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Hartwig and Terwilliger (2007) obtained a presentation of the three-point sl2 loop algebra via generators
and relations. In order to do this, they defined a complex Lie algebra �, called the tetrahedron algebra, using
generators {xij | i, j ∈ {1, 2, 3, 4}, i 6= j} and relations: (i) xij + xji = 0, (ii) [xhi, xij ] = 2xhi + 2xij

for mutually distinct h, i, j and (iii) [xhi, [xhi, [xhi, xjk]]] = 4[xhi, xjk] for mutually distinct h, i, j, k.

The Shrikhande graph S was introduced by S. S. Shrikhande in 1959. Egawa showed that S is a distance-
regular graph whose parameters coincide with that of the Hamming graph H(2, 4). Let X be the vertex set
of S. Let A1 denote the adjacency matrix of S. Fix x ∈ X and let A∗

1 = A∗
1(x) denote the dual adjacency

matrix of S. Let T = T (x) denote the subalgebra of MatX(C) generated by A1 and A∗
1. In this paper, we

exhibit an action of � on the standard module of S. To do this, we use the complete set of pairwise non-
isomorphic irreducible T−modules Ul’s of S and the standard basis Bl of each Ul which were obtained by
Tanabe in 1997. We define matrices A,A∗,B,B∗,K,K∗,Φ and Ψ in T by giving the matrix representations
of the restriction on Ul with respect to the basis Bi. Finally, we take A∗ +Ψ +Φ, B∗ −Φ, A −Ψ +Φ,
B−Φ, K−Ψ and K∗ −Ψ, and show that these matrices satisfy the relations of �.

1. INTRODUCTION

One of the main foci of algebraic combi-
natorics is the taxonomy of a certain class
of graphs known as Q-polynomial distance-
regular graphs. These graphs are just equivalent
to P - and Q-polynomial association schemes.
Since the 1980s, a number of prominent math-
ematicians in algebraic combinatorics have
shown interest in classifying such objects. The
main algebraic tool used was the Bose-Mesner
algebra. Terwilliger made a significant contri-
bution by extending the Bose-Mesner algebra
to the bigger subsconstituent algebras (see Ter-

williger, 1992; 1993). These algebras provided
tools to understand interesting properties of
Q-polynomial distance-regular graphs.

Hartwig and Terwilliger (2007) found a
presentation for the three-point sl2 loop algebra
via generators and relations. To do this, they
defined a Lie algebra � called the tetrahedron
algebra by generators and relations, and showed
an isomorphism from � to the three-point sl2
loop algebra. The tetrahedron algebra contains
some subalgebras that are isomorphic to sl2 (see
Hartwig & Terwilliger, 2007, Corollary 12.4)
and to the Onsager algebra O (see Hartwig &
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Terwilliger, 2007, Corollary 12.5), an infinite
dimensional Lie algebra, which appears in
integrable systems and solvable lattice models.

Recent efforts of Terwilliger and Ito discuss
construction of a �-module structure from some
Q-polynomial distance-regular graphs (see Ito
& Terwilliger, 2007; 2009). In this paper,
we aim to construct a �-module structure us-
ing the Shrikhrande graph - a distance-regular
graph whose parameters coincide with that of
the Hamming graph H(2, 4) (see Egawa, 1981,
Lemma 2.1). ]

2. DISTANCE-REGULAR GRAPHS

We begin with basic results regarding
distance-regular graphs. The reader may
refer to Bannai and Ito (1984), Biggs (1993),
Brouwer, Cohen and Neumaier (1989) and
Godsil (1993) for background information.

Let X be any nonempty finite set, and let
V := CX denote the C-vector space of column
vectors with coordinates indexed by X . Let
MatX(C) denote the algebra of matrices over
C with rows and columns indexed by X . Note
that MatX(C) acts on V by left multiplication.
We call V the standard module.

Endow V with the Hermitean inner product
〈u, v〉 = utv (u, v ∈ V ) where ut, v denote
transpose of u and complex conjugate of v,
respectively.

