The Tetrahedron Algebra and Shrikhande Graph

John Vincent S. Morales Department of Mathematics, De La Salle University Taft Avenue, Manila, Philippines

john.vincent.morales@yahoo.com

Hartwig and Terwilliger (2007) obtained a presentation of the three-point \mathfrak{sl}_2 loop algebra via generators and relations. In order to do this, they defined a complex Lie algebra \boxtimes , called the tetrahedron algebra, using generators $\{x_{ij} \mid i, j \in \{1, 2, 3, 4\}, i \neq j\}$ and relations: (i) $x_{ij} + x_{ji} = 0$, (ii) $[x_{hi}, x_{ij}] = 2x_{hi} + 2x_{ij}$ for mutually distinct h, i, j and (iii) $[x_{hi}, [x_{hi}, [x_{hi}, x_{jk}]]] = 4[x_{hi}, x_{jk}]$ for mutually distinct h, i, j, k.

The Shrikhande graph S was introduced by S. S. Shrikhande in 1959. Egawa showed that S is a distanceregular graph whose parameters coincide with that of the Hamming graph H(2, 4). Let X be the vertex set of S. Let A_1 denote the adjacency matrix of S. Fix $x \in X$ and let $A_1^* = A_1^*(x)$ denote the dual adjacency matrix of S. Let T = T(x) denote the subalgebra of $Mat_X(\mathbb{C})$ generated by A_1 and A_1^* . In this paper, we exhibit an action of \boxtimes on the standard module of S. To do this, we use the complete set of pairwise nonisomorphic irreducible T-modules U_l 's of S and the standard basis \mathcal{B}_l of each U_l which were obtained by Tanabe in 1997. We define matrices $\mathbf{A}, \mathbf{A}^*, \mathbf{B}, \mathbf{B}^*, \mathbf{K}, \mathbf{K}^*, \Phi$ and Ψ in T by giving the matrix representations of the restriction on U_l with respect to the basis B_i . Finally, we take $\mathbf{A}^* + \Psi + \Phi$, $\mathbf{B}^* - \Phi$, $\mathbf{A} - \Psi + \Phi$, $\mathbf{B} - \Phi$, $\mathbf{K} - \Psi$ and $\mathbf{K}^* - \Psi$, and show that these matrices satisfy the relations of \boxtimes .

1. INTRODUCTION

One of the main foci of algebraic combinatorics is the taxonomy of a certain class of graphs known as Q-polynomial distanceregular graphs. These graphs are just equivalent to P- and Q-polynomial association schemes. Since the 1980s, a number of prominent mathematicians in algebraic combinatorics have shown interest in classifying such objects. The main algebraic tool used was the Bose-Mesner algebra. Terwilliger made a significant contribution by extending the Bose-Mesner algebra to the bigger subsconstituent algebras (see Terwilliger, 1992; 1993). These algebras provided tools to understand interesting properties of *Q*-polynomial distance-regular graphs.

Hartwig and Terwilliger (2007) found a presentation for the three-point \mathfrak{sl}_2 loop algebra via generators and relations. To do this, they defined a Lie algebra \boxtimes called the tetrahedron algebra by generators and relations, and showed an isomorphism from \boxtimes to the three-point \mathfrak{sl}_2 loop algebra. The tetrahedron algebra contains some subalgebras that are isomorphic to \mathfrak{sl}_2 (see Hartwig & Terwilliger, 2007, Corollary 12.4) and to the Onsager algebra \mathcal{O} (see Hartwig & Terwilliger, 2007, Corollary 12.5), an infinite dimensional Lie algebra, which appears in integrable systems and solvable lattice models.

Recent efforts of Terwilliger and Ito discuss construction of a \boxtimes -module structure from some Q-polynomial distance-regular graphs (see Ito & Terwilliger, 2007; 2009). In this paper, we aim to construct a \boxtimes -module structure using the Shrikhrande graph - a distance-regular graph whose parameters coincide with that of the Hamming graph H(2, 4) (see Egawa, 1981, Lemma 2.1).]

2. DISTANCE-REGULAR GRAPHS

We begin with basic results regarding distance-regular graphs. The reader may refer to Bannai and Ito (1984), Biggs (1993), Brouwer, Cohen and Neumaier (1989) and Godsil (1993) for background information.

