the
appropriate changes in the values of all
probability values si , i=1,2,…,n . We aim
to attain the highest possible obtainable
value for xnew  by changing all or some of

t h e ui 's. Our goal is to reach the

∑
j=1

n

u j '=W +F  by taking actions based on

the value nun  (increasing all of ui  to its

current maximum values of n ) a s
compared to W +F . This leads to two
c a s e s : nun≤W +F  ( d o s t e p 2 ) a n d

nun>W +F  (do step 3).
   Suppose we encounter the case
nun≤W +F . Then by Theorem 4, the

highest attainable value for xn  in this

situation is to  each set ui '  to 

 ui '=
W +F

n
 (step 2). Now, if nun>W +F

we only have to choose some u i  to change

in order to achieve the ∑
j=1

n

u j '=W +F . By

applying Theorem 2, we should choose (the
lower values) u1,u2,…,μl wi th l  as the
largest integer satisfying

lul+ ∑
i=l+1

n

ui≤W +F .

W e t h e n r e m o v e t h e e x c e s s
nun−(W +F )=T >0  and we do this by

retaining the last (n−l )  higher values
ul+1 ,…,un  and changing the first l  lower

values u1,…,ul  so that 

∑
j ' =1

l '

u j '+ ∑
j=l+1

n

u j=W +F .

Taking M =W +F− ∑
i=l+1

n

ui , we are left to

determine the values of u j ' , j '=1,…, l  to

obtain M  and maximize xn . By way of

choosing the integer l  and applying
T h e o r e m 4 , w e d e f i n e

u j '=
M
l

, j '=1,2,…, l ' . (step 3).

Example 2.5 In our given process based

strategy model we have ∑
i=1

4

si=1.02 .

Suppose we can increase the sum by a
constant value of 0.50 by increasing any
combination of the success probabilities of
our steps. What combination of increase
should we choose in order to give us the

highest value for xn=∏
i=1

4

si ?

We apply Algorithm 1 to our problem above.
According to Algorithm 1, our first step is to
list the probabilities s1, s2,… , sn  in non-
d e c r e a s i n g o r d e r , t h u s
{s1, s2, s3, s4}={0.05,0.45,0.30,0.22}  w i l l
now be listed as

{u1,u2,u3,u4}={0.05,0.22,0.30,0.45} .

Clearly, ∑
i=1

4

ui=1.02 . Since we have

 4 (u4)=4 (0.45)=1.8>1.02
then according to Algorithm 1 we determine
t h e l a r g e s t i n t e g e r l  satisfying

lul+ ∑
i=l+1

n

ui≤W +F  as shown in the Table

2.



Table 2. Summary Computations

l ul lul ∑
i=l

n

ui

( =A )

l ul+ ∑
i=l+1

n

ui

(=B)

A+B≤
W +F ?

1 0.05 0.05 0.97 1.02 YES

2 0.22 0.44 0.75 1.19 YES

3 0.30 0.9 0.45 1.35 YES

4 0.45 1.8 - - -

T h e l a r g e s t i n t e g e r l  satisfying

lul+ ∑
i=l+1

n

ui≤W +F   is l=3 . Thus, the

new value for u1,u2,u3  is now given by the
equation

u j '=
W +F − ∑

i=l+1

n

ui

l

=1.02+0.50−0.45
3

=107
300

, j=1,2,3 .

For u4  we retain its original value of 0.45.
The combination of increase that will give
us the highest value for xn  is given by

u1=
107
300

,u2=
107
300

,u3=
107
300

,  a n d

u4=0.45 .

Thus

xnew=(107
300 ) (0.45)(107

300 )(107
300 )=0.02042 .

3.  ALTERNATE STEP(S) 
APPROACH

In real life situations there will be cases
wherein a step in our model will reach a
ceiling in terms of its success probability.
No matter how hard you try to increase the

training and efficiency of a certain step, the
act becomes too big of a step to facilitate the
movement in the model. A proposed
solution to that challenge is to create one or
more alternative step(s) to facilitate the
movement of elements in our model.

Figure 2. Alternate Step(s) Approach

The probability of success for our desired
output X n  is xn , which is equal to the
product of the probability of success for all
the steps

xn=∏
j=1

n

si . 

