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ABSTRACT

Statistics show that the primary cause of morbidity and mortality among Filipinos are pulmonary 
illnesses.  These illnesses could have been prevented if detected and treated early.  With the 
physicians’ medical knowledge and experience, early detection of possible common pulmonary 
diseases can be performed using a stethoscope.  However, with the current physician-to-
population ratio in the country, early detection of respiratory diseases may not be performed 
on most cases especially in the rural areas, causing even benign cases to lead to mortality.  
In this paper, we present the development of a system that classifies lung sound for possible 
pulmonary pathology.  Using an electronic stethoscope, lung sounds were collected from healthy 
individuals and patients with common pulmonary problems for the developed system’s training 
and evaluation.  The collected data were pre-processed in order to remove mechanical and other 
external noises.  Using Support Vector Machine (SVM) for modelling and classification, the 
developed system was able to achieve 100% identification of the normal lung sound from the 
adventitious lung sound, with an average cross-validation performance of 88%.  The developed 
system, however, has low performance in classifying specific lung sounds, that is, normal vs. 
crackle vs. wheeze vs. ronchi, with an average accuracy of 61.42% and an average cross-validation 
performance of 90%.

Keywords: Computer assisted diagnosis, Lung sound enhancement, Lung sound classification, 
Pattern recognition, Electronic stethoscope, Support Vector Machine (SVM)



A COMPUTER ASSISTED DIAGNOSIS SYSTEM	 CORDEL & ILAO 9

BACKGROUND OF THE STUDY 
AND RELATED WORKS

From 2000 to 2005, the top two leading causes 
of morbidity among Filipinos, both in rural 
and urban areas, are classified as respiratory 
diseases (Department of Health, 2013a) and 
three (acute lower respiratory tract infection, 
pneumonia and bronchitis) out of the 10 
leading causes of morbidity are on the same 
classification (Department of Health, 2013b).  
Moreover, from 2000 to 2006, three out of five 
main causes of mortality in the Philippines 
are also respiratory diseases, which are (1) 
pneumonia, (2) tuberculosis, and (3) chronic 
lower respiratory tract infection (Department 
of Health, 2013b).  Early detection of these 
diseases is important for their successful 
treatment.  However, the current doctor-to-
patient ratio of 12:10000 (Samaniego, 2011; 
Duque, 2009) makes early detection of diseases 
very difficult, if not impossible. Recent 
technology now allow physiological signals to 
be conveniently recorded and electronically 
transmitted, allowing more patients early 
access to expert advice, and hence, better 
chances for a successful treatment. 

The stethoscope is a basic but very 
essential equipment used by physicians for 
diagnosis of cardiovascular and pulmonary 
diseases.  Because special training is required 
so it can be used to detect abnormal lung 
sounds, a stethoscope cannot be used in areas 
where there is no doctor.  To make  remote 
diagnosis of lung pathology more convenient 
for the medical doctor, several studies were 
made for sound enhancement and automatic 
identification of pulmonary diseases.

(Varady, 2001; Bai & Lu, 2005; Schmidt, 
Holst-Hansen, Graff, Toft, & Stuijk, 2007; 
Yu, Bilberg, & Voss, 2008; Shah & Papadias, 
2013; Sakai, Kato, Miyahara, & Kiyasu, 2012; 
Emmanouilidou, Patil, West, & Elhilali, 
2012; Himeshima, Yamashita, Matsunaga, 
& Miyahara, 2012; Kaya & Elhilali, 2013; Li, 
Wu, & Du, 2012; Li & Du, 2005).

With the advancement of digital signal 
processing technology, several signal 
enhancements and abnormality detection 
schemes for heart sound signals have been 
suggested (Varady, 2001; Bai & Lu, 2005; 
Schmidt et al., 2007), (Yu et al., 2008) that aids 
in denoising acquired sounds via an electronic 
stethoscope. However, in chest auscultation 
for cardiorespiratory sound analysis, collected 
lung sound signals are accompanied with 
speech, snore, and other external noises, such 
as mechanical noise due to friction between 
the stethoscope and the skin.

Shah and Papadias (2013) were able to 
separate the heart sound and the lung sound 
using the Degenerate Unmixing Estimation 
Technique (DUET).  DUET exploits the 
sparsity of the heart and lung sounds and 
was first used on speech signals on the 
assumption that the speech sources in the 
mixture are disjoint.  This blind source scheme 
for separating the two sound sources, that is 
heart and lung sounds, was able to recover 
the cardiorespiratory sound signals with high 
SNR.  However, their work was focused on 
recovering only the heart sound impaired with 
the lung sound.

Detection of adventitious lung sounds was 
described in Sakai et al. (2012), Emmanouilidou 
et al. (2012) and Himeshima et al. (2012).  In 
Sakai et al. (2012), adventitious lung sounds 
were detected from low-quality auscultation 
signals by extracting lung sound components 
via sparse representation. This scheme works 
on the idea that noise cannot be represented 
sparsely by any base. That is, the system 
extracts the adventitious sounds by identifying 
the non-zero coefficients of the basis functions 
that synthesize the low-quality lung sound.  
This system consistently achieves an average 
precision of 85% regardless of the noise level.  
However, the noise in this problem is assumed 
to be stationary.  