Let X be any nonempty finite set, and let $V := \mathbb{C}^X$ denote the \mathbb{C} -vector space of column vectors with coordinates indexed by X. Let $Mat_X(\mathbb{C})$ denote the algebra of matrices over \mathbb{C} with rows and columns indexed by X. Note that $Mat_X(\mathbb{C})$ acts on V by left multiplication. We call V the standard module.

Endow V with the Hermitean inner product $\langle u, v \rangle = u^t \overline{v}$ $(u, v \in V)$ where u^t, \overline{v} denote transpose of u and complex conjugate of v, respectively.

For every $x \in X$, we let \hat{x} be the 0-1 vector in V that has a 1 in the x coordinate and 0 everywhere else. Observe $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V.

Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph without loops or multiple edges, with vertex set X, edge set R, pathlength distance function ∂ and diameter D := $\max\{\partial(x, y) \mid x, y \in X\}$. We say Γ is *distance*- *regular* whenever for all integers h, i, j $(0 \le h, i, j \le D)$ and for all $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h := |\{z \in X | \partial(x, z) = i, \partial(y, z) = j\}|$$

is independent of x and y. The integers p_{ij}^h are called the *intersection numbers* for Γ . We abbreviate $a_i := p_{1i}^i \ (0 \le i \le D), \ b_i := p_{1i+1}^i \ (0 \le i \le D), \ c_i := p_{1i-1}^i \ (1 \le i \le D), \ k_i := p_{ii}^0 \ (0 \le i \le D), \text{ and for convenience we set } c_0 := 0 \ \text{and} \ b_D := 0.$

For each integer $i \ (0 \le i \le D)$, let A_i be the matrix in $Mat_X(\mathbb{C})$ with x, y entry

$$(A_i)_{xy} = \begin{cases} 1, & \partial(x, y) = i \\ 0, & \partial(x, y) \neq i \end{cases} \qquad (x, y \in X).$$

We call the matrices A_0, A_1, \ldots, A_D the *distance matrices* of Γ . We refer to A_1 as the *adjacency matrix* of Γ . These matrices form a basis for a commutative subalgebra M of $Mat_X(\mathbb{C})$ called the *Bose-Mesner algebra* of Γ .

Bannai and Ito (1984, p. 59, 64, 190) noted that A_1 generates M, wherein M has a second basis E_0, E_1, \ldots, E_D such that

$$E_{0} = |X|^{-1}J,$$

$$E_{0} + E_{1} + \dots + E_{D} = I,$$

$$\overline{E_{i}} = E_{i} \quad (0 \le i \le D),$$

$$E_{i}^{t} = E_{i} \quad (0 \le i \le D),$$

$$E_{i}E_{j} = \delta_{ij}E_{i} \ (0 \le i, j \le D).$$

where J and I are respectively the all ones matrix and the identity matrix in $Mat_X(\mathbb{C})$. We call the matrices E_0, E_1, \ldots, E_D the *primitive idempotents* of Γ .

Since E_0, E_1, \ldots, E_D form a basis for M, there exist complex scalars $\theta_0, \theta_1, \ldots, \theta_D$ such that $A_1 = \sum_{i=0}^{D} \theta_i E_i$. Bannai and Ito (1984, p. 97) showed that the scalars $\theta_0, \theta_1, \ldots, \theta_D$ are real. Since A_1 generates M these scalars are mutu-

$$V = E_0 V + E_1 V + \dots + E_D V.$$

For $0 \le i \le D$ the space $E_i V$ is the maximal eigenspace of A_1 associated with θ_i .

We recall the *Q*-polynomial property. Let \circ denote entry-wise multiplication in $Mat_X(\mathbb{C})$. Then $A_i \circ A_j = \delta_{ij}A_i$ $(0 \le i, j \le D)$. Therefore *M* is closed under \circ . Thus there exist complex scalars q_{ij}^h $(0 \le h, i, j \le D)$ such that

$$E_i \circ E_j = \sum_{h=0}^{D} q_{ij}^h E_h \qquad (0 \le i, j \le D).$$

According to Brouwer et. al. (1989, p. 170), the scalars q_{ij}^h are real and nonnegative for $0 \leq h, i, j \leq D$. We say Γ is *Q-polynomial* (with respect to a given ordering E_0, E_1, \ldots, E_D) whenever for all distinct integers $h, j(0 \leq h, j \leq D), q_{1j}^h = 0$ if and only if $|h - j| \neq 1$.

