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In Einstein’s General Relativity, a spacetime-dependent metric defines the curvature of the 

manifold. Some studies however propose to resolve various celestial anomalies by allowing some 

anomalous acceleration to modify the law of inertia. If higher-derivative dependencies are 

allowed in an otherwise monogenic Lagrangian, the usual variational technique leads to a higher-

derivative extension of the Euler-Lagrange equations first presented by Ostrogradsky. Using this 

technique, to find the extremum of the spacetime interval, we derive the geodesic equation for a 

spacetime whose metric may have explicit dependence on the spacetime four-vector, four-

velocity and four-acceleration. To exemplify its importance, we apply our result to some 

modified inertia models that accommodates some anomalous acceleration in their dynamics. 

 

 

1. INTRODUCTION 
 

The spacetime metric in Einstein’s General 

Relativity depends only on the spacetime four-

vector thereby defining the curvature of the 

manifold. Some recent studies however propose 

to resolve various celestial anomalies by 

allowing some anomalous acceleration 

effectively modifying the inertial law. If higher-

derivative dependencies are allowed in an 

otherwise monogenic Lagrangian, the usual 

variational technique leads to a higher-

derivative extension of the Euler-Lagrange 

equations first presented by Ostrogradsky 

(Whittaker, 1988; Urries & Julve, 1998). Using 

this formalism to find the extremum of the 

spacetime interval, we derive the geodesic 

equation for a spacetime whose metric may 

have explicit dependence on the spacetime four-

vector, four-velocity and four-acceleration. To 

exemplify its importance, we apply our result to 

some modified inertia models that 

accommodates some anomalous acceleration in 

their dynamics.   

We start with a brief account of certain solar 

system anomalies that has so far weathered 

rationalization through conventional dynamics 

such as the unexplained Sun-ward acceleration 

of the Pioneer explorers and comets, the fly-by 

anomaly in which satellites following a planet 

swing–by at their periapses acquire an 

anomalous increase in speed, and the observed 

non-Keplerian dynamics of stellar structures. In 

these anomalies, objects suffer very different 

dynamical corrections depending on their 

trajectories even when they move in the same 

locality from the source of gravity. The Sun-

ward acceleration anomaly for instance 

manifests in the Pioneer spacecrafts on their 

hyperbolic, unbound trajectories but not in the 

outer planets on their bound orbits. Trajectory-

sensitive anomalies cannot be resolved by 

modifying the gravitational field which 

influence planets, spacecrafts, and comets in the 

same way irrespective of their trajectories. 
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Some therefore attempt to resolve these 

anomalies through an appropriate modification 

of the law of inertia. We consider a dynamics 

formally based on a generalized view of cosmic 

time that accommodates higher derivative 

dependencies beyond the observer velocity. 

This leads to a higher derivative geodesic 

equation for the metric which can serve as the 

foundation of a higher derivative extension of 

Einstein’s General Relativity. Finally, we 

demonstrate how this formalism can address 

celestial anomalies. 

 

2. ANOMALOUS ACCELERATION IN 

CELESTIAL DYNAMICS  
 

The Pioneer anomaly (Anderson et al., 

1998; Anderson et al., 2002) is an unexplained 

acceleration of the Pioneer 10 and 11 

spacecrafts toward the Sun of magnitude aPioneer 

= (8.74±1.33)x10
−10 

m/s
2
 which seems to have 

been switched on following their fly-by at 

Saturn and stayed constant within a 3 percent 

range. Both spacecrafts are escaping from the 

solar system in almost opposing directions near 

the ecliptic. The Sun's gravity at these remote 

places is known to be too weak to cause these 

spacecrafts to slow down the way they do. This 

effect has been modeled as an anomalous 

acceleration towards the Sun and has caused the 

spacecrafts to be closer to the Sun by about 

400km every year compared to their predicted 

positions using conventional dynamics. The 

phenomenon has resisted attempts for 

explanation invoking either failures in the 

tracking algorithm, engineering causes or 

external forces acting upon the space probes.  

Possibly related to this mystery is the fact 

that probes and satellites after a planet fly-by 

acquire a significant unexplained increase in 

orbit speeds. This so-called fly-by anomaly 

(Anderson, Campbell, Ekelund, Ellis, & Jordan, 

2008) was first noticed from the Deep Space 

Network (DSN) Doppler data shortly after the 

Earth fly-by of the Galileo spacecraft in 

December 1990. The Doppler residuals were 

expected to remain flat, but analysis revealed an 

unexpected 66 mHz shift which corresponds to 

a velocity increase of 3.92 mm/s at perigee. An 

investigation of this effect at the Jet Propulsion 

Laboratory, the Goddard Space Flight Center 

and the University of Texas has not yielded any 

conclusive explanation. The Near Earth 

Asteroid Rendezvous (NEAR) spacecraft also 

experienced an anomalous velocity increase of 

13.46 mm/s after its Earth fly-by on 23 January 

1998. The Cassini-Huygens gained about 

0.11 mm/s in August 1999 and Rosetta 

1.82 mm/s after its Earth fly-by in March 2005.