For every x ∈ X , we let x̂ be the 0-1 vector
in V that has a 1 in the x coordinate and 0
everywhere else. Observe {ŷ | y ∈ X} is an
orthonormal basis for V .

Let Γ = (X,R) denote a finite, undi-
rected, connected graph without loops or mul-
tiple edges, with vertex set X , edge set R, path-
length distance function ∂ and diameter D :=
max{∂(x, y) | x, y ∈ X}. We say Γ is distance-

regular whenever for all integers h, i, j (0 ≤
h, i, j ≤ D) and for all x, y ∈ X with ∂(x, y) =
h, the number

phij := |{z ∈ X|∂(x, z) = i, ∂(y, z) = j}|

is independent of x and y. The integers phij are
called the intersection numbers for Γ. We abbre-
viate ai := pi1i (0 ≤ i ≤ D), bi := pi1i+1 (0 ≤
i ≤ D − 1), ci := pi1i−1 (1 ≤ i ≤ D),
ki := p0ii (0 ≤ i ≤ D), and for convenience we
set c0 := 0 and bD := 0.

For each integer i (0 ≤ i ≤ D), let Ai be the
matrix in MatX(C) with x, y entry

(Ai)xy =

{
1, ∂(x, y) = i
0, ∂(x, y) 6= i

(x, y ∈ X).

We call the matrices A0, A1, . . . , AD the dis-
tance matrices of Γ. We refer to A1 as the
adjacency matrix of Γ. These matrices form
a basis for a commutative subalgebra M of
MatX(C) called the Bose-Mesner algebra of Γ.

Bannai and Ito (1984, p. 59, 64, 190) noted that
A1 generates M , wherein M has a second basis
E0, E1, . . . , ED such that

E0 = |X|−1J,
E0 + E1 + · · ·+ ED = I,

Ei = Ei (0 ≤ i ≤ D),
Et

i = Ei (0 ≤ i ≤ D),
EiEj = δijEi (0 ≤ i, j ≤ D).

where J and I are respectively the all ones
matrix and the identity matrix in MatX(C). We
call the matrices E0, E1, . . . , ED the primitive
idempotents of Γ.

Since E0, E1, . . . , ED form a basis for M , there
exist complex scalars θ0, θ1, . . . , θD such that
A1 =

∑D
i=0 θiEi. Bannai and Ito (1984, p. 97)

showed that the scalars θ0, θ1, . . . , θD are real.
Since A1 generates M these scalars are mutu-
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ally distinct. We call θi the eigenvalue of Γ as-
sociated with Ei (0 ≤ i ≤ D). Observe that V
decomposes as an orthogonal direct sum

V = E0V + E1V + · · ·+ EDV.

For 0 ≤ i ≤ D the space EiV is the maximal
eigenspace of A1 associated with θi.

We recall the Q-polynomial property. Let ◦
denote entry-wise multiplication in MatX(C).
ThenAi◦Aj = δijAi (0 ≤ i, j ≤ D). Therefore
M is closed under ◦. Thus there exist complex
scalars qhij (0 ≤ h, i, j ≤ D) such that

Ei ◦ Ej =
D∑

h=0

qhijEh (0 ≤ i, j ≤ D).

According to Brouwer et. al. (1989, p.
170), the scalars qhij are real and nonneg-
ative for 0 ≤ h, i, j ≤ D. We say Γ is
Q-polynomial (with respect to a given ordering
E0, E1, . . . , ED) whenever for all distinct inte-
gers h, j(0 ≤ h, j ≤ D), qh1j = 0 if and only if
|h− j| 6= 1.

Suppose the distance-regular graph Γ is
Q-polynomial with respect to the ordering
E0, E1, . . . , ED of the primitive idempotents.
We recall the dual Bose-Mesner algebra of Γ.
Fix a vertex x ∈ X . For each integer i (0 ≤ i ≤
D), let E∗i := E∗i (x) denote the diagonal matrix
in MatX(C) with y, y entry

(E∗i )yy = (Ai)xy (y ∈ X).