Another approach that detects abnormal 
lung sounds impaired with non-stationary 
noise is presented by Himeshima et al. (2012).  
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This work also considers, in addition to 
spectral content, the duration of the abnormal 
sounds due to the similarity in spectral content 
of both the noise and the adventitious sound, 
especially the wheezes. The work establishes 
that the noise duration and adventitious sound 
duration have different normal and gamma 
distributions.  Using gamma distribution, 
the classification performance reaches up to 
90.0%.

Other previous works (Guntupalli, 
Alapat, Bandi, & Kushnir, 2008; Waitmann, 
Clarkson, Barwise, & King, 2000; Kahya, 
Yeginer, & Bilgic, 2006; Lu & Bahoura, 
2008; Kandaswamy, Kumar, Ramanathan, 
Jayaraman, & Malmurugan, 2004; Riella, 
Nohama, & Maia, 2009) have focused on 
identifying adventitious sounds, particularly 
wheezes and crackles.   These solutions, 
similar to Himeshima et al., (2012), capture 
the spectral and temporal details of the sounds 
via frequency analysis (Guntupalli et al., 2008; 
Waitmann et al., 2000), or time-frequency and 
wavelet analysis (Kahya et al., 2006; Lu & 
Bahoura, 2008; and Kandaswamy et al., 2004). 

Another scheme (Emmanouilidou et al., 
2012) was proposed, that mimics the human 
auditory system in detecting abnormal lung 
sounds in paediatric auscultation recordings 
under noisy conditions.  This system applies 
a series of filters to model the cochlear filters, 
inner hair cell potentials, phase locking, and 
cortical neurons.  Support Vector Machine 
(SVM) was then used to separate the patterns 
in cortical responses.  Despite not having to 
subject the signals to a denoising phase, the 
system was able to achieve sensitivity equal to 
89.44% and specificity equal to 80.50%.

A study by Kaya & Elhilali (2013) was 
performed to determine the classification 
accuracy of using spectro-temporal features to 
detect abnormal sounds in noisy bio-signals.  
The scheme employs recursive tracking of 
temporal patterns in the lung signal using 
Kalman filtering.  On per segment (inhale-

exhale) basis, it achieves 71% normal detection 
and 92.5% abnormal detection.  Considering 
the events or noise that occur in each segment, 
95% normal identification was achieved when 
the noise contribution is due to the stethoscope 
movement only.  Ambient sound impairment 
to the signal results in 85.71% normal lung 
sound identification. The study only considers 
classification as a normal lung sound or an 
abnormal lung sound, regardless of whether 
the abnormal lung sound is a wheeze, crackle, 
or a rhonchus.

In summary, initial work on lung sound 
feature extraction and classification can 
already discriminate a normal lung sound 
from adventitious or abnormal lung sounds.  
Technology-assisted medical services, such as 
diagnosis of lung sounds taken via electronic 
stethoscope, can help mitigate the lack of 
qualified medical practitioners in maintaining 
community health care services especially in 
far-flung areas, if properly implemented.

Thus, this work aims to develop a software 
system, with the help of an electronic 
stethoscope as the acquisition device, which 
identifies lung sounds, that is, normal 
lung sound, wheezes, crackles and ronchi, 
for the identification of possible common 
pulmonary pathologies.  Specifically, this 
study aims to:  (1) Collect chest sounds from 
healthy people and patients with common 
respiratory diseases using commercially 
available electronic stethoscope, (2) Determine 
a filtering scheme that can separate enough 
important information of lung sounds from 
other chest sounds, for example, heart beat 
sound and external noise, (3) Manually sort 
and label the lung sounds into normal, wheeze, 
and crackle sound, with the help of qualified 
physicians, (4) Utilize both the time and 
frequency domain-based signal enhancement 
for feature extraction, (5) determine the 
machine learning algorithm that can best 
classify the lung sound using the patterns, and 
(6) Evaluate the performance of the system 
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by comparing the  labels of the expert on the 
lung sound and the automatic identification/
labelling of the developed system. 

THE NORMAL AND 
ADVENTITIOUS LUNG SOUNDS

Breathing consists of two respiratory phases: 
inspiration and expiration. The entire 
breathing cycle needs to be observed since 
minimal changes in breathing rate, depth, and 
timing could possibly imply a disease.  Breath 
sounds may be divided into three categories: (1) 
Normal, (2) Abnormal, and (3) Adventitious.  
A normal vesicular lung sound typically has 
louder and longer inspiratory sound than 
expiratory sound.  Abnormal lung sounds are 
often correlated with the absences of breath 
sound or the presence of breath sound in areas 
where it is not generally heard.  “Adventitious” 
sounds, which are superimposed on normal 
lung sounds, in certain circumstances, usually 
denote a disease.  There are three common 
types of adventitious lung sounds, namely, (1) 
crackles, (2) wheezes, and (3) rhonchi. 

Normal Lung Sound

Generally, lung sound frequency ranges from 
50 Hz to 2500 Hz, except for tracheal sounds 

which sometimes reach up to 4 kHz (Reichert, 
Gass, Brandt, & Andres, 2008).  Lung sounds 
can be heard along the areas of the trachea, 
bronchioles, at the back of the chest between 
the scapula, and mostly throughout the lung 
field.  Lung sounds can be classified according to 
the region where they are produced/observed.  
Vesicular breath sound is heard in most parts 
of the lungs and constitutes the majority of 
normal lung sounds.  It is characterized as soft 
and low-pitched. Inspiratory sound is louder 
with respect to expiratory sound without a 
pause between them.