However, with the given alternative step(s)
in our model replacing si  the probability of

success for our desired output (xn)  is now
given by the following equation:

xn=∏
v=1

i−1

sv∏
j=1

m

c j ∏
w=i+1

n

sw

where the c j ' s j=1,2,... ,m  are the
probability of success for the alternate
step(s) replacing step S i . Our interest in
this section is the product of the success
probabilities of the alternate steps
replacing si :

∏
j=1

m

c j



We want to maximize its value and make
sure the value is equal to or greater than
si .

Case 1: Suppose we can find an alternate
step to S i  and replace it with a different

step to achieve S i+1 . This alternate step is

denoted as C 1 . The value c1  should

exceed si  and a parameter is now set as to

how larger c1  ought to be compared to si .

Let F  be the desired incremental increase
of probability from si . We want c1≥si+F ,

0%≤c1≤100% . Thus the possible target

values for c1  can be seen with the graph
below (Figure 3).

In choosing c1  to be anywhere in the

interval : [si+F ,100%]  we definitely
increase the chances of moving forward to
step S i+1  and xn  overall.

Figure 3. Case 1

Example 3.1. Suppose we have a three-
step process based strategy model with
s1=0.40,s2=0.30  and s3=0.25 , and let

us say that the proponent of the model is
dissatisfied with the overall success ratio of
the entire model and specifically he finds
the success ratio of step 3 s3=0.25  to be
very low and want to increase it by a factor
of at least 0.10. If he can find an alternate
step, let us say c1  that will replace step 3

then c1=[35% ,100%] .

Case 2: Now we look to the case wherein
we can find two consecutive alternate steps
to replace S i  to move forward to step S i+1 .
These two consecutive alternate steps are
denoted by C 1  and C 2 . The product of the

probability values of C 1  and C 2 , given by

c1 c2  should exceed si  by an incremental

f a c t o r F . c1c2≥si+F  w h e r e

0 ≤c1≤100% ,0%≤c2≤100%  a n d

0%≤c1c2≤100% .

The possible target values now for c2  can
be seen with the graph below (Figure 4).

Figure 4. Case 2

Example 3.2 Suppose we have a four-step
process based strategy model for a certain
o r g a n i z a t i o n w i t h
s1=0.50,s2=0.60,s3=0.75  and s4=0.45 .

The owner wishes to improve the overall
success ratio specifically by targeting to
increase the step with the lowest success
probability, which is s4 . Let us say that the
owner wants to improve the chances of
success by a factor of 0.15 by adding to
alternate steps, namely c1  a n d c2  in

replacement of s4 . Suppose the first
alternate step has a success probability now
o f c1=0.90 . What will be the required

success probability now of c2  given that c1

is now at 0.90? 

We use the inequality that we derived from
Case 2:

c1 c2≥si+F
0.90c2≥0.45+0.15



c2≥
0.60
0.90

=0.6667

Thus c2  should be greater than 0.6667 in
order for us to achieve our goal to replace
the chances of success for step 4 and at
least be greater than 0.15.

In general we are trying to find an m
consecutive alternate step(s) to replace S i

to move on to S i+1  that should satisfy the
inequality below.

∏
j=1

m

c j≥si+F  Where 0≤c j≤1        (2)

for all i .                                 

There are an infinite number of possible
combinations that can satisfy (2). If we can
just choose any combination then we should
go for the combination that will give us a
product that is as close to 100% as possible.
However, in real-life, reaching that target
requires too much effort if not impossibility.
The higher we go in our success rate the
more time or effort is required to achieve
that.

Satisfying the equation of the inequality (2)
should be the minimum required effort that
we want to achieve. The equation is given
below:

∏
j=1

m

c j=si+F .

This inequality will still yield infinite
possible combinations of ci 's that will
satisfy the equation above. However, the
sum of the combinations of the ci 's will not
all be the same:

∑
j=1

m

c j .

Our goal is to find the combination that will
satisfy the above equation and keep the
summation at a minimum. The reason we
want to keep the summation at a minimum
is because the higher the summation is, this
could possibly imply more time or effort on
the part of the one who designs the model.

Theorem 5. The combinations of c j 's that
will give us the smallest possible sum for

∑
j=1

m

c j  t h a t s a t i s f i e s t h e e q u a t i o n

∏
j=1

m

c j=si+F  is given by

c j=
n√si+F , for all j=1,… ,n .

Proof.  Let c j=
n√si+F  for all i  by the AM-

GM inequality we have

∑ j=1

n
c j

n
≥

n√∏j=1

n

c j

c1+…+cn

n
≥

n√∏j=1

n
n√si+F

c1+…+cn

n
≥

n√(n√si+F )
n

c1+…+cn

n
≥n√si+F

but c1=c2=⋯=cn . According to the AM-
GM inequality

c1+…+cn

n
=n√si+F .