 

Table 1.  

Three of the most pronounced manifestation of the fly-by anomaly observed 

Satellite Year eccentricity Pericenter 

(km) 

Velocity gain 

(mm/s) 

Energy gain per mass 

(J/kg) 

Galileo 1990 2.47 959.9 3.92± 0.08 35.1±0.7 

NEAR 1998 1.81 538.8 13.46± 0.13 92.2±0.9 

Rosetta 2005 1.327 1954 1.82± 0.05 7.03±0.19 

 

The Pioneer spacecrafts follow opposing 

escape hyperbolic trajectories near the ecliptic. 

Galileo crashed into Jupiter on Sep 21, 2003. 

Ulysses has flown over the Sun's poles for the 

third time in 2007 and 2008; as its aging 

radioisotope generators continue to run down 

the mission is coming to an end after almost 

two decades while Cassini orbits around Saturn. 

These spacecrafts had quite different 

trajectories and designs and so the cause of the 

anomaly they manifest must be outside their 

engineering and design. Although the 

circumstances are very different (planet fly-by 

vs. deep space exploration), the overall effect is 
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similar – an unexplained change in velocity 

over and above the dominant gravitational 

acceleration.  

Another anomaly that may be related to the 

strange Sun-ward acceleration is the 

observation that comets usually come back a 

few days earlier than expected by Newtonian 

dynamics. This advance in comet arrivals has 

been shown to be possible if one assumes that 

farther than about 20 AU from the Sun, an 

additional acceleration of the order of Pioneera  

unaccounted for by Newtonian dynamics begins 

to take effect (Anderson et al., 1998).  

The cosmic microwave background 

anisotropy results from Boomerang and WMAP 

(Netterfield et al., 2002; Hinshaw et al., 2003) 

and the Type Ia Supernova (SNIa) Hubble 

diagram results (Riess, Filippenko, Challis, et 

al., 1998; Perlmutter, Aldering, Goldhaber, et 

al., 1999) both seem to reveal a universe with 

zero spatial curvature dominated by cold dark 

matter (CDM) of density ratio Ωm≈0.3 and dark 

energy of density ratio ΩΛ≈0.7. The 

overwhelming dark energy component of the 

universe is supposed to account for its 

unforeseen accelerated expansion interpreted by 

the mainstream model as a cosmological 

constant Λ providing an all-pervading negative 

pressure to the universe. This ΛCDM model 

employs Einstein’s field equations based on 

Einstein’s Equivalence Principle but it relies on 

two pieces of undiscovered physics (dark matter 

and dark energy) and is also plagued by 

unexplained dynamical anomalies even within 

our solar system. Over two decades after it was 

originally proposed, there is still no laboratory 

affirmation of the CDM particle(s) which is 

supposed to make up dark matter despite 

various experimental strategies. Overall, 

invoking dark energy does seriously complicate 

the ΛCDM model requiring unmotivated fine-

tunings (Dvali, Gruzinov, & Zaldarriaga, 2003).  

Gravitational theories conventionally 

locally fulfill Einstein’s Equivalence Principle 

according to which the laws of physics are 

indistinguishable in all inertial and freely falling 

frames. A cosmology founded on Einstein’s 

Equivalence Principle requires dark matter to 

provide the gravitational field needed for the 

non-Keplerian rotation curves of galaxies, the 

gravitational lensing of galaxies, and the 

formation of structures in our universe (Riess et 

al., 1998; Perlmutter et al., 1999). Cosmology 

explains the non-Keplerian behavior of galaxies 

by imbedding galaxies deep within massive 

unseen haloes providing the necessary matter to 

hold the galaxy together. The total mass of this 

hypothetical non-baryonic matter should be 

around 95% of the entire galactic matter if it is 

to explain the observed velocity profiles. As of 

date however, there is no observational 

confirmation of the particles that make up this 

dark matter. Consequently, there have been 

attempts to describe the same effects by a 

modification of the gravitational field equations 

(Dvali et al., 2003), or by a modification of the 

inertial law (Sanders, 1984; Milgrom, 2002; 

Sanders, & McGaugh, 2002; Veltman, 2003; 

Bekenstein, ; Romero, & Zamora, 2006).  

One successful approach that explains the 

non-Keplerian rotation curves of galaxies 

proposes a modification of Newton’s law of 

inertia in the form (Milgrom, 2002; Sanders, & 

McGaugh, 2002; Veltman, 2003)   

amF
��

)(αµ= ,     (1) 

where  
0/ aa

�
=α  and 1)( →αµ  for 1>>α , 

ααµ →)(  for 1<<α .  
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Figure 1:  A typical rotation curve of a spiral 

galaxy showing the discrepancy with the 

Keplerian expectation. The discrepancy may 

be interpreted as missing mass or modified 

inertia. 

 

The universal threshold acceleration is 

estimated to be of the same order as the Sun-

ward anomalous acceleration 
210

0 /102.1 sma
−×≈ . Lower than this 

acceleration, Newton’s inertial law is modified.   

If the anomalies are due to new physics it 

may point to the option of modified inertia, 

rather than modified gravity because contrary to 

observations, modified gravity should still treat 

planets, spacecrafts, artificial satellites and 

comets in the same way irrespective of their 

trajectories. But with modified equations of 

motion, it should be possible for objects to 

suffer very different corrections depending on 

their trajectories even if they are in the same 

region of space from the source of gravity. This 

could possibly affect the Pioneer spacecrafts on 

their straight, unbound trajectories but not as 

much the planets on their elliptical, bound 

orbits. We shall propose a modified dynamics 

that can manifest this bias.  

The curious relation 00 cHa ≈  between the 

anomalous acceleration and the Hubble’s 

constant may lead one to speculate about a 

possible link between modified inertial laws 

and the accelerated cosmological expansion 

now believed to be driven by dark energy. One 

last anomaly that we shall mention which may 

have some yet unknown connection to this 

curious coincidence is the increase of the 

Astronomical Unit (Romero, & Zamora, 2006). 

From the analysis of radiometric measurements 

of distances between the Earth and the major 

planets including observations from Martian 

orbiters and landers from 1961 to 2003 a 

secular increase of the Astronomical Unit of 

approximately 10 meters per century has been 

reported. 

 

3. ACCELERATION-DEPENDENT 

METRIC 
 

We develop a general formalism that 

accommodates higher derivative dependencies. 

Apart from a universal speed of light c, the 

dynamics of our universe may also refer to 

some threshold acceleration which may be 

connected to the evolution of the universe. A 

possible scheme by which Lorentz invariance 

may be sustained when a spacetime is 

characterized not just by a universal speed c, 

but possibly by other universal kinematical 

parameters like acceleration, is developed in 

this section.  

In Einstein’s special theory of relativity, the 

concept of momentum vmp
��

 0= has been 

generalized to 

ββγ
τ

�
�

�
)(00 cm

dt

rd

d

dt
mp ==   (2) 

where cv /
��

=β  and )(βγ  measures the dilation 

of coordinate time t relative to proper time τ. 

( ) 2/121)(
−

−=≡ ββγ
τd

dt
   (3) 

In order to preserve Lorentz invariance 
42

0

222
cmpcE =− , the total energy has been 

identified as 
2

0 )( cmE βγ= . In the presence of 

an external potential )(rU
�

, the total energy is 

)( )(
2

0 rUcmE
�

+= βγ .   (4) 

In Einstein’s relativity, dt/dτ depends on the 

relative speed v  naturally scaled by the speed 
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of light c that separates subluminal ( 1<β ) 

from superluminal speeds ( 1>β ). A natural 

extension of this scheme would be to formally 

allow dt/dτ to involve higher order derivatives 

of the position r
�

 scaled by their respective 

universal constants:  

( )…,,αβγ
τ

≡
d

dt
    (5) 

where α  is some dimensionless acceleration 

parameter.  

A special adaptation  of this scheme has 

been done by Romero &Zamora (Romero, & 

Zamora, 2006) where time receives an 

acceleration-dependence in the form 

)(αµ
τ

=
d

dt
    (6) 

In this non-relativistic theory, 
0/ aa

�
=α  

and 0a  marks the asymptotic region between 

Newtonian and modified inertial laws.  

Corresponding to the momentum, we derive 

the energy so as to preserve the Lorentz 

invariance and we find 

2

2

0 1 







+=

τ
β

d

dt
cmE .    (7) 

The Euclidean energy momentum four-vector is 

then

 

( )





















+= β

ττ
β

��

d

dt
cm

d

dt
cimpciE 0

2

0 ,1,/ .     (8) 

From this energy-momentum four-vector, one 

finds the spacetime interval 4-vector






















+=








≡ rd

d

dt
icd

m

dp

cm

iEd
sd

�
�

�
,1,

2

00 τ
βτ

ττ
.    (9) 

The four-acceleration for any cosmic time 

ansatz is   





















+
















+

⋅













+









= β
ττ

τ
β

β
τ

β
ττ

τ

��

���

�

2

22

2

2

22

2

2

  ,

1

 
d

td
ca

d

dt

d

dt

d

dt

d

td
ca

d

dt

i
d

sd
   (10) 

 

 

Einstein’s relativistic dynamics for instance 

follows naturally from the above in the limit  

γτ →ddt / , while the modified law of inertia 

of Romero & Zamora (Romero, & Zamora, 

2006) is recovered by the ansatz µτ =ddt / . 

β
µ

µ
µ

�
�

�
�

�

a
dt

ad

a

cm
am

dt

pd
F ˆ

2
 

0

0
0 ⋅

′
+== ,     (11) 

)(  0 rUcacm
dt

dE ����
∇⋅+⋅= ββµ .           (12) 

The law of inertia defined by (11) and (12) 

reduces to the original MOND ansatz for 

trajectories with the acceleration a
�

 

perpendicular to the jerk dtad /
�

.  
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The square of the interval is the usual invariant 

form  

222 τνµ
µν dcdxdxgds −== .  (13) 

where the space-flat metric has a time 

component that may depend on higher 

derivative kinematical parameters  












































+









=

−

1000

0100

0010

0001

:

22

τ
β

τ

µν

d

dt

d

dt

g .  (14) 

The square of the four-velocity is invariant:
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0001
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22
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        (13a) 

 

 

from which 

2
c

d

sd
−=

τ

�

              (13b)
 

In order to accommodate modified inertia 

models that anchor their dynamics on some 

anomalous acceleration, we shall assume that 

the metric has explicit dependence on no higher 

than the second derivative of space-time: 

( )22 , , ττ ρρρ
µνµν dxdddxxgg =

         
(15) 

The geodesic equation results from the 

extremum of the spacetime interval 

∫∫ 







=

2

1

2/1
τ

τ

νµ

µν
ττ

τ
d

dx

d

dx
gdds .            (16) 

Requiring the extremum for the square of the 

integrand leads to the same result (D’Inverno, 

1992) and so we define  

ττ
ττ

νµ

µν
ρρρ

d

dx

d

dx
gdxdddxxL ≡) , ,( 22      (17) 

Thus, 

0) , ,( 
2

1

22 =∫
τ

τ

ρρρ τττδ dxdddxxLd
        

(18) 

leads to the Euler-Ostrogradsky equation 

(Whittaker,  1988; Urries, & Julve, 1998)
 

0

2

22

2

=
∂
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+
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
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
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−
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∂

∂
ρρρ

τ

τ

τ

τ x

L

d
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L

d

d

d

xd

L

d

d

      

(19) 

Using (17) to calculate each term in this Euler-

Ostrogradsky equation, noting that the metric is 

symmetric ( ρµµρ gg = ), yields
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Finally, defining the inverse metric through, λ
µρµ

λρ δ=gg , the geodesic equation becomes
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  (21) 

 

 

In the GR limit, the metric depends only on the 

spacetime and so:   

0

2

2
=
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d
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g

d
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One recovers the conventional geodesic 

equation,  

0
2

2

=Γ+
τττ

νµ
λ
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λ

d

dx

d
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d
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          (23) 

where the Christoffel symbol is defined by 
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In our higher-derivative case, we can identify 

extended Christoffel symbols as:
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We wrote 
λ
µν

)(nmΓ  as the Christoffel-like 

coefficient of the n by m
th 

order derivative term 

so the geodesic equation becomes 
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 (26) 

 

 

4. A TRAJECTORY-SENSITIVE TIME 

ANSATZ 
 

An interesting synthesis of the velocity 

dependent relativistic time and an acceleration 

dependent time is the cosmic time ansatz  

)(αµγ
τ

≡
d

dt
             (27) 

where the dimensionless acceleration parameter 

is defined in terms of the Lorentz invariant 

magnitude of the 4-acceleration 

2

2

0

1

τ
α

d

sd

a

�

≡  .             (28) 

In the presence of an external field )(rU
�

, the 

momentum and energy are respectively:  

βαµγ
��

 )(0cmp = ,            (29) 

( ) )()(1
22

0 rUcmE
�

++= βγαµ .           (30) 

The four-acceleration then reveals the 

appropriate inertial law: 
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where the four acceleration parameter α  satisfies  
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 (33) 

We have modified the law of inertia without 

changing, say, the Newtonian gravitational field  

r
r

GM
a ˆ

2
−=

�
                (34) 

The non-relativistic limits of this inertial law 

recover those of Romero & Zamora (Romero, 

& Zamora, 2006) which supports the Tully-

Fisher law that explains the non-Keplerian 

rotation of galaxies (Sumner, 2002). With this 

type of modified inertial law, it is possible to 

have objects suffer varied corrections 

depending on their trajectories even if they are 

in the same vicinity from source of gravity. 

Probes in unbound orbits for instance will 

follow very different inertial law compared to 

those on bound orbits as we demonstrate next.  

5. UNBOUND TRAJECTORIES 
 

For the straight, unbound