Crackles

Crackles are discontinuous, explosive, popping 
sounds that originate within the airways and 
are most commonly heard during inspiratory 
phase rather than the expiratory phase.  
According to Forgac’s theory (Piirila & 
Sovijarvi, 1995), during inspiration, a gas 
pressure is developed across the airways which 
collapse during expiration.  The crackling 
sound is produced when a closed airway 
suddenly opens during inspiration or closes 
during expiration. Each abrupt opening or 
closing of an airway is represented by a single 
crackle.

Table 1. Summary of lung sound characteristics

Lung sounds Frequency Range Temporal Features
normal Low pitched, 50 Hz to 1000 Hz, 

up to 2500 Hz
Soft, longer and loader 

inspiration over expiration
crackles Low (fine) or high pitched 

(coarse) 100 Hz-2000 Hz
Duration (inspiration + 

expiration) < 20 ms
wheezes 100 Hz to 1 kHz 80 ms < Duration < 250 ms
ronchi < 300 Hz Duration > 100 ms
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The crackle mechanism can have two 
probabilities: (1) An obstructed area called 
the distal airway suddenly opens and the 
pressures on either side of the obstruction 
(bronchiole and alveolus) suddenly equalize 
resulting in transient, sharp vibrations in 
the airway wall, and (2) the bubbling of air 
through secretions in the trachea and bronchi 
or so-called the larger airways.  These two 
types of mechanisms classify the crackle 
respectively as either fine or coarse. Fine 
crackles are calmer, higher-pitched, and 
have shorter duration.  Coarse crackles are 
relatively louder, lower-pitched, and have 
longer duration than fine crackles.

Crackles are generally known for their 
explosive sound, usually denoting a pulmonary 
disorder (Reichert et al., 2008). They are 
generated by the opening of an abnormally-
closed airway during inspiration or during 
the closing in the expiration (Reichert et al., 
2008; Piirila & Sovijarvi, 1995).  Crackles 
duration are generally lower than 20 ms and 
the frequency range is between 100-2000 Hz 
(Reichert et al., 2008; Sahgal, 2011).

Wheezes 

Wheezes are continuous musical tones or 
sounds with definite pitch that appear on both 
inspiratory and expiratory phase depending on 
the obstruction’s location.  They are produced 
when air flows through narrowed airways 
due to secretion or an obstructive lesion, 
causing the walls to vibrate.  Wheezes can be 
further classified into two types depending 
on the number of airways obstructed: (1) 
Polyphonic wheeze and (2) Monophonic 
wheeze.  Polyphonic wheezes are the most 
common type of wheezing and produce various 
pitched sounds. Monophonic wheezes, on the 
other hand, have constant pitch, timing, and 
site, and are caused when a single larger 
airway is narrowed.

Wheezes are easily recognizable as they 
stand out from the noise of the normal lung 

sound.  Medium to loud intensities are 
especially noticeable because of the presence 
of sharp peaks in the power spectrum density.  
On the other hand, pitch is measured by the 
dominant frequency of the wheeze (Meslier, 
Charbonneau, & Racineux, 1995).  Wheezes 
normally last up to 250 ms, but are usually 
longer than 80ms (Reichert et al., 2008; 
Pasterkamp, Kraman, & Wodicka, 1997).  
Their frequency range extends from 100 
Hz to 1 KHz with a dominant frequency of 
400 Hz (Reichert et al., 2008; Sahgal, 2011; 
Pasterkamp et al., 1997; Karnath & Boyars, 
2002).

Ronchi

Rhonchi generate continuous, musical sounds 
similar to wheezes but with a coarser and 
lower-pitched sound.  It is usually caused by 
air flowing through narrowed bronchial or 
larger airways due to secretion.  This type of 
lung sound usually implies obstructive lung 
disease such as pneumonia and cystic fibrosis.

This type of lung sound contains rapidly 
damping periodic waveform with a duration 
of more than 100 ms, frequency below 300 Hz 
and a dominant frequency of 200 Hz (Reichert 
et al., 2008; Sahgal, 2011; Meslier et al., 1995).  
This type of breath sound is found on patients 
with secretions or narrowing of airways.

System Design

The acquisition device used for this work is 
the Thinklabs Rhythm DS32A+ Electronic 
Stethoscope with the volume amplification 
set to moderate.  The electronic stethoscope 
has the capability to provide the sound of a 
conventional stethoscope without the losses of 
air tubing via its acoustic mode.  Furthermore, 
it also has a diaphragm mode and bell mode 
used for pulmonary (higher frequency) and 
cardiac (lower frequency) sounds acquisition, 
respectively.  The acoustic mode and the 
diaphragm mode were both enabled in this 
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work.  To consider the condition when the 
data acquisition device does not have noise 
filtering, the noise rejection capability of the 
device was deactivated.  This was done to 
minimize the dependency of this work to a 
specific device manufacturer’s performance 
in terms of signal processing.  Lung sounds 
extraction was performed on the six posterior 
chest areas shown in Figure 1.

These raw sounds were processed and 
identified using the system described in 
Figure 2.  The identification system for the 
electronic stethoscope is composed of four 
main modules: (1) the Signal Enhancement 
module, (2) the Feature Extraction module, 
(3) the Breathing Pattern Modelling module 
and, (4) the Breathing Pattern Classification 
module.  The last two modules were realized 
using the Support Vector Machine (SVM). 
The following sub-sections will describe these 
modules further.