Suppose the distance-regular graph Γ is Q-polynomial with respect to the ordering E_0, E_1, \ldots, E_D of the primitive idempotents. We recall the dual Bose-Mesner algebra of Γ . Fix a vertex $x \in X$. For each integer $i \ (0 \le i \le D)$, let $E_i^* := E_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with y, y entry

$$(E_i^*)_{yy} = (A_i)_{xy} \qquad (y \in X).$$

The matrices $E_0^*, E_1^*, \ldots, E_D^*$ are called the *dual idempotents* of Γ with respect to x. Observe that

$$E_{0}^{*} + E_{1}^{*} + \dots + E_{D}^{*} = I,$$

$$\overline{E_{i}^{*}} = E_{i}^{*} \quad (0 \le i \le D),$$

$$E_{i}^{*t} = E_{i}^{*} \quad (0 \le i \le D),$$

$$E_{i}^{*}E_{j}^{*} = \delta_{ij}E_{i}^{*} \quad (0 \le i, j \le D).$$

These matrices form a basis for a commutative

subalgebra $M^* = M^*(x)$ of $Mat_X(\mathbb{C})$ called the *dual Bose-Mesner algebra of* Γ with respect to x. For convenience, we set $E^*_{-1} = 0$, and $E^*_{D+1} = 0$.

For each integer i $(0 \le i \le D)$, let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with y, y entry

$$(A_i^*)_{yy} = |X|(E_i)_{xy} \qquad (y \in X).$$

In a paper by Terwilliger (1992, p. 379), the matrices $A_0^*, A_1^*, \ldots, A_D^*$ form a second basis for M^* . The matrices A_0, A_1, \ldots, A_D are called the *dual distance matrices* of Γ with respect to x. We call A_1^* the *dual adjacency matrix* of Γ with respect to x. Moreover, the matrix A_1^* generates M^* (Terwilliger, 1992, Lemma 3.11).

We recall the dual eigenvalues of Γ . Since $E_0^*, E_1^*, \ldots, E_D^*$ form a basis for M^* , there exist complex scalars $\theta_0^*, \theta_1^*, \ldots, \theta_D^*$ such that

$$A_1^* = \sum_{i=0}^D \theta_i^* E_i^*.$$

By a result from Terwilliger (1992, Lemma 3.11) and since A_1^* generates M^* , the scalars $\theta_0^*, \theta_1^*, \ldots, \theta_D^*$ are real and are mutually distinct. We call θ_i^* the *dual eigenvalue* of Γ associated with E_i^* ($0 \le i \le D$).

Observe that $E_i^*V = \operatorname{span}\{\hat{y} \mid y \in X, \partial(x, y) = i\} \ (0 \le i \le D)$. Also, one checks that V decomposes as an orthogonal direct sum

$$V = E_0^* V + E_1^* V + \dots + E_D^* V.$$

For $0 \le i \le D$ the space E_i^*V is the eigenspace of A_1^* associated with θ_i^* . We call E_i^*V the *i*th subconstituent of Γ with respect to x.

We recall the Terwilliger algebra of Γ (see Caughman 1999; Go 2003; Terwilliger 1992, 1993). The subalgebra T = T(x) of $Mat_X(\mathbb{C})$ generated by M and M^* is called the *Terwilliger* algebra of Γ with respect to x. Consequently, T is generated by A_1 and A_1^* . Moreover, T has finite positive dimension. Observe that T is closed under the conjugate transpose map, so Tis semi-simple.

By a *T*-module we mean a subspace W of V such that $PW \subseteq W$ for all $P \in T$. A *T*-module W is said to be *irreducible* whenever $W \neq 0$ and W contains no *T*-modules other than 0 and W. Since *T* is semi-simple, any *T*-module is an orthogonal direct sum of irreducible *T*-modules. In particular, the standard module V can be decomposed as an orthogonal direct sum of irreducible *T*-modules.

We end this section with results that will be useful later, and we make the following assumption.

Assumption 2.1. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter D. Let A_1 denote the adjacency matrix of Γ . Assume Γ is Q-polynomial with respect to the ordering E_0, E_1, \ldots, E_D of the primitive idempotents. Fix $x \in X$. Let $A_1^* = A_1^*(x)$ denote the dual adjacency matrix, and let $E_i^* = E_i^*(x)$ ($0 \le i \le D$) denote the dual idempotents of Γ . Let T = T(x) denote the Terwilliger algebra of Γ with respect to x.

