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Hartwig and Terwilliger (2007) obtained a presentation of the three-point sly loop algebra via generators
and relations. In order to do this, they defined a complex Lie algebra X, called the tetrahedron algebra, using
generators {z;; | 4,7 € {1,2,3,4},7 # j} and relations: (i) x;; + xj; = 0, (%) [Xpi, Ti5] = 22pi + 25
for mutually distinct h, ¢, j and (49t) [Thi, [Thi, [Thi, Tjk]]] = 4@, z,5] for mutually distinct £, ¢, 7, k.

The Shrikhande graph S was introduced by S. S. Shrikhande in 1959. Egawa showed that S is a distance-
regular graph whose parameters coincide with that of the Hamming graph H (2, 4). Let X be the vertex set
of S. Let A; denote the adjacency matrix of S. Fix z € X and let A7 = Aj(z) denote the dual adjacency
matrix of S. Let T' = T'(x) denote the subalgebra of Matx (C) generated by A; and A7. In this paper, we
exhibit an action of X on the standard module of S. To do this, we use the complete set of pairwise non-
isomorphic irreducible T'—modules U;’s of S and the standard basis B; of each U; which were obtained by
Tanabe in 1997. We define matrices A, A*, B, B*, K, K*, ® and ¥ in T by giving the matrix representations
of the restriction on U; with respect to the basis B;. Finally, we take A* + ¥ + &, B* — &, A — ¥ + &,
B — &, K — ¥ and K* — P, and show that these matrices satisfy the relations of X.

1. INTRODUCTION williger, 1992; 1993). These algebras provided
tools to understand interesting properties of
One of the main foci of algebraic combi-  ()-polynomial distance-regular graphs.
natorics is the taxonomy of a certain class
of graphs known as ()-polynomial distance-

regular graphs. These graphs are just equivalent

Hartwig and Terwilliger (2007) found a
presentation for the three-point sl, loop algebra

to P- and ()-polynomial association schemes.
Since the 1980s, a number of prominent math-
ematicians in algebraic combinatorics have
shown interest in classifying such objects. The
main algebraic tool used was the Bose-Mesner
algebra. Terwilliger made a significant contri-
bution by extending the Bose-Mesner algebra
to the bigger subsconstituent algebras (see Ter-

via generators and relations. To do this, they
defined a Lie algebra X called the tetrahedron
algebra by generators and relations, and showed
an isomorphism from X to the three-point sl,
loop algebra. The tetrahedron algebra contains
some subalgebras that are isomorphic to sl, (see
Hartwig & Terwilliger, 2007, Corollary 12.4)
and to the Onsager algebra O (see Hartwig &
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Terwilliger, 2007, Corollary 12.5), an infinite
dimensional Lie algebra, which appears in
integrable systems and solvable lattice models.

Recent efforts of Terwilliger and Ito discuss
construction of a X-module structure from some
(-polynomial distance-regular graphs (see Ito
& Terwilliger, 2007; 2009). In this paper,
we aim to construct a X-module structure us-
ing the Shrikhrande graph - a distance-regular
graph whose parameters coincide with that of
the Hamming graph H(2,4) (see Egawa, 1981,
Lemma 2.1). |

2. DISTANCE-REGULAR GRAPHS

We begin with basic results regarding
distance-regular graphs. The reader may
refer to Bannai and Ito (1984), Biggs (1993),
Brouwer, Cohen and Neumaier (1989) and
Godsil (1993) for background information.

Let X be any nonempty finite set, and let
V := CX denote the C-vector space of column
vectors with coordinates indexed by X. Let
Matx(C) denote the algebra of matrices over
C with rows and columns indexed by X. Note
that Matx(C) acts on V' by left multiplication.
We call V' the standard module.

Endow V' with the Hermitean inner product
(u,v) = 't (u,v € V) where u', T denote
transpose of u and complex conjugate of v,
respectively.

For every x € X, we let Z be the 0-1 vector
in V that has a 1 in the = coordinate and 0
everywhere else. Observe {7 | y € X} is an
orthonormal basis for V.