 
Figure 1: Six posterior chest location for 

auscultation  
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The Signal Enhancement module

The Signal Enhancement module performs 
signal denoising in order to remove the 
mechanical noise1 and other out-of-lung 
sound band signals.  Characterization of 
the mechanical sound present in 53 normal 
lung sounds was first done with the help of 
physician-research consultants for mechanical 
noise tagging. 

T h e  e m p i r i c a l  e v a l u a t i o n 2 

 shows that the average frequency of mechanical 
noise is 87.34 Hz with standard deviation of 
28.87 Hz.  The observed range was from 31.32 
Hz to 203.87 Hz, which is within the lung 
sound frequency range (see Table 1) such 
that the direct application of a notch filter 
on the lung sound is not possible.  Further 
observation shows that these unwanted 
signals are bursty (4 to 32 ms), appearing once 
or twice in one breathing cycle (approximately 
3 seconds).  Thus, the signal denoising scheme 
was designed to only apply in parts of the lung 
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sound signal where the mechanical noise is 
present or selective-in-time notch filter. 

Figure 3 describes this joint-time frequency 
filtering scheme.  The method applies the 
notch filter by first computing the Short Time 
Energy (STE) of the raw signal with window 
size equal to 40 ms corresponding to the 
longest mechanical noise burst, 32 ms, plus 
buffer. 

To determine the noise-impaired portion 
of the raw signal, both the raw signal and the 
STE signal are divided into 80-ms segments, 
without overlap, of length equal to 40 ms.  
Since the mechanical noise has relatively 
high peak amplitude, the average power of 

the segment will be expectedly higher than 
the previous and next segments.  Thus, each 
segment of the STE is compared with the 
average of the previous and next segments.  
If 50% of the STE peak energy exceeds the 
average of the previous and the next segments’ 
peaks, then the segment being tested is said 
to be impaired by the mechanical noise and 
notch filter is applied.     

The segment window size is 
empirically determined, evaluated at 
50 ms, 60 ms, 70 ms, 80 ms, 90 ms, and 
100 ms; the segment size that results in 
highest percentage of removed mechanical 
noise is used. 

 
Figure 3: Joint Time-Frequency Denoising Flowchart for removing the mechanical noise in lung 

sounds 
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Figure 3. Joint Time-Frequency Denoising Flowchart for removing 
the mechanical noise in lung sounds
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The Feature Extraction module                       
                     
There were two groups of lung sound 
features that were considered in this 
system: (1) the Power Spectrum-based 
features and (2) the MFC coefficients.  
The lung sound characteristics show 
difference in terms of the pitch and 
intensity which could be measured in the 
power spectrum of the signal.  Thus, the 
bandwidth B, center frequency fC, and 
peak frequency fpk , given in equations (1)-
(3) respectively,  were used as features.

H LB f f= − 		  Eq. (1)

C L Hf f f= 		  Eq. (2)

max(PSD)pkf = 	 Eq. (3) 

where fL denotes the upper cut-off frequency 
from DC where 5% of the total power resides, 
that is, , fH denotes the upper cut-off frequency 
from DC where 95% of the total power resides, 
that is,  and PSD denotes the power spectral 
density of the lung sound. A very low number 
of features may not be enough to achieve 
the objectives of this work that is why Mel-
Frequency Cepstral Coefficients (MFCC) was 
also considered.

Mel-Frequency analysis is based on 
human perception experiments which shows 
that human ear acts as a filter concentrated 
on certain frequency components.  The 
outputs of these filters are represented by 
the MFC coefficients which are typically 
used in speech synthesis and state-of-the-
art speech recognition systems.  Since lung 
sounds can also be analyzed in both time and 
frequency domains, MFC coefficients were 
also used as additional features for lung sound 
classification in this work.

MFCC is a representation of the short-
time power spectrum of a sound.  Mapping to 

Mel scale frequency is performed by dividing 
the signals into frames, taking the Fourier 
transform of each frame and then passing these 
to a triangular filter.  Due to the perceived 
logarithmic characteristic of signal loudness, 
taking the log powers of the Mel frequencies 
and performing the cosine transformation will 
result in the MFC coefficients (MFCC).  For 
this work, a window size equal to 15 ms with 
no overlap was used from 100 Hz to 2500 Hz 
with 15 coefficients.

The Breathing Pattern Modelling 
module

Support Vector Machine (SVM) is based on 
a statistical learning theory that classifies 
data by forming a hyper plane that will 
maximize the margin between the data sets 
(Lee, 2012).  It has been used in several 
automatic classification systems such as in 
the studies of Phatiwuttipat, Kongprawechon, 
Tungpimolrut, and Yuenyong (2011) and 
Greenwood and Kinghorn (2012) for audio 
signals, achieving as high as 96.4% For this 
system, SVM was chosen to build the model 
for the lung sounds.  Using the Sequential 
Minimal Optimization (SMO) (Platt, 1998) 
implementation in WEKA (Hall et al., 2009) 
kernel selection and parameter optimization 
were performed to achieve high true positive 
(TP)—normal lung sound is classified as 
normal lung sound—and low false positive 
(FP) —an abnormal lung sound is classified 
as a normal lung sound.