Definition 2.1. With Assumption 2.1, let W and W' be irreducible T-modules. By a T-*isomorphism* from W to W' we mean a vector space isomophism $\sigma : W \to W'$ such that

 $(\sigma P - P\sigma)W = 0$ for all $P \in T$.

If such an isomorphism exists, we say W and W' are *T*-isomorphic.

Lemma 2.1. With reference to Assumption 2.1, let $\sigma : W \to W'$ be an isomorphism of irreducible *T*-modules. Suppose $\{w_1, w_2, \ldots, w_k\}$ forms a basis for *W*. Then for any matrix $P \in T$ the following coincide:

- (i) the matrix representing P with respect to the ordered basis $\{w_1, w_2, \dots, w_k\}$
- (ii) the matrix representing P with respect to the ordered basis $\{\sigma(w_1), \sigma(w_2), \dots, \sigma(w_k)\}$

Proof. The lemma follows immediately from Definition 2.1 and the fact that σ maps a basis for W to a basis for W'.

Lemma 2.2. With Assumption 2.1, Let T' denote the set of all matrices in $Mat_X(\mathbb{C})$ that leave invariant every irreducible T-module. Then T = T'.

The proof of this lemma can be found in the paper by Ito and Terwilliger (2007, Lemma 12.1). As a consequence of Lemma 2.2, any matrix that leaves invariant every irreducible T-module must be in T.

3. TETRAHEDRON ALGEBRA \boxtimes AND THE SHRIKHANDE GRAPH S

We now define a Lie algebra known as the *tetrahedron algebra*. It was first introduced by Hartwig and Terwilliger in (2007).

Definition 3.1. Let $K = \{1, 2, 3, 4\}$ and let \boxtimes denote the Lie algebra over \mathbb{C} defined by generators $\{x_{ij} \mid i, j \in K, i \neq j\}$ and relations:

- (i) $x_{ij} + x_{ji} = 0$ whenever $i \neq j$.
- (ii) for mutually distinct h, i, j,

$$x_{hi}, x_{ij}] = 2x_{hi} + 2x_{ij}.$$
 (1)

(iii) for mutually distinct h, i, j, k,

$$[x_{hi}, [x_{hi}, [x_{hi}, x_{jk}]]] = 4 [x_{hi}, x_{jk}].$$
(2)

We call \boxtimes the tetrahedron algebra.

By Definition 3.1(i), \boxtimes has essentially six generators namely, $x_{12}, x_{23}, x_{34}, x_{41}, x_{31}$ and x_{24} . For more information about the tetrahedron algebra, the reader may refer to Hartwig and Terwilliger (2007), Hartwig (2007), and Ito & Terwilliger (2007). We now define the Shrikhande Graph and mention some of its properties.

A code graph is a graph whose vertex set consists of binary codes and two vertices are adjacent whenever they differ in exactly two entries. Now, consider the code graph S whose vertex set consists of binary codes 000000, 110000, 010111, 0110111 and those obtained by a cyclic permutation of the six entries. We call S the Shrikhande graph. Now, we make the following assumption for the rest of the paper:

Assumption 3.1. Let S be the Shrikhande graph with standard module V. The graph S is a distance-regular graph with 16 vertices and diameter 2 (see Egawa, 1981, Lemma 2.1). One checks that S has eigenvalues 6, 2, -2. Moreover, with this ordering of eigenvalues, S is Qpolynomial with respect to E_0, E_1, E_2 (Brouwer et. al, 1989, Corollary 8.4.2). The dual eigenvalues of S are 6, 2, -2. Fix a vertex x and let T = T(x) denote the Terwilliger algebra of S with respect to x. For each integer $i (0 \leq i \leq 2)$ we let $E_i^* = E_i^*(x)$ denote the dual primitive idempotents. By Tanabe's (1997) Proposition 1, there exists subspaces $U_0, U_1, \tilde{U}_1, U_2, \tilde{U}_2, U_3, U_4, U_5, \tilde{U}_5, \tilde{U}_5$ of V such that