Thus, c j=
n√si+F  gives us the smallest

possible combination because all other
combinations gives us

∑
j=1

n

c j

n
>n√si+F .





Example 3.3. Referring to Example 3.2, let 
us say the owner wants to improve the 
chances of success of s4  by 0.15 by 
replacing it with two alternate steps. Thus, 
we want to satisfy the equation c1c2=0.60
at the minimum. What combination of the 
values of c1  and c2 will satisfy our 

equation but at the same time keep c1+c2  
as small as possible?

By Theorem 5, we have
c1=c2=√0.60=0.7746. c1+c2=1.5492 . 

Comparing this to Example 3.2 where we 
have c1=0.90  and c2=0.6667 we have

0.90+0.6667=1.5667 .

4. SUCCESS FUNCTIONS 
(PROBABILITY MODELS)

So far we have discussed and analyzed
increasing or decreasing the success
probabilities of the S i 's in terms of
probabilities. In real life situations,
however, it will be very difficult to quantify
how much added or subtracted probabilities
we can attribute to the probability of a
specific step. Thus, in this section, we will
look into using functions which can  convert
the variable (i.e. time, money, etc.) of our
choice to probabilities to correspond to
success probabilities of our steps so that we
can apply the theorems we developed in the
previous section.

We will look into four basic functions:
Reverse Exponential, Linear, SQRT, and
the Gompertz Model.

Reverse Exponential Function

f (t)=1−e
−t
v , where 0<v<+∞ , 0≤t<+∞

Linear Function

f (t)= t
v

 where 0<v<+∞ , 0≤t<v  .

SQRT Function

f (t)=√ t
v
+1−1

√ t
v
+1

 

where  0<v<+∞ ,  0≤t<+∞ .

Gompertz Function

f (t)=1−e(e
−m
σ −e

t−m
σ )

where 0≤m<+∞ , 0<σ<+∞ , 0<t<+∞  

All functions satisfy the fol lowing
properties:

1. limt→∞ f (t)=1
2. f (0)=0
3. f (t)  is a monotone, non- decreasing

function, that is, f (a)< f (b)  for
every a<b .

These four functions represent the chances
of success for a certain step S i  in our
process based strategy model as a function
of a variable t  (possibly representing time,
money, or quantity of resource).

The chances of success in a linear function
(Figure 5) increase proportionally as t
increases. We note that 100% success is
achieved when t=v .

Figure 5: Linear Function



The reverse exponential (Figure 6) and 
SQRT function's (Figure 7) chances of 
success increases rapidly but slows down as
t  increases.

Figure 7: SQRT Function

The Gompertz function (Figure 8) is
characterized by a slow increase in the
probability of success but increases rapidly
as it approaches its inflection point. After it
has passed its inflection point, it slows
down as t  increases.

Figure 8: Gompertz Function

All four functions gives us a realistic model
of how the probabilities of certain steps are
determined as a function of a variable t. We
have the basic linear function which tells us
that the probability of success attributed to
a certain step increases directly with our
variable t. The reverse exponential and
SQRT function tells us that as we create a
step to achieve a certain end goal, the first
few increments of our variable t will give us
a high return immediately but as t
increases further then it gets harder and
harder to reach the maximum of 100%.
Lastly, the Gompertz function tells us that
the first few increments of the variable t
has a slow increase in the chances of
success and increases rapidly only at its
inflection point but then slows down as it
approaches the 100% mark.

In order to see how these functions applies
to the process based strategy model, we
consider a hypothetical scenario below.

School Organization Recruitment 
Process

For the next six examples, we consider a
school organization model. A school
organization usually aims to reach out as
many students as possible to join and be
part of the organization. The organization
relies on its leaders to share their vision
and values with the students and let the
students decide whether they will join and
be part of the organization. The students in
turn decide to become active members and
promote its vision and values as well. Let
us say that an organization have a four-step
process to get as many students as possible
involved. The process starts with 1) the
school organization conducts an annual
recruitment week to get more sign-ups for
membership from a given target population;
2) next step is to contact all students who
signed-up and gather them for a general
assembly; 3) after the general assembly, the
leaders observe the students who attended
the event for a couple of months to see who
will be active members; 4) from the pool of



active members, the current leaders of the
organization now decide and ask who
among the active members wants to join to
become the next batch of leaders. The
school organization has been tracking the
historical success probabilities of the
organization. For each step, the probability
of success from one step to the next are
given below.