In the evaluation of the created model, 
these five metrics are considered: (1) TP, (2) 
FP, (3) true negative (TN), (4) false negative 
(FN), and (5) accuracy.  Feature selection was 
also performed to determine the appropriate 
features that would separate lung sounds.  
Lastly, 10 fold-cross validation is used to check 
for overfitting, especially for this work which 
has a large set of parameters and relatively 
small amount of data.
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The Breathing Pattern Classification
module

This SVM-based module is the actual 
classification part of the system, which 
utilizes the SVM-based model created for the 
lung sounds.  During the model evaluation, 
test data were supplied into this module to 
simulate the actual performance of the system.  

SYSTEM TESTS, RESULTS AND 
ANALYSIS

The data used for the following test were 
gathered from the Out Patient Department 
(OPD) patients of the Lung Center of the 
Philippines and volunteers from DLSU with 
age ranging from 18-60 years old.  Each 
recording is manually taken from the DS32a+ 
electronic stethoscope and recorded into a 
laptop. The software used for the recording is 
the Thinklabs Phonocardiography Software 
provided by the Thinklabs Company.  For 
each recording, about 6 to 8 breath cycles were 
taken per location. These were then truncated 
into breathing cycles (one complete inhale and 
exhale phase) and separated into several wav 
files. The files are labeled according to its lung 
sound type, location in the posterior chest area, 
and the breath cycle count from the recording.

Each lung sound signal is equal to one 
breath cycle, which is composed of one 
inhale and one exhale phase.  In summary, 
there are 210 normal lung sound cycles, 45 
crackle sounds, 29 ronchi sounds, and 47 
wheeze sounds collected.  Although there is 
a huge amount of normal lung sound, only 29 
breathing cycles per lung sound were used to 
balance the training and test data.  

Signal Enhancement module 
characterization

The major features of the developed system 
are based on the frequency characteristics 
of the lung sounds.  This approach was used 

because each type of lung sound has its own 
frequency range or its frequency bandwidth.  
For example, normal lung sounds are typically 
in the range of 50 Hz to 2500 Hz while ronchi 
are generally below 300 Hz.  However, due to 
the inevitable movement of the stethoscope 
and the presence of environmental noise 
during auscultation, generally called here 
as mechanical noise, the acquired lung 
sounds may fall beyond its typical frequency 
range.  These mechanical noises from data 
auscultation were manually characterized.   In 
this regard, the Signal Enhancement module 
was introduced.

Figures 4 to 7 show the improvement in the 
fL and fH of the normal lung sounds, wheeze, 
crackles, and ronchi sounds, respectively.  In 
these figures, the x-axis shows the breathing 
cycle samples while the y-axis indicates the 
frequency of the fL and fH.  Twenty lung sound 
cycles for each lung sound class where used to 
construct the plot.  For example, in Figure 4, 
the fL and fH of the normal lung sound breathing 
cycle number 6 is around 10 Hz  and 190 Hz, 
respectively.  After performing denoising, the fL 
and fH becomes around 250 Hz and 650 Hz.

The dotted lines show the ideal frequency 
range based from (Meslier et al., 1995; Sahgal 
2011; Reichert 2008; Pasterkamp et al.; 1997; 
Karnath and Boyars, 2002).  For normal lung 
sounds the range is from 200 Hz to 1000 Hz, for 
the wheeze sound the range is from 200 Hz to 
2500 Hz, for crackle sounds the range is from 
200 Hz to 1000 Hz, and finally for ronchi, the 
range is less than 300 Hz.  These figures show 
that the raw lung sounds were drowned by 
mechanical noise.  After denoising, its expected 
frequency response (fL and fH) were achieved.

Sequential Minimal Optimization 
(SMO) Kernel Selection

Two types of kernels were considered in this 
work: the Polynomial kernel with parameters 
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complexity c and exponent e, and the Radial 
Basis Function (RBF) with parameters 
complexity c and gamma g.  The evaluation 
for the kernel and the parameters to be used 
is organized such that the Polykernel and RBF 
are compared for the two models: (1) normal 
vs adventitious and (2) normal vs wheeze 
vs crackle vs ronchi.  For each model, the 
parameters exponent and gamma were varied 
for Polynomial and RBF kernels, respectively.  
The performance metrics that were looked at 
are the False Positive (FP) and True Positive 
(TP) (Positive case being the normal lung 
sound) with more weight given on FP since 
adventitious sound should not be classified as 
a normal lung sound.

Table 2 provides the performance of the 
two kernels in classifying normal lung sounds 
and adventitious lung sounds from models 
created using Polynomial and RBF kernels.  

In terms of FP, both kernels have 0.0 FP 
rates, which is desirable.  In terms of TP, the 
Polynomial kernel achieved the highest rate 
when e = 7.

Table 3 shows similar result from a similar 
test except that the model created was for 
specific lung sounds — normal, wheeze, crackle 
and ronchi.  The RBF kernel-based model 
resulted in the lowest FP value; however, its 
TP rate is very low.  The next desirable FP rate 
is at 0.028 which is the same for all kernels and 
parameter values except for Polynomial kernel 
with e = 8, which has 0.111 FP rate.  Among 
the cases when FP rate = 0.028, the Polynomial 
kernel with e = 7 has the highest TP rate.  The 
Polynomial kernel with e = 8 has the highest 
TP rate among all other FP rates.  However, 
since higher priority is given to a lower FP 
rate, and considering the results in Table 2, 
the Polynomial kernel with e = 7 was chosen. 