Let ' = (X,R) denote a finite, undi-
rected, connected graph without loops or mul-
tiple edges, with vertex set X, edge set R, path-
length distance function 0 and diameter D :=
max{d(x,y) | x,y € X}. We say I is distance-

regular whenever for all integers h,i,j (0
h,i,7 < D) andforall x,y € X with d(z,y)
h, the number

A

Pl =z € X|0(z, z) =1,0(y, z) = j}|

is independent of x and y. The integers p?j are
called the intersection numbers for I'. We abbre-
viate a; := pi, (0 <4< D), b;:=pi,.; (0<
i < D-1), ¢ = p., (1 <i < D)
ki :==pY (0 <14 < D), and for convenience we
setco:=0 and bp := 0.

For each integer i (0 < ¢ < D), let A; be the
matrix in Matx (C) with z, y entry

1, O(x,y) =1
R Ul PYR L
We call the matrices Ay, Aq,...,Ap the dis-

tance matrices of I'.  'We refer to A; as the
adjacency matrix of I'. These matrices form
a basis for a commutative subalgebra M of
Matx (C) called the Bose-Mesner algebra of T

Bannai and Ito (1984, p. 59, 64, 190) noted that
Ay generates M, wherein M has a second basis

Ey, Eq, ..., Ep such that
Ey = |X|71,
EO+E1+...+E2:]7

E, =E (0<
El =F (0<

where J and [ are respectively the all ones
matrix and the identity matrix in Mat x(C). We
call the matrices Ey, E1, ..., Ep the primitive
idempotents of T

Since Ey, E, ..., Ep form a basis for M, there
exist comDplex scalars 6y, 0,,...,0p such that
Ay =Y .7, 0;E;. Bannai and Ito (1984, p. 97)
showed that the scalars 0y, 64, ...,0p are real.
Since A; generates M these scalars are mutu-
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ally distinct. We call 6; the eigenvalue of T" as-
sociated with F; (0 < i < D). Observe that V'
decomposes as an orthogonal direct sum

V=EV+EV+ - +EpV

For 0 < ¢ < D the space F;V is the maximal
eigenspace of A; associated with 6;.

We recall the (Q-polynomial property. Let o
denote entry-wise multiplication in Matx(C).
Then A;0A; = 6,;;4; (0 < 4,7 < D). Therefore
M 1is closed under o. Thus there exist complex
scalars ¢ (0 < h,i,j < D) such that

D
E;oE; =) q}E)y (0<1,j<D).
h=0

According to Brouwer et. al. (1989, p.
170), the scalars qzhj are real and nonneg-
ative for 0 < h,i,7 < D. We say [ is
Q-polynomial (with respect to a given ordering
Ey, Ey, ..., Ep) whenever for all distinct inte-
gers h,j(0 < h,j < D), ¢f; = 0 if and only if
[h—j| # 1.

Suppose the distance-regular graph I' is
(-polynomial with respect to the ordering
Eqy, Eq, ..., Ep of the primitive idempotents.
We recall the dual Bose-Mesner algebra of I
Fix a vertex = € X. For each integer i (0 < i <
D), let £} := Ef(x) denote the diagonal matrix
in Matx(C) with y, y entry

(E;)yy = (Ai)acy

The matrices £, B, . .., B}, are called the dual
idempotents of I' with respect to z. Observe that

E;+Ef+--+Ep=1,

(y € X).

Ef=E (0<i<D),
Ef'=FEr (0<i<D),
E;E;:(SijE: (0<i,j < D).

These matrices form a basis for a commutative

subalgebra M* = M*(x) of Matx(C) called
the dual Bose-Mesner algebra of T" with respect
to z. For convenience, we set £*;, = 0, and
EBH =0.

For each integer ¢ (0 <1i < D), let A} = A} (x)
denote the diagonal matrix in Matx(C) with
y,y entry

(ADyy = [X[(Ei)ay — (y € X).

In a paper by Terwilliger (1992, p. 379), the
matrices Af, A7,..., A}, form a second basis
for M*. The matrices Ay, Ay, ..., Ap are called
the dual distance matrices of I' with respect
to x. We call A} the dual adjacency matrix of
I' with respect to . Moreover, the matrix Aj
generates M* (Terwilliger, 1992, Lemma 3.11).

We recall the dual eigenvalues of I'. Since
Ej, EBY, ..., BT form a basis for M*, there exist
complex scalars 65, 07, . .., 07, such that

D
A7 = 0E;.
=0

By a result from Terwilliger (1992, Lemma
3.11) and since A} generates M*, the scalars
05,07, . ..,07 are real and are mutually distinct.
We call 07 the dual eigenvalue of I" associated
with Ef (0 <i < D).