1.  The probability of getting sign-ups
after promoting heavily during the
annual recruitment week is at 8%.

2.  The probability of getting getting
all the students who signed-up for
membership to attend the general
assembly is 50%.

3.  The probability of the members
who attended the general assembly
to become active throughout the
whole school year is 25%.

4. The probability of a one-year active
member become a leader for the
organization is 20%.

We assume that the probabilities of success
of the events pertaining to all four steps are
pairwise independent. We now have a
process based strategy model with n=4
s t e p s , s1=8 % , s2=50 % , s3=25 %,

s4=20 % . xn  = (8%)(50%)(25%)(20%) =
0.2%

Example 4.1 Assume that step 2 in our
given example's model follows a reverse

exponential function where f (t)=1−e
−t
50

and 0≤t<∞ . Find the value of t given that
s2=0.50 .

f (t)=1−e
−t
50

0.5=1−e
−t
50

t=34.66

In this example, the reason step 2 have had
a success probability of s2=50  is because
there had been an allocation 34.66 of the

variable t in trying to improve step 2's
success probability. Again, the variable t
can represent any real-life resources in this
section.

Example 4.2 Assume that the probability
of success of step 1 follows a linear function

where f (t)= t
125

 and 0≤t≤125 . Thus

based on our function for step 1, 
t

125
=8% ,

t=10 . If we can add t=5  to our linear
function for step 1, then what would now be
the success probability for step 1?  Since
t=10  in our current function,, and we will
be adding t=5  then the new t will now be
equal to 15. Thus based on our linear

function we have f (15)= 15
125

=0.12 .

Example 4.3  Suppose step 3 in our process
based strategy model follows a SQRT
function where

f (t)=√ t
10

+1−1

√ t
10

+1

 

where 0≤t<+∞ . We want to increase the
chances of success for step 3 from its
current success rate of 0.25 to 0.50. What is
the incremental t that we should add to our
SQRT function so that we will achieve
s3=0.50 ?

With s3  currently being equal to 0.25 we
solve for t.

f (t)=√ t
10

+1−1

√ t
10

+1



0.25=√ t
10

+1−1

√ t
10

+1

 

t=70
9

Now we solve for t for our desired s3  which
is 0.50.

f (t)=√ t
10

+1−1

√ t
10

+1

 

0.50=√ t
10

+1−1

√ t
10

+1

t=30

Since t=30  when s3=0.50  and t=70
9

w h e n s3=0.25  t h e n t h e r e q u i r e d
incremental t to achieve 0.50 is

 tinc=30−70
9

=200
9

=22.22 .

For Example 4.3, the goal is to increase the
overall success probability of step 3 from its
current success probability of  0.25  to
0.50 . Assuming that step 3 follows a SQRT
function then in order to do that, an
additional of t=22.22   must be added to
achieve the  0.50  success probability.

Example 4.4  Assume that step 4 follows a
G o m p e r t z f u n c t i o n w h e r e

f (t)=1−e(e
−80
20 −e

t−80
20 )   where 0≤t<+∞  . If

we can add an increment of t=20   to our
Gompertz function to increase the chances
of success for step 4, then what will be the
overall effect of this change to  xn  ?

Given that s4=0.20   then we solve for t
knowing that step 4 follows a Gompertz
function.

f (t)=1−e(e
−80
20 −e

t−80
20 )

0.20=1−e(e
−80
20 −e

t−80
20 )

t=51.58

Thus if we add an increment of t=20  to 
our Gompertz function we now have
tnew=71.58 . The new success probability 

now for s4  is computed using our Gomperz 
function.

f (71.58)=1−e(e
−80
20 −e

71.58−80
20 )

f (71.58)=0.4717

Therefore, the new value for xn  now 

denoted by xnew  = (0.08)(0.50)(0.25)(0.4717)
= 0.004717.

For this example, an additional of t = 20
was allocated to improve the chances of
success of step 4 which follows a Gompertz
model. That resulted to the increase of the
success probability of step 4 to 0.4717 which
resulted to an overall increase of the
p r o c e s s b a s e d s t r a t e g y m o d e l t o
xnew=(0.08)(0.50)(0.25)(0.4717)
=0.004717

.

Example 4.6 Suppose we want to increase
the overall success probability xn  to 0.0225

by increasing the chances of success for s1 .
How much incremental (t) is needed to be
added to t assuming that step 1 assumes a
reverse exponentia l funct ion with

f (t)=1−e
−t
50  where 0≤t<∞ .