Table 2. Normal vs Adventitious Lung Sound 

Figure 4. Lung sound frequency 
improvement of normal lung sounds

Figure 5. Lung sound frequency 
improvement of wheeze

Figure 6. Lung sound frequency 
improvement of crackles

Figure 7. Lung sound frequency 
improvement of ronchi 
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Table 2. Normal vs Adventitious Lung Sound Case

Polynomial Kernel, c = 1 RBF Kernel, c = 1.5
Exponent (e) TP Rate FP Rate Gamma (g) TP Rate FP Rate

1 0.500 0.028 0.010 0.417 0.028
4 0.667 0.028 0.020 0.417 0.028
7 0.667 0.028 0.030 0. 083 0.000
8 0.917 0.111

Table 3. Normal vs Wheeze vs Crackle vs Ronchi Case

Polynomial Kernel, c = 1 RBF Kernel, c = 1.5
Exponent (e) TP Rate FP Rate Gamma (g) TP Rate FP Rate

1 0.417 0.000 0.010 0.417 0.000
4 0.583 0.000 0.020 0.167 0.000
7 1.000 0.000 0.030 0.000 0.000
8 0.833 0.000

Table 4. SVM-based Model using Polynomial Kernel (c = 1, e = 7) 10-Fold Cross Validation
*N = normal, A = adventitious, W = wheeze, C = crackle, R = ronch

Fold N vs A N vs W vs C vs R N vs C N vs R N vs W
1 100.00 85.71 100.00 100.00 100.00
2 100.00 85.71 100.00 100.00 100.00
3 75.00 100.00 100.00 100.00 100.00
4 75.00 57.00 100.00 100.00 75.00
5 66.66 85.71 100.00 100.00 67.00
6 100.00 100.00 100.00 100.00 100.00
7 100.00 100.00 100.00 100.00 67.00
8 100.00 85.71 100.00 100.00 100.00
9 66.66 100.00 100.00 100.00 100.00

10 88.00 100.00 100.00 100.00 100.00
Ave 88.00% 90.00% 100.00% 100.00% 91.00%
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Table 5. Comparison of the Correct Matches (CM) and False Matches (FM) 
across different Features Sets

Features sets CM FM
PSD-based 39.58% 60.42%

MFCC 60.42% 39.58%
MFCC + PSD-based 54.17% 45.83%

Ranked features 50.00% 50.00%

Table 6.  Comparison of the True Positive (TP) and False Positive (FP) 
across different Features Sets

Features sets TP FP
PSD-based 25.00% 19.44%

MFCC 91.67% 2.77%
MFCC + PSD-based 66.67% 2.77%

Ranked features 75.00% 2.77%

Feature Selection

Feature selection is performed to optimize 
the learning and classification process.  
The features that were considered are the 
PSD-based features set, MFCC features set 
and features ranked via Information Gain 
Attribute Evaluator algorithm.  The number 
of correct matches (CM) and false matches 
(FM) were compared for the three features 
sets using the SMO classifier with polynomial 
kernel, c = 1 and e = 7 to determine the best 
features set. 

The PSD-based features are composed 
of the peak frequency, center frequency, 
upper cutoff frequency and lower frequency.  
Appended to this set are the MFCCs or the 
Mel frequency cepstral coefficients features set 
which is composed of 12 coefficients extracted 
from the lung sound framed every 80ms and 
50% overlap.  This resulted in 3000 features 
for every lung sound instance.

Table 5 and 6 show the feature selection
results performed in this work.  In terms of CM 

and FM parameters, the MFCC features set 
provides the best performance equal to 60.42% 
and 39.58%, respectively.  This desirable 
performance is also reflected in its TP and FP 
rates equal to 91.67% and 2.77%, respectively, 
shown in Table 6.  This means that PSD-based 
features do not contain enough information to 
discriminate lung sounds.  Also, selecting the 
significant features based on the Information 
Gain Attribute Evaluator algorithm (677 
features were selected out of 3000 features) 
does not provide good performance with CM = 
50% only and TP rate = 75% only.  Thus, only 
the MFCC coefficients are used in this system.

Cross validation 

To determine the performance consistency 
of the model on a given data, 10-fold cross 
validation was performed.  The results in 
Table 4 show the mean accuracy of the score 
for each fold.  Five models were evaluated to 
determine its performance with respect to 
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specific abnormalities namely (1) normal vs. 
all the adventitious lung sounds, (2) normal vs 
wheeze vs. crackles, vs. ronchi., (3) normal vs. 
crackle, (4) normal vs ronchi and (5) normal 
vs wheeze.  For the first classification, the 
accuracy varies from 66.66% to 100% which 
is a symptom of overfitting in the training 
phase.  This could also be seen in the normal 
vs wheeze vs crackle vs ronchi case and normal 
vs wheeze case.  The result of overfitting might 
be attributed to the low data set collected is 
investigated in the following section.

Model Analysis with expanded data
	   using SMOTE

Due to the limited number of ronchi samples, 
this work uses only 29 samples for each lung 
sound despite that there are 210 normal lung 
sound samples collected.  This very small 
amount of data for training and evaluation 
could have affected the overfitting which is 
reflected in the cross validation performance 
of the system in Table 4.  To project the system 
behavior at higher data samples, expanded 
data set was performed using the Synthetic 
Minority Over-Sampling Technique (SMOTE) 
(Hui, Wen-Yuan, & Bing-Huan, 2005).  The 
SMOTE oversamples the minority class which 
are the crackle, wheeze and rhonchi to create 
an expanded data set with a balanced learning 
environment

Table 7 shows the original test confusion 
matrix of the balance data set using MFCC 
features.  The original training data set has 

17 lung sound cycles for each case and 12 
lung sound cycles for the test set for a total 
of 29 lung sound cycles in the data set.  Table 
8 to Table 10 show the results when the 
data set size for each case is increased to 58 
(increased by 100%), 87 (increased by 200%) 
and 116 (increased by 300%) lung sound cycles, 
respectively.  For each increase in the data 
set, 60% of the total data was used as training 
set while the remaining 40% was used as the 
test set.