The matricesE∗0 , E
∗
1 , . . . , E

∗
D are called the dual

idempotents of Γ with respect to x. Observe that

E∗0 + E∗1 + · · ·+ E∗D = I,

E∗i = E∗i (0 ≤ i ≤ D),

E∗i
t = E∗i (0 ≤ i ≤ D),

E∗iE
∗
j = δijE

∗
i (0 ≤ i, j ≤ D).

These matrices form a basis for a commutative

subalgebra M∗ = M∗(x) of MatX(C) called
the dual Bose-Mesner algebra of Γ with respect
to x. For convenience, we set E∗−1 = 0, and
E∗D+1 = 0.

For each integer i (0 ≤ i ≤ D), let A∗i = A∗i (x)
denote the diagonal matrix in MatX(C) with
y, y entry

(A∗i )yy = |X|(Ei)xy (y ∈ X).

In a paper by Terwilliger (1992, p. 379), the
matrices A∗0, A

∗
1, . . . , A

∗
D form a second basis

for M∗. The matrices A0, A1, . . . , AD are called
the dual distance matrices of Γ with respect
to x. We call A∗1 the dual adjacency matrix of
Γ with respect to x. Moreover, the matrix A∗1
generates M∗ (Terwilliger, 1992, Lemma 3.11).

We recall the dual eigenvalues of Γ. Since
E∗0 , E

∗
1 , . . . , E

∗
D form a basis for M∗, there exist

complex scalars θ∗0, θ
∗
1, . . . , θ

∗
D such that

A∗1 =
D∑
i=0

θ∗iE
∗
i .

By a result from Terwilliger (1992, Lemma
3.11) and since A∗1 generates M∗, the scalars
θ∗0, θ

∗
1, . . . , θ

∗
D are real and are mutually distinct.

We call θ∗i the dual eigenvalue of Γ associated
with E∗i (0 ≤ i ≤ D).

Observe that E∗i V = span{ŷ | y ∈
X, ∂(x, y) = i} (0 ≤ i ≤ D). Also, one checks
that V decomposes as an orthogonal direct sum

V = E∗0V + E∗1V + · · ·+ E∗DV.

For 0 ≤ i ≤ D the space E∗i V is the eigenspace
of A∗1 associated with θ∗i . We call E∗i V the ith
subconstituent of Γ with respect to x.

We recall the Terwilliger algebra of Γ (see
Caughman 1999; Go 2003; Terwilliger 1992,
1993). The subalgebra T = T (x) of MatX(C)
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generated byM andM∗ is called the Terwilliger
algebra of Γ with respect to x. Consequently,
T is generated by A1 and A∗1. Moreover, T has
finite positive dimension. Observe that T is
closed under the conjugate transpose map, so T
is semi-simple.

By a T -module we mean a subspace W of
V such that PW ⊆ W for all P ∈ T . A
T -module W is said to be irreducible when-
ever W 6= 0 and W contains no T -modules
other than 0 and W . Since T is semi-simple,
any T -module is an orthogonal direct sum
of irreducible T -modules. In particular, the
standard module V can be decomposed as an
orthogonal direct sum of irreducible T -modules.

We end this section with results that will be
useful later, and we make the following assump-
tion.

Assumption 2.1. Let Γ = (X,R) denote a
distance-regular graph with diameter D. Let
A1 denote the adjacency matrix of Γ. Assume
Γ is Q-polynomial with respect to the ordering
E0, E1, . . . , ED of the primitive idempotents.
Fix x ∈ X . Let A∗1 = A∗1(x) denote the dual
adjacency matrix, and let E∗i = E∗i (x) (0 ≤
i ≤ D) denote the dual idempotents of Γ. Let
T = T (x) denote the Terwilliger algebra of Γ
with respect to x.

Definition 2.1. With Assumption 2.1, let W
and W ′ be irreducible T -modules. By a T -
isomorphism from W to W ′ we mean a vector
space isomoprhism σ : W → W ′ such that

(σP − Pσ)W = 0 for all P ∈ T.