- (i) $V = U_0 + U_1 + \tilde{U_1} + U_2 + \tilde{U_2} + U_3 + U_4 + U_5 + \tilde{U_5} + \tilde{\tilde{U_5}}$ is an orthogonal direct sum,
- (ii) U_1, \tilde{U}_1 (resp. U_2, \tilde{U}_2) are *T*-isomorphic,
- (iii) the subspaces $U_5, \tilde{U}_5, \tilde{U}_5$ are pairwise *T*-isomorphic,
- (iv) U_0 has basis $\mathcal{B}_0 = \{a_0, a_1, a_2\},\$

- (v) U_1 has basis $\mathcal{B}_1 = \{b_1, b_2\},\$
- (vi) U_2 has basis $\mathcal{B}_2 = \{c_1, c_2\},\$
- (vii) U_3 has basis $\mathcal{B}_3 = \{d_1\},\$
- (viii) U_4 has basis $\mathcal{B}_4 = \{e_2\},\$
- (ix) U_5 has basis $\mathcal{B}_5 = \{f_2\}.$

We call \mathcal{B}_l the (ordered) standard basis for the irreducible *T*-module U_l and for every $P \in T$, let $P_{\mathcal{B}_l}$ denote the matrix representing *P* with respect to the standard basis \mathcal{B}_l . Finally, we set [M, N] = MN - NM for $M, N \in T$.

By Tanabe's (1997) Proposition 1, we see that the set $\{U_0, U_1, U_2, U_3, U_4, U_5\}$ gives the complete set of pairwise non-isomorphic irreducible *T*-modules.

Using Assumption 3.1, we aim to show that that there exists a \boxtimes -module structure on the standard module V of S. To do this, we find matrix representations for each generator of \boxtimes and show that these matrices together with the operator [,] satisfy the relations (1) and (2).

Definition 3.2. With Assumption 3.1, let the matrices $\mathbf{A}, \mathbf{A}^*, \mathbf{B}, \mathbf{B}^*, \mathbf{K}, \mathbf{K}^*, \Phi$ and Ψ be in T such that their matrix representations with respect to the basis \mathcal{B}_l of U_l are as follows:

Basis	$\mathbf{A}_{\mathcal{B}_l}$	$\mathbf{A}^*{}_{\mathcal{B}_l}$
\mathcal{B}_0	$\begin{bmatrix} -1 & 3 & 0 \\ \frac{1}{2} & 0 & \frac{3}{2} \\ 0 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix}$
\mathcal{B}_1	$\begin{bmatrix} -\frac{3}{2} & \frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$	$\left[\begin{array}{cc} 0 & 0 \\ 0 & -2 \end{array}\right]$
\mathcal{B}_2	$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{2} & -\frac{3}{2} \end{bmatrix}$	$\left[\begin{array}{cc} 0 & 0 \\ 0 & -2 \end{array}\right]$
\mathcal{B}_3	[-2]	[0]
\mathcal{B}_4	[0]	[-2]
\mathcal{B}_5	[-2]	[-2]

Basis	$\mathbf{K}_{\mathcal{B}_l}$	$\mathbf{K^*}_{\mathcal{B}_l}$
\mathcal{B}_0	$\left[\begin{array}{rrrr} -2 & 4 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{array}\right]$	$\left[\begin{array}{rrrr} -2 & 0 & 0 \\ \frac{2}{3} & 0 & 0 \\ 0 & \frac{4}{3} & 2 \end{array}\right]$
\mathcal{B}_1	$\left[\begin{array}{rrr} -1 & 2\\ 0 & 1 \end{array}\right]$	$\left[\begin{array}{rr} -1 & 0\\ \frac{2}{3} & 1 \end{array}\right]$
\mathcal{B}_2	$\left[\begin{array}{rr} -1 & 2\\ 0 & 1 \end{array}\right]$	$\left[\begin{array}{rr} -1 & 0 \\ 6 & 1 \end{array}\right]$
\mathcal{B}_3	[-1]	[-1]
\mathcal{B}_4	[1]	[1]
\mathcal{B}_5	[0]	[0]

Basis	$\mathbf{\Phi}_{\mathcal{B}_l}$	$\Psi_{{\mathcal B}_l}$
\mathcal{B}_0	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$
\mathcal{B}_1	$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$	$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$
\mathcal{B}_2	$\left[\begin{array}{rr}1&0\\0&1\end{array}\right]$	$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$
\mathcal{B}_3	[1]	[-1]
\mathcal{B}_4	[1]	[1]
\mathcal{B}_5	[2]	[0]

Basis	$\mathbf{B}_{\mathcal{B}_l}$	$\mathbf{B}^*{}_{\mathcal{B}_l}$
\mathcal{B}_0	$\left[\begin{array}{rrrr} -2 & -12 & 0 \\ 0 & 0 & -6 \\ 0 & 0 & 2 \end{array}\right]$	$\begin{bmatrix} -2 & 0 & 0 \\ -2 & 0 & 0 \\ 0 & -4 & 2 \end{bmatrix}$
\mathcal{B}_1	$\left[\begin{array}{cc} 0 & -6 \\ 0 & 2 \end{array}\right]$	$\left[\begin{array}{rrr} 0 & 0 \\ -2 & 2 \end{array}\right]$
\mathcal{B}_2	$\left[\begin{array}{cc} 0 & -\frac{2}{3} \\ 0 & 2 \end{array}\right]$	$\left[\begin{array}{rrr} 0 & 0 \\ -2 & 2 \end{array}\right]$
\mathcal{B}_3	[1]	[1]
\mathcal{B}_4	[1]	[1]
\mathcal{B}_5	[2]	[2]

We now prove the following lemmas.

Lemma 3.1. With Assumtion 3.1, let the matrices $A, A^*, B, B^*, K, K^*, \Phi, \Psi$ be as in Defini-

tion 3.2. Then,

$$[\mathbf{A}, [\mathbf{A}, [\mathbf{A}, \mathbf{A}^*]]] = 4[\mathbf{A}, \mathbf{A}^*]$$
(3)
$$[\mathbf{A}^*, [\mathbf{A}^*, [\mathbf{A}^*, \mathbf{A}]]] = 4[\mathbf{A}^*, \mathbf{A}]$$
$$[\mathbf{B}, [\mathbf{B}, [\mathbf{B}, \mathbf{B}^*]]] = 4[\mathbf{B}, \mathbf{B}^*]$$
$$[\mathbf{B}^*, [\mathbf{B}^*, [\mathbf{B}^*, \mathbf{B}]]] = 4[\mathbf{B}^*, \mathbf{B}]$$
$$[\mathbf{K}, [\mathbf{K}, [\mathbf{K}, \mathbf{K}^*]]] = 4[\mathbf{K}, \mathbf{K}^*]$$
$$[\mathbf{K}^*, [\mathbf{K}^*, [\mathbf{K}^*, \mathbf{K}]]] = 4[\mathbf{K}^*, \mathbf{K}]$$

Proof. Fix an irreducible T-module U_l with a standard basis \mathcal{B}_l . To prove (3), one checks that the expression

$$[\mathbf{A}, [\mathbf{A}, [\mathbf{A}, \mathbf{A}^*]]] - 4[\mathbf{A}, \mathbf{A}^*]$$

vanishes on every U_l by replacing \mathbf{A}, \mathbf{A}^* by $\mathbf{A}_{\mathcal{B}_l}$ and $\mathbf{A}^*_{\mathcal{B}_l}$, respectively. Since $\mathbf{A}, \mathbf{A}^* \in T$ and by Lemma 2.1, it follows that the expression above vanishes on every subspace *T*-isomorphic to U_l . Hence

$$[\mathbf{A}, [\mathbf{A}, [\mathbf{A}, \mathbf{A}^*]]] - 4[\mathbf{A}, \mathbf{A}^*] = 0.$$

The rest are proven similarly.

Lemma 3.2. With Assumption 3.1, let the matrices $A, A^*, B, B^*, K, K^*, \Phi, \Psi$ be as in Definition 3.2. Then,

$$[\mathbf{B}, \mathbf{A}] = 2\mathbf{A} + 2\mathbf{B} - 2\Psi \qquad (4)$$

$$[\mathbf{A}, \mathbf{B}^*] = 2\mathbf{A} + 2\mathbf{B}^* - 2\Psi$$

$$[\mathbf{A}^*, \mathbf{B}] = 2\mathbf{A}^* + 2\mathbf{B} + 2\Psi$$

$$[\mathbf{B}^*, \mathbf{A}^*] = 2\mathbf{A}^* + 2\mathbf{B}^* + 2\Psi$$

$$[\mathbf{A}, -\mathbf{K}] = 2\mathbf{A} - 2\mathbf{K} + 2\Phi$$

$$[-\mathbf{K}^*, \mathbf{A}] = 2\mathbf{A} - 2\mathbf{K}^* + 2\Phi$$

$$[\mathbf{A}^*, \mathbf{K}] = 2\mathbf{A}^* + 2\mathbf{K} + 2\Phi$$

$$[\mathbf{K}^*, \mathbf{A}^*] = 2\mathbf{A}^* + 2\mathbf{K}^* + 2\Phi$$

$$[\mathbf{K}, \mathbf{B}^*] = 2\mathbf{B} - 2\mathbf{K} + 2\Psi - 2\Phi$$

$$[\mathbf{K}, \mathbf{B}^*] = 2\mathbf{B} + 2\mathbf{K}^* - 2\Psi - 2\Phi$$

$$[\mathbf{B}, \mathbf{K}^*] = 2\mathbf{B}^* - 2\mathbf{K}^* + 2\Psi - 2\Phi.$$

Proof. Fix an irreducible T-module U_l with a standard basis \mathcal{B}_l . To prove (4), one checks that

the expression

$$BA - AB - 2A - 2B + 2\Psi$$

vanishes on every U_l by replacing \mathbf{A}, \mathbf{B} and Ψ by $\mathbf{A}_{\mathcal{B}_l}, \mathbf{B}_{\mathcal{B}_l}$ and $\Psi_{\mathcal{B}_l}$, respectively. Since the matrices $\mathbf{A}, \mathbf{B}, \Psi \in T$ and by Lemma 2.1, it follows that the expression above vanishes on every subspace *T*-isomorphic to U_l . Hence

$$\mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{B} - 2\mathbf{A} - 2\mathbf{B} + 2\Psi = 0.$$

The rest are proven similarly.

For the rest of the paper we use the following notations:

 $a = \mathbf{A} - \Psi + \mathbf{\Phi}$ $b = \mathbf{B} - \mathbf{\Phi}$ $a^* = \mathbf{A}^* + \Psi + \mathbf{\Phi}$ $b^* = \mathbf{B}^* - \mathbf{\Phi}$ $k = \mathbf{K} - \Psi$ $k^* = \mathbf{K}^* - \Psi.$

The succeeding lemma is proven analogously as Lemma 3.1.

Lemma 3.3. With Assumtion 3.1, let the matrices $\mathbf{A}, \mathbf{A}^*, \mathbf{B}, \mathbf{B}^*, \mathbf{K}, \mathbf{K}^*, \boldsymbol{\Phi}, \boldsymbol{\Psi}$ be as in Definition 3.2. Then,

$$\begin{split} & [a, [a, [a, a^*]]] = 4[a, a^*] \\ & [a^*, [a^*, [a^*, a]]] = 4[a^*, a] \\ & [b, [b, [b, b^*]]] = 4[b, b^*] \\ & [b^*, [b^*, [b^*, b]]] = 4[b^*, b] \\ & [k, [k, [k, k^*]]] = 4[k, k^*] \\ & [k^*, [k^*, [k^*, k]]] = 4[k^*, k] \end{split}$$

The succeeding lemma is proven analogously as Lemma 3.2.

Lemma 3.4. With Assumption 3.1, let the matrices $\mathbf{A}, \mathbf{A}^*, \mathbf{B}, \mathbf{B}^*, \mathbf{K}, \mathbf{K}^*, \mathbf{\Phi}, \Psi$ be as in Definition 3.2. Then, we get the following equations:

$$\begin{split} [b,a] &= 2b + 2a, \\ [a,b^*] &= 2a + 2b^*, \\ [a^*,b] &= 2a^* + 2b, \\ [b^*,a^*] &= 2b^* + 2a^*, \\ [a,-k] &= 2a - 2k, \\ [-k^*,a] &= 2a - 2k^*, \\ [a^*,k] &= 2a^* + 2k, \\ [k^*,a^*] &= 2a^* + 2k^*, \\ [k^*,a^*] &= 2a^* + 2k^*, \\ [-k,b] &= 2b - 2k, \\ [k,b^*] &= 2k + 2b^*, \\ [b,k^*] &= 2b + 2k^*, \\ [b^*,-k^*] &= 2b^* - 2k^*. \end{split}$$

We now prove the main theorem.

Theorem 3.1. With Assumption 3.1, let $A, A^*, B, B^*, K, K^*, \Phi, \Psi$ be as in Definition 3.2. Then there exists a \boxtimes -module structure on V for which the generators act as follows:

generators	action on V
x_{21}	a^*
<i>x</i> ₃₂	b^*
x_{43}	a
x_{14}	b
x_{13}	k
x_{42}	k^*

Proof. Since \boxtimes has essentially six generators, it suffices to show that the matrices a, a^*, b, b^*k, k^* satisfy relations (1) and (2) in Definition 3.1.

Let mutually distinct $h, i, j \in \{1, 2, 3, 4\}$ be chosen. By Lemma 3.4 and since [x, y] = -[y, x], we see that the matrix associated with x_{hi} and the matrix associated with x_{ij} satisfy relation (1) of Definition 3.1.

Let mutually distinct $h, i, j, k \in \{1, 2, 3, 4\}$ be chosen. By Lemma 3.3, we see that the ma-

trix associated with x_{hi} and the matrix associated with x_{jk} satisfy relation (2) of Definition 3.1.

4. ACKNOWLEDGEMENT

The author would like to thank Paul Terwilliger and Arlene Pascasio for their invaluable comments and suggestions.

5. **REFERENCES**

[1] Bannai, E., & Ito, T. (1984) *Algebraic Combinatorics I: Association Schemes* (Benjamin-Cummings Lecture Note Ser. 58). Menlo Park, CA: Benjamin-Cummings.

[2] Biggs, N. (1993) *Algebraic Graph Theory*.(2nd ed.) Cambridge: Cambridge University Press.

[3] Brouwer, A.E., Cohen, A.M., & Neumaier, A. (1989). *Distance-Regular Graphs*, New York: Springer.

[4] Caughman, J.S. IV. (1999). *The Terwilliger algebras of bipartite P- and Q-polynomial schemes*. Discrete Mathematics 196(1-3), (pp. 65-95).

[5] Doob, M. (1972). On graph products and association schemes. Utilitas Math 1, (pp. 291-302).

[6] Egawa, Y. (1981). Characterization of H(n,q) by the parameters. Journal of Combinatorial Theory Series A 31(2), (pp. 108-125).

[7] Go, J.T. (2003). *The Terwilliger algebra of the hypercube*. European J. Combin. 23, (pp. 399-429).

[8] Godsil, C.D. (1993). *Algebraic combinatorics*. New York: Chapman and Hall. [9] Hartwig, B. (2007). *The tetrahedron algebra and its finite-dimensional irreducible modules*. Linear Algebra Appl. 422, (pp. 219-235).

[10] Hartwig, B., & Terwilliger, P. (2007). *The Tetrahedron algebra, the Onsager algebra and the* \mathfrak{sl}_2 *loop algebra.* J. Algebra 308(2), (pp. 840-863).

[11] Ito, T., & Terwilliger, P. (2008). *Finitedimensional irreducible modules for the threepoint* \mathfrak{sl}_2 *loop algebra*. Comm. Algebra 36, (pp. 4557-4598).

[12] Ito, T., & Terwilliger, P. (2007). *The q*-tetrahedron algebra and its finite-dimensional irreducible modules. Comm. Algebra 35, (pp. 3415-3439).

[13] Ito, T., & Terwilliger, P. (2009). *Distanceregular graphs and the q-tetrahedron algebra*. European J. Combin. 30(3), (pp. 682-697). [14] Ito, T., & Terwilliger, P. (2007). *Tridiagonal pair of Krawtchouk type*. Linear Algebra Appl. 427, (pp. 218 - 233).

[15] Tanabe, K. (1997). *The irreducible modules of the Terwilliger algebra of Doob schemes.* Journal of Algebraic Combinatorics 6(2), (pp. 173-195).

[16] Terwilliger, P. (1992). *The subconstituent algebra of an association scheme I*. J. Algebraic Combin. 1(4), (pp. 363-388).

[17] Terwilliger, P. (1993). *The subconstituent algebra of an association scheme II*. J. Algebraic Combin. 2, (pp. 73-103).

[18] Terwilliger, P. (1993). *The subconstituent algebra of an association scheme III*. J. Algebraic Combin. 2, (pp. 177-210).