As seen in Table 7, the rhonchi and wheeze 
sounds are frequently misclassified having an 
accuracy of 16.67% and 33.33%, respectively.  
If the data set is increased by 100%, the 
accuracy in classifying the ronchi and wheeze 
sounds also increases to 95.65% and 60.87%, 
respectively.  In addition, normal lung sound 
classification accuracy also increases to 95.65% 
while crackle sound classification accuracy 
remains to be 100%. 

However, increasing the data set size 
further to 87 instances decreases the ronchi 
and normal lung sound classification accuracy 
to 91.43%  as shown in Table 9.  Conversely, the 
accuracy in classifying the wheeze increases 
to 91.43%.  Furthermore, increasing the data 
set to 116 instances increases the accuracy in 
classifying normal lung sounds and wheeze to 
93.33% and 100%, respectively, as shown in 
Table 10.  However, the rhonchi identification 
accuracy drops to 91.11% from 91.43%.  For 
all data expansion via SMOTE, crackle sound 
maintains the 100% classification accuracy.

Table 7. Confusion Matrix for data set size = 29 instances

Classified as
Lung sound normal Crackle rhonchi wheeze accuracy

normal 11 0 0 1 91.67%
crackle 0 12 0 0 100%
rhonchi 1 9 2 0 16.67%
wheeze 0 5 3 4 33.33%
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Table 8. Confusion Matrix for data set size = 58 instances

Classified as
Lung sound normal Crackle rhonchi wheeze accuracy

normal 22 0 0 1 95.65%
crackle 0 23 0 0 100%
rhonchi 1 0 22 0 95.65%
wheeze 1 5 3 14 60.87%

Table 9. Confusion Matrix for data set size = 87 instances

Classified as
Lung sound normal Crackle rhonchi wheeze accuracy

normal 32 0 0 3 91.43%
crackle 0 35 0 0 100%
rhonchi 3 0 32 0 91.43%
wheeze 1 2 0 32 91.43%

Table 10. Confusion Matrix for data set size = 116 instances

Classified as
Lung sound normal Crackle rhonchi wheeze accuracy

normal 42 3 0 1 93.33%
crackle 0 46 0 0 100%
rhonchi 4 1 41 0 91.11%
wheeze 0 0 0 46 100%

Table 11. SVM-based Model for data set = 116 using Polynomial Kernel (c = 1, e = 7) 
Cross Validation

Fold N vs A N vs W vs C vs R N vs C N vs R N vs W
1 100 97.78 100 100 100
2 100 97.78 100 100 100
3 100 96.67 100 100 100
4 100 98.33 100 100 97.78
5 97.78 96.67 100 100 97.78
6 97.78 97.78 100 100 100
7 100 96.67 100 100 100
8 100 96.67 100 100 100
9 100 97.78 100 100 100

10 97.78 96.67 100 100 100
Ave. 99.33% 97.28% 100.00% 100.00% 99.56%

*N = normal, A = adventitious, W = wheeze, C = crackle, R = ronchi
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The increase in the number of instances 
also shows an improved cross validation as 
shown in Table 11.  Classifying normal lung 
sound against adventitious sounds gives 
consistent values from 97.78%-100.00% as 
compared to 66.66%-100.00% in Table 4 when 
the data set is equal to 29 instances.  Similarly, 
when the cross validation is performed on 
classifying normal lung sounds, wheeze, 
ronchi, and crackles, from 57.00%-100.00% 
across 10 folds, the accuracy becomes 96.67%-
100.00% when the instances for each lung 
sound are increased to 116.  In classifying the 
normal lung sound against wheeze sound, the 
cross validation when data set size is equal to 
119 also improves from 67.00% - 100.00% to 
97.78% - 100.00%.

CONCLUSION

The goals of this work are to (1) Collect chest 
sounds from healthy people and patients 
with common respiratory diseases using 
commercially available electronic stethoscope; 
(2) Determine filtering scheme that could 
separate enough important information of 
lung sounds from other chest sounds, for 
example, heart beat sound and external noise; 
(3) Manually sort and label the lung sounds 
into normal, wheeze, and crackle sound, with 
the help of physicians.  This will be used as 
training set for the feature extraction and 
machine learning algorithms; (4) Determine 
feature extraction and machine learning 
algorithm that would best classify the lung 
sound using the patterns, and (5) evaluate the 
performance of the system by comparing the 
actual results with the lung sound.

In general, using the SMO implementation 
in WEKA, using Polynomial kernel with c = 1 
and e = 7, there is 100% chance of identifying 
a normal lung sound from adventitious lung 
sound, that is, normal vs. adventitious.  
However, when tested against the three 
other lung sounds—normal vs. wheeze vs. 

rhonchi vs. crackle—the system has difficulty 
in differentiating wheezes and rhonchi lung 
sounds.  Specifically, 75% of rhonchi sounds 
are classified as crackles and 41.67% of 
wheezes are classified as crackles.