If such an isomorphism exists, we say W and
W ′ are T -isomorphic.

Lemma 2.1. With reference to Assumption 2.1,
let σ : W → W ′ be an isomorphism of irre-
ducible T -modules. Suppose {w1, w2, . . . , wk}
forms a basis forW . Then for any matrix P ∈ T

the following coincide:

(i) the matrix representing P with respect to
the ordered basis {w1, w2, . . . , wk}

(ii) the matrix representing P with
respect to the ordered basis
{σ(w1), σ(w2), . . . , σ(wk)}

Proof. The lemma follows immediately from
Definition 2.1 and the fact that σ maps a basis
for W to a basis for W ′.

Lemma 2.2. With Assumption 2.1, Let T ′ de-
note the set of all matrices in MatX(C) that
leave invariant every irreducible T -module.
Then T = T ′.

The proof of this lemma can be found in
the paper by Ito and Terwilliger (2007, Lemma
12.1). As a consequence of Lemma 2.2, any
matrix that leaves invariant every irreducible T -
module must be in T .

3. TETRAHEDRON ALGEBRA � AND
THE SHRIKHANDE GRAPH S

We now define a Lie algebra known as the
tetrahedron algebra. It was first introduced by
Hartwig and Terwilliger in (2007).

Definition 3.1. Let K = {1, 2, 3, 4} and let �
denote the Lie algebra over C defined by gener-
ators { xij | i, j ∈ K, i 6= j} and relations:

(i) xij + xji = 0 whenever i 6= j.

(ii) for mutually distinct h, i, j,

[xhi, xij] = 2xhi + 2xij. (1)

(iii) for mutually distinct h, i, j, k,

[xhi, [xhi, [xhi, xjk]]] = 4 [xhi, xjk] . (2)

We call � the tetrahedron algebra.
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By Definition 3.1(i), � has essentially six
generators namely, x12, x23, x34, x41, x31 and
x24. For more information about the tetrahe-
dron algebra, the reader may refer to Hartwig
and Terwilliger (2007), Hartwig (2007), and
Ito & Terwilliger (2007). We now define the
Shrikhande Graph and mention some of its
properties.

A code graph is a graph whose vertex set con-
sists of binary codes and two vertices are adja-
cent whenever they differ in exactly two entries.
Now, consider the code graph S whose vertex
set consists of binary codes 000000, 110000,
010111, 0110111 and those obtained by a cyclic
permutation of the six entries. We call S the
Shrikhande graph. Now, we make the following
assumption for the rest of the paper:

Assumption 3.1. Let S be the Shrikhande graph
with standard module V . The graph S is a
distance-regular graph with 16 vertices and di-
ameter 2 (see Egawa, 1981, Lemma 2.1). One
checks that S has eigenvalues 6, 2,−2. More-
over, with this ordering of eigenvalues, S is Q-
polynomial with respect to E0, E1, E2 (Brouwer
et. al, 1989, Corollary 8.4.2). The dual eigen-
values of S are 6, 2,−2. Fix a vertex x and
let T = T (x) denote the Terwilliger alge-
bra of S with respect to x. For each integer
i (0 ≤ i ≤ 2) we let E∗i = E∗i (x) denote
the dual primitive idempotents. By Tanabe’s
(1997) Proposition 1, there exists subspaces
U0, U1, Ũ1, U2, Ũ2, U3, U4, U5, Ũ5,

˜̃U5 of V such
that

(i) V = U0 +U1 + Ũ1 +U2 + Ũ2 +U3 +U4 +

U5 + Ũ5 + ˜̃U5 is an orthogonal direct sum,

(ii) U1, Ũ1 (resp. U2, Ũ2) are T -isomorphic,

(iii) the subspaces U5, Ũ5,
˜̃U5 are pairwise T -

isomorphic,

(iv) U0 has basis B0 = {a0, a1, a2},

(v) U1 has basis B1 = {b1, b2},

(vi) U2 has basis B2 = {c1, c2},

(vii) U3 has basis B3 = {d1},

(viii) U4 has basis B4 = {e2},

(ix) U5 has basis B5 = {f2}.