Observe that EfV = span{y | y €
X,0(z,y) =i} (0 <i < D). Also, one checks
that V' decomposes as an orthogonal direct sum

V=EV+EV+ - +EV

For 0 <7 < D the space E;V is the eigenspace
of A associated with 67. We call EfV the ith
subconstituent of I' with respect to x.

We recall the Terwilliger algebra of I' (see
Caughman 1999; Go 2003; Terwilliger 1992,
1993). The subalgebra 7' = T'(z) of Matx(C)
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generated by M and M ™ is called the Terwilliger
algebra of 1" with respect to x. Consequently,
T is generated by A; and Aj. Moreover, 71" has
finite positive dimension. Observe that T is
closed under the conjugate transpose map, so 1’
is semi-simple.

By a T-module we mean a subspace W of
V such that PIW C W forall P € T. A
T-module W is said to be irreducible when-
ever W # 0 and W contains no 7T-modules
other than 0 and W. Since T' is semi-simple,
any 7-module is an orthogonal direct sum
of irreducible 7T-modules. In particular, the
standard module V' can be decomposed as an
orthogonal direct sum of irreducible 7'-modules.

We end this section with results that will be
useful later, and we make the following assump-
tion.

Assumption 2.1. Let ' = (X, R) denote a
distance-regular graph with diameter D. Let
Ay denote the adjacency matrix of I'. Assume
I' is Q-polynomial with respect to the ordering
Ey, Ey, ..., Ep of the primitive idempotents.
Fix x € X. Let A} = Aj(x) denote the dual
adjacency matrix, and let Ef = Ef(z) (0 <
i < D) denote the dual idempotents of I". Let
T = T(z) denote the Terwilliger algebra of I'
with respect to z.

Definition 2.1. With Assumption 2.1, let W
and W' be irreducible 7-modules. By a 7T-
isomorphism from W to W/ we mean a vector
space isomoprhism o : W — W' such that

(0P —Po)W =0 forall P e T.

If such an isomorphism exists, we say W and
W' are T-isomorphic.

Lemma 2.1. With reference to Assumption 2.1,
let o0 : W — W' be an isomorphism of irre-
ducible T-modules. Suppose {wi,ws, ..., wy}
forms a basis for W. Then for any matrix P € T

the following coincide:

(i) the matrix representing P with respect to

the ordered basis {wy,ws, ..., wg}
(ii) the  matrix  representing P  with
respect to the ordered basis

{o(wy),0(ws),...,o(w)}

Proof. The lemma follows immediately from
Definition 2.1 and the fact that o maps a basis
for W to a basis for W’. O

Lemma 2.2. With Assumption 2.1, Let T" de-
note the set of all matrices in Matx(C) that

leave invariant every irreducible T'-module.
Then T =T

The proof of this lemma can be found in
the paper by Ito and Terwilliger (2007, Lemma
12.1). As a consequence of Lemma 2.2, any
matrix that leaves invariant every irreducible 7'-
module must be in 7.

3. TETRAHEDRON ALGEBRA X AND
THE SHRIKHANDE GRAPH S

We now define a Lie algebra known as the
tetrahedron algebra. It was first introduced by
Hartwig and Terwilliger in (2007).

Definition 3.1. Let X' = {1,2,3,4} and let X
denote the Lie algebra over C defined by gener-
ators { x;; | 4,7 € K,i # j} and relations:

(i) xi; + z;; = 0 whenever @ # j.

(ii) for mutually distinct h, ¢, 7,
[Thi, Tij] = 22p; + 25 (1)
(ii1) for mutually distinct A, 7, j, k,
[This [This [Thi, Tie)]) = 4 [This 2] . ()

We call X the tetrahedron algebra.
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By Definition 3.1(1), X has essentially six
generators namely, 19, To3, X34, 41,31 and
To4. For more information about the tetrahe-
dron algebra, the reader may refer to Hartwig
and Terwilliger (2007), Hartwig (2007), and
Ito & Terwilliger (2007). We now define the
Shrikhande Graph and mention some of its
properties.