First we solve for the target probability of
success f o r s1  in order to achieve

xn=0.0225 .



0.0225=(s1)(0.50)(0.25)(0.20)
s1=0.90

Our target for s1  is to increase it to 0.90.

Currently s1=0.08  thus we solve for t
given this current chance of success.

f (t)=1−e
−t
50

0.08=1−e
−t
50

t=4.17

Our target success ratio for s1  is 0.90 thus 
we solve for t required to achieve this goal.

f (t)=1−e
−t
50

0.90=1−e
−t
50

t=115.13

Thus to achieve a 0.90 success ratio for s1

we need to a reach t=115.13 , currently we
h a v e t=4.17  thus the incremental t
required to achieve 0.90 is t=110.96 .

In this last example, the problem started
with the interest of improving the overall
success probability of the model. The goal is
to increase xn  to 0.0225 by increasing the
chances of success of step 1 alone. In order
to get xn  to 0.0225 s1  should be increased

to 0.90. However in order to increase s1  to

0.90 an allocation of t=110.96  must be
made first to Step 1 in order to improve its
success probability.

5.  APPLICATION OF THE 
PROCESS BASED STRATEGY 
MODEL

So far our focus has been on our process
based strategy model and how to improve it
by increasing success probabilities on
certain steps in the model or by providing
an alternative step better than the current

ones. Now we will see how this model
applies in a specific scenario involving
elements in a population. Our aim, after all
is to move the elements of our population
through our model and achieve its desired
end goal.

Single Population Saturation

This scenario applies our process based
strategy model to a single population with
N  elements. Our aim is to saturate the

entire population with our model. By the
term saturate, we mean that we want a
certain percentage of the population to
achieve our end goal in our process based
strategy model which is the last step of the
model. Our assumption in this scenario is
that all elements of that population will be
subject to the same probability success rate
of each step in our model. Our overall
probability success rate in our process
based strategy model is given by

xn=∏
j=1

n

si .

One of our main aims is to compute how
many cycles should happen before we
saturate the entire population. By cycle, we
mean that we subject a certain number of
elements of the population to our process
based strategy model and see which of the
elements or how many of them successfully
achieves the last step of the process based
strategy model. Given the nature of
probabilities, the number of cycles will
reach an infinite number of steps to ensure
that 100% of all the elements of the
population achieve the end goal of our
model. Thus we need to set a factor C which
is a percentage of the total population as a
target saturation number (e.g., C=95%).  

Theorem 6. The number of cycles, denoted
by T, that is required before we saturate the
entire population, with a target saturation
number of C and an overall success



probability of xn  given a specific process
based strategy model is given by

T =
ln(1−C )
ln(1−xn)

.

Proof.  Since we have a target population of
N and a target saturation number of C,
then the population will reduce to:

N (1−C )

when the population is saturated. These are
the number of participants who have not
been part of the saturated group. Given
that our overall success ratio for our model
is:

xn=∏
j=1

n

si

The first cycle will leave us with:
N (1−xn)

target number of elements left to saturate
with our model. Thus, the Tth succeeding
cycle will leave us with:

N (1−xn)
T

target number of elements left to saturate
given the Tth succeeding cycle. Thus,
equating this with our target population we
have:

N (1−xn)
T=N (1−C ) .

It is easy using algebra to show that T is
equal to the following:

T =
ln(1−C )
ln(1−xn)

.



Another aim of this section is to compute for
the overall success probability of the model
required to accomplish saturating the
population given that C  is our target
saturation number.

Corollary 6.1 Suppose we want to saturate 
our target population with T number of 
cycles and given that our target saturation 
number is C. The overall success probability
of the model needed to achieve our desired T
and C is:

 xn=1−e
ln(1−C )
T .



6. RECOMMENDATIONS

This paper's main interest is on X n  and
increasing its overall success probability.
Further study may consider computing the
success probabi l i t i es o f X i  w h e r e

i=0,1,2,…,n−1 .

Moreover, the process based strategy model
and its overall success probability xn

assumed that the probability of success of
steps 1 to n are pairwise independent. The
reader may wish to extend the process
based strategy model where the success
probabilities of the steps are dependent.

Many applications in mathematics and
statistics may be applied in our model ( i.e.
bootstrapping, variance estimations, monte-
carlo modelling, etc.). The reader of this
paper may wish to apply these techniques
in mathematics and statistics with the
process based strategy model.
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