We call Bl the (ordered) standard basis for the
irreducible T -module Ul and for every P ∈ T ,
let PBl denote the matrix representing P with
respect to the standard basis Bl. Finally, we set
[M,N ] = MN −NM for M,N ∈ T .

By Tanabe’s (1997) Proposition 1, we see that
the set {U0, U1, U2, U3, U4, U5} gives the com-
plete set of pairwise non-isomorphic irreducible
T -modules.

Using Assumption 3.1, we aim to show that
that there exists a �-module structure on the
standard module V of S. To do this, we find
matrix representations for each generator of �
and show that these matrices together with the
operator [ , ] satisfy the relations (1) and (2).

Definition 3.2. With Assumption 3.1, let the
matrices A,A∗,B,B∗,K,K∗,Φ and Ψ be in
T such that their matrix representations with
respect to the basis Bl of Ul are as follows:
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Basis ABl A∗Bl

B0

 −1 3 0
1
2

0 3
2

0 1 1


 2 0 0

0 0 0

0 0 −2



B1

[
− 3

2
3
2

1
2
− 1

2

] [
0 0

0 −2

]

B2

[
− 1

2
1
2

3
2
− 3

2

] [
0 0

0 −2

]

B3 [−2] [0]

B4 [0] [−2]
B5 [−2] [−2]

Basis BBl B∗Bl

B0

 −2 −12 0

0 0 −6
0 0 2


 −2 0 0

−2 0 0

0 −4 2



B1

[
0 −6
0 2

] [
0 0

−2 2

]

B2

[
0 − 2

3

0 2

] [
0 0

−2 2

]

B3 [1] [1]

B4 [1] [1]

B5 [2] [2]

Basis KBl K∗Bl

B0

 −2 4 0

0 0 2

0 0 2


 −2 0 0

2
3

0 0

0 4
3

2



B1

[
−1 2

0 1

] [
−1 0

2
3

1

]

B2

[
−1 2

0 1

] [
−1 0

6 1

]

B3 [−1] [−1]
B4 [1] [1]

B5 [0] [0]

Basis ΦBl ΨBl

B0

 0 0 0

0 0 0

0 0 0


 0 0 0

0 0 0

0 0 0



B1

[
1 0

0 1

] [
0 0

0 0

]

B2

[
1 0

0 1

] [
0 0

0 0

]

B3 [1] [−1]
B4 [1] [1]

B5 [2] [0]

We now prove the following lemmas.

Lemma 3.1. With Assumtion 3.1, let the matri-
ces A,A∗,B,B∗,K,K∗,Φ,Ψ be as in Defini-
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tion 3.2. Then,

[A, [A, [A,A∗]]] = 4[A,A∗] (3)
[A∗, [A∗, [A∗,A]]] = 4[A∗,A]

[B, [B, [B,B∗]]] = 4[B,B∗]

[B∗, [B∗, [B∗,B]]] = 4[B∗,B]

[K, [K, [K,K∗]]] = 4[K,K∗]

[K∗, [K∗, [K∗,K]]] = 4[K∗,K]

Proof. Fix an irreducible T -module Ul with a
standard basis Bl. To prove (3), one checks that
the expression

[A, [A, [A,A∗]]]− 4[A,A∗]

vanishes on every Ul by replacing A,A∗ by ABl
and A∗Bl , respectively. Since A,A∗ ∈ T and by
Lemma 2.1, it follows that the expression above
vanishes on every subspace T -isomorphic to Ul.
Hence

[A, [A, [A,A∗]]]− 4[A,A∗] = 0.

The rest are proven similarly.