A code graph is a graph whose vertex set con-
sists of binary codes and two vertices are adja-
cent whenever they differ in exactly two entries.
Now, consider the code graph S whose vertex
set consists of binary codes 000000, 110000,
010111,0110111 and those obtained by a cyclic
permutation of the six entries. We call S the
Shrikhande graph. Now, we make the following
assumption for the rest of the paper:

Assumption 3.1. Let S be the Shrikhande graph
with standard module V. The graph S is a
distance-regular graph with 16 vertices and di-
ameter 2 (see Egawa, 1981, Lemma 2.1). One
checks that S has eigenvalues 6,2, —2. More-
over, with this ordering of eigenvalues, S is Q-
polynomial with respect to Ey, E1, E'5 (Brouwer
et. al, 1989, Corollary 8.4.2). The dual eigen-
values of S are 6,2, —2. Fix a vertex x and
let T = T(x) denote the Terwilliger alge-
bra of S with respect to z. For each integer
i (0 < i < 2)welet Ef = Ef(x) denote
the dual primitive idempotents. By Tanabe’s
(1997) Proposition 1, there exists subspaces
Uo, Ul, Ul, UQ, [jg, U3, U4, U5, (j5, (j5 of V such
that

DV =U+Ui+ Ui+ U+ Us+ Us+ Us +
Us + U5 + U5 is an orthogonal direct sum,

@i1) Uy, Ul (resp. Us, UQ) are /-isomorphic,

(ii1) the subspaces Us, U5, U5 are pairwise 7T'-
isomorphic,

(iv) Uy has basis By = {ag, a1, as},

(v) Uy has basis By = {b1, b2},

(vi) Uy has basis By = {c1, 2},

(vii) Us has basis B3 = {d, },

(viii) Uy has basis By = {e2},

(ix) Us has basis Bs = { f>}.

We call B; the (ordered) standard basis for the
irreducible 7-module U; and for every P € T,
let Pg, denote the matrix representing I with

respect to the standard basis B;. Finally, we set
[M,N] = MN — NM for M, N € T.

By Tanabe’s (1997) Proposition 1, we see that
the set {Uy, Uy, Uz, Us, Uy, Us} gives the com-
plete set of pairwise non-isomorphic irreducible
T'-modules.

Using Assumption 3.1, we aim to show that
that there exists a X-module structure on the
standard module V of S. To do this, we find
matrix representations for each generator of X
and show that these matrices together with the
operator [, | satisfy the relations (1) and (2).

Definition 3.2. With Assumption 3.1, let the
matrices A, A*, B,B*, K, K*, ® and ¥ be in
T such that their matrix representations with
respect to the basis BB of U; are as follows:
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Basis Ap, A'p,
-130 20 0
Bo 103 00 O
011 00 —2
S _
B 2 2 0 0
| 2 —3 ]| L0 —2]
S -
B, ;2 0 0
| 5 =5 ]| L0 —2]
Bs =3 [0]
By [0] [-2]
Bs [—2] [-2]
Basis B, B3,
-2 —-12 0 -2 00
Bo 0 0 —6 -2 00
0 0 2 0 —4 2
B, 0 —6 00
0 2| | -2 2|
S _ .
B, 0 —2 00
0 2] | -2 2|
B3 [1] [1]
By [1] [1]
Bs 2] [2]

Basis Kz, K5,
-240 -2 0
Bo 002 20
002 0 3
B, -1 2 —21 0
| 01 | 31
3, -1 2 -10
| 01 | 61
Bs [=1] [=1]
Ba [1] [1]
Bs [0] [0]
Basis Pp, W,
000 000
Bo ||00O 000
000 000
B, 10 00
01 00
B, 10 00
01 00
Bs [ (=1
Ba [ [
Bs 2] (0]

We now prove the following lemmas.