Summary

Two hundred ten normal sounds, 45 crackle 
sounds, 29 rhonchi sounds, and 47 wheeze 
sounds were used in this work. These sounds 
were gathered from various patients in Lung 
Center of the Philippines and from volunteers 
in De La Salle University-Manila.  These data 
were used to create a model for lung pattern 
classification as well as for testing.  To train 
and test data, the lung sounds were manually 
verified by the medical experts from the Lung 
Center of the Philippines.  Before recording 
an adventitious sound, the doctor in charge 
first checks the type of lung sound.  The data 
taken are the area from the posterior chest 
area (Upper Left, Upper Right, Middle Left, 
Middle Right, Lower Left, and Lower Right), 
the gender, age and type of lung sound. 

Processing was done using the Signal 
Enhancement module and the Feature 
Extraction module.  The denoising submodule 
removes mechanical noise from the raw signal 
through selective filtering.  The Feature 
Extraction module takes attributes from 
each lung sound which was used for creating 
a model from its pattern.  Furthermore, 
classification and analysis are done on 
automatic identification on lung sound signals.

The feature extraction module uses two 
types of data, the PSD–based features and 
MFCC-based features.  Features were tested 
and analyzed based on its confusion matrices.  
From these, the correct matches (CM) and 
false matches (FM) were computed and 
summarized.  PSD-based features especially, 
which got a 39.58% CM and 25% true positive 
(TP) as provided in Tables 5 and 6, need to 
have the features extracted re-examined. 
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In contrast, the MFCC features, which are 
typically applied on speech processing, was 
proved to be a relatively better feature set for 
lung sounds with 60.42% CM and 91.67% TP, 
as shown in Tables 5 and 6.

Each normal lung sound was tested 
against adventitious lung sounds to determine 
the best kernel and parameters for the SMO 
classifier.  Using the TP rate and the FP 
rate, the polynomial kernel showed better 
performance as compared to the RBF kernel 
with TP rate of 95% and 68.3%, respectively.  
The exponent e = 7 also gave the best FP rate 
equal to 1.9%.  A lower FP rate indicates that 
less adventitious lung sounds are classified as 
normal lung sounds.    

 Despite this performance, the 10-fold cross 
validation shows that the system overfits or is 
highly dependent on the training data (please 
refer to Table 4).  Specifically, classifying 
normal lung sounds against adventitious lung 
sounds provides varying accuracy from 66.66% 
to 100%, classifying specific lung sounds shows 
57% to 100% accuracy, and classifying normal 
lung sounds against wheeze sounds gives 67% 
to 100%.  Nevertheless, after increasing the 
number of instances using synthetic examples, 
this undesirable cross-validation result betters 
to 97.78% to 100% for normal vs. adventitious 
sounds, 96.67% to 97.78% for classifying 
specific lung sounds and 97.78% to 100% for 
normal lung sound vs. wheeze sound.   This 
work determined that in order to address the 
overfitting problem of the developed system, 
additional training data are needed. 

Contributions

The contributions of this work are as follows:

1.	 This work was able to collect lung 
sound signals consisting of 210 normal 
lung sounds, 47 wheezes, 45 crackles, 
and 29 rhonchi lung sounds.  This 
collection may be used for lung sound-

related e-Health researches, for 
example, signal enhancement, feature 
extraction, and classification. 

2.	 This work was able to characterize the 
mechanical noise present with lung 
sound acquired using the electronic 
stethoscope. This noise, found to be 
in the range of 31-203.96 Hz, was 
removed using a joint time-frequency 
notch filter.  Future work can focus 
on improving the noise modeling and 
removal process, for example, using 
adaptive filtering techniques on signals 
simultaneously acquired using two or 
more stethoscopes. 

3.	 This work determined that the MFCC 
features are better than the usual PSD 
features, such as bandwidth, peak 
frequency and center frequency, in 
terms of the correct matches (CM) and 
sensitivity or true positive rate (TP) of 
the classifier.   MFCC-based features 
can be used to classify normal vs. all 
with a CM rate of 60.4%, with most of 
the error coming from classifying the 
wheeze and rhonchi.  In order to improve 
classification with other lung sounds, 
exploring other features, for example, 
Linear Predictive Coefficients, as well 
as improving the denoising scheme is 
suggested.

4.	 A scheme for automatic classification 
of lung sounds is initially investigated 
and developed. Table 12 shows the 
performance of the developed system 
when compared with various existing 
works. It should be noted that the 
system’s reported classification 
accuracy of 54.16% (for normal vs. 
crackles vs. wheezes vs. ronchi) needs 
to be further improved  to make it more 
qualified for actual deployment to rural 
community health services. 
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Recommendations

The performance of the developed system 
needs improvement specially in classifying 
different lung sounds (normal vs. wheeze vs. 
crackle vs. ronchi).  Increasing the number of 
training and test instances via the SMOTE 
algorithm revealed that the most probable 
cause of its poor performance and overfitting 
is the low number of data samples.  It is 
recommended, therefore, to perform more 
intensive data collection with the supervision 
of medical experts.

This work does not consider the addition 
of a high pass filter that can remove artefacts 
of the joint time-frequency filtering.  Different 
signal amplification factors prior to feature 
extraction may be explored to check how the 
system performance can be improved.  Finally, 
the 2995 features used for classification may 
still be reduced via Principal Component 
Analysis or Linear Discriminant Analysis.
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