Lemma 3.2. With Assumption 3.1, let the ma-
trices A,A∗,B,B∗,K,K∗,Φ,Ψ be as in Defi-
nition 3.2. Then,

[B,A] = 2A + 2B− 2Ψ (4)
[A,B∗] = 2A + 2B∗ − 2Ψ

[A∗,B] = 2A∗ + 2B + 2Ψ

[B∗,A∗] = 2A∗ + 2B∗ + 2Ψ

[A,−K] = 2A− 2K + 2Φ

[−K∗,A] = 2A− 2K∗ + 2Φ

[A∗,K] = 2A∗ + 2K + 2Φ

[K∗,A∗] = 2A∗ + 2K∗ + 2Φ

[−K,B] = 2B− 2K + 2Ψ− 2Φ

[K,B∗] = 2B∗ + 2K− 2Ψ + 2Φ

[B,K∗] = 2B + 2K∗ − 2Ψ− 2Φ

[B∗,−K∗] = 2B∗ − 2K∗ + 2Ψ− 2Φ.

Proof. Fix an irreducible T -module Ul with a
standard basis Bl. To prove (4), one checks that

the expression

BA−AB− 2A− 2B + 2Ψ

vanishes on every Ul by replacing A,B and Ψ
by ABl ,BBl and ΨBl , respectively. Since the
matrices A,B,Ψ ∈ T and by Lemma 2.1, it
follows that the expression above vanishes on
every subspace T -isomorphic to Ul. Hence

BA−AB− 2A− 2B + 2Ψ = 0.

The rest are proven similarly.

For the rest of the paper we use the following
notations:

a = A−Ψ + Φ

b = B−Φ

a∗ = A∗ + Ψ + Φ

b∗ = B∗ −Φ

k = K−Ψ

k∗ = K∗ −Ψ.

The succeeding lemma is proven analogously
as Lemma 3.1.

Lemma 3.3. With Assumtion 3.1, let the matri-
ces A,A∗,B,B∗,K,K∗,Φ,Ψ be as in Defini-
tion 3.2. Then,

[a, [a, [a, a∗]]] = 4[a, a∗]

[a∗, [a∗, [a∗, a]]] = 4[a∗, a]

[b, [b, [b, b∗]]] = 4[b, b∗]

[b∗, [b∗, [b∗, b]]] = 4[b∗, b]

[k, [k, [k, k∗]]] = 4[k, k∗]

[k∗, [k∗, [k∗, k]]] = 4[k∗, k]

The succeeding lemma is proven analogously
as Lemma 3.2.

Lemma 3.4. With Assumption 3.1, let the matri-
ces A,A∗,B,B∗,K,K∗,Φ,Ψ be as in Defini-
tion 3.2. Then, we get the following equations:
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[b, a] = 2b+ 2a,

[a, b∗] = 2a+ 2b∗,

[a∗, b] = 2a∗ + 2b,

[b∗, a∗] = 2b∗ + 2a∗,

[a,−k] = 2a− 2k,

[−k∗, a] = 2a− 2k∗,

[a∗, k] = 2a∗ + 2k,

[k∗, a∗] = 2a∗ + 2k∗,

[−k, b] = 2b− 2k,

[k, b∗] = 2k + 2b∗,

[b, k∗] = 2b+ 2k∗,

[b∗,−k∗] = 2b∗ − 2k∗.

We now prove the main theorem.

Theorem 3.1. With Assumption 3.1, let
A,A∗,B,B∗,K,K∗,Φ,Ψ be as in Defini-
tion 3.2. Then there exists a �-module structure
on V for which the generators act as follows:

generators action on V
x21 a∗

x32 b∗

x43 a

x14 b

x13 k

x42 k∗

Proof. Since � has essentially six generators, it
suffices to show that the matrices a, a∗, b, b∗k, k∗

satisfy relations (1) and (2) in Definition 3.1.

Let mutually distinct h, i, j ∈ {1, 2, 3, 4}
be chosen. By Lemma 3.4 and since
[x, y] = −[y, x], we see that the matrix as-
sociated with xhi and the matrix associated with
xij satisfy relation (1) of Definition 3.1.

Let mutually distinct h, i, j, k ∈ {1, 2, 3, 4} be
chosen. By Lemma 3.3, we see that the ma-

trix associated with xhi and the matrix associ-
ated with xjk satisfy relation (2) of Definition
3.1.
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