Lemma 3.1. With Assumtion 3.1, let the matri-
ces A,A*. B, B K, K* ® W be as in Defini-
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tion 3.2. Then,

[AL[A A AT = 4[A A7) (3)
[A*7 [A*’ [A*7 Am = 4[A*7 A]
[B,[B,[B,B"]]] = 4B, B’]
[B*’ [B*’ [B*’ Bm = 4[B*> B]
[K7 [Kv [K7 K*m = 4[K7 K*}
(K", [K*, [K*, K]]] = 4[K*, K]

Proof. Fix an irreducible 7T-module U; with a
standard basis B;. To prove (3), one checks that
the expression

[A7 [A7 [A, A*m - 4[A7 A*]

vanishes on every U, by replacing A, A* by Ap,
and A, respectively. Since A, A* € T and by
Lemma 2.1, it follows that the expression above
vanishes on every subspace 7-isomorphic to U;.
Hence

[A,[A,[A,A"]]] —4[A, A*] = 0.
The rest are proven similarly. 0

Lemma 3.2. With Assumption 3.1, let the ma-

trices A, A", B, B*, K, K* ® W be as in Defi-

nition 3.2. Then,

[ LA =2A +2B - 2¥ 4)
B*] =2A +2B* — 2¥

A ,B] =2A" +2B 4 2¥

r—vl—|

—2K"+2¥ — 2.

Al

B’

]
[B*, A*] = 2A* 4 2B* + 2W
A, —K] = 2A — 2K + 2®
[—K*, A] = 2A — 2K* + 2&
[A* K] = 2A" + 2K + 2&
[K*, A*] = 2A* + 2K* + 2®
[-K,B] = 2B — 2K + 20 — 2&
[K,B*] = 2B* + 2K — 2W + 2&
[B K*]:2B+2K*—2\Il—2<1>
B*, —K'] =

Proof. Fix an irreducible 7T-module U; with a
standard basis B;. To prove (4), one checks that

the expression

BA — AB - 2A - 2B +2¥

vanishes on every U, by replacing A, B and &
by Ap,,Bp, and Wp,, respectively. Since the
matrices A, B, ¥ € T and by Lemma 2.1, it
follows that the expression above vanishes on
every subspace 7'-isomorphic to U;. Hence

BA — AB - 2A - 2B +2¥ = 0.

The rest are proven similarly. [

For the rest of the paper we use the following
notations:

a=A-VT+&

b=B-®
at = A"+V+P
b* =B —®
Ek=K-Ww
E* = K¥— W,

The succeeding lemma is proven analogously
as Lemma 3.1.

Lemma 3.3. With Assumtion 3.1, let the matri-
ces A A", B, B* K, K* ® W be as in Defini-
tion 3.2. Then,

[CL, [CL, [CL, a*m = 4[@, a*}
[a*7 [a*u [a*a am = 4[a*’ a}
[b7 [ ) [bv b*m = 4[b’ b*]
[b*, [b%, [b",b]]] = 4[b", b
k, [k, [k, k*]]] = 4k, k"]
K7 (K", k7, K]]] = 4]k, K]

The succeeding lemma is proven analogously
as Lemma 3.2.

Lemma 3.4. With Assumption 3.1, let the matri-
ces A,A*. B, B K, K* ® W be as in Defini-
tion 3.2. Then, we get the following equations:
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[b, a] = 2b+ 2a,
[a,b"] = 2a + 2b",
[a*,b] = 2a* + 2b,

(b, a*] = 20" 4 24",
la, —k] = 2a — 2k,
[—k*,a] = 2a — 2k*,

[a*, k| = 2a* + 2k,
[k*,a*] = 2a" + 2k*,
[k, b] = 2b— 2k,
[k, b"] = 2k + 2b*,
[b, k] = 2b + 2k7,
b, —k*] = 2b" — 2k™.

We now prove the main theorem.

Theorem 3.1. With Assumption 3.1, let
A A" B,B" K, K*,® ¥ be as in Defini-
tion 3.2. Then there exists a K-module structure
on 'V for which the generators act as follows:

generators|action on 'V
T921 a*
32 b*
43 a
T14 b
13 k‘
T42 k*

Proof. Since X has essentially six generators, it
suffices to show that the matrices a, a*, b, b*k, k*
satisfy relations (1) and (2) in Definition 3.1.

Let mutually distinct h,i,7 € {1,2,3,4}
be chosen. By Lemma 3.4 and since
[z,y] = —[y,x], we see that the matrix as-
sociated with zj; and the matrix associated with
x;; satisfy relation (1) of Definition 3.1.

Let mutually distinct h, 4, j, k € {1,2,3,4} be
chosen. By Lemma 3.3, we see that the ma-

trix associated with zj,; and the matrix associ-
ated with zj;, satisfy relation (2) of Definition
3.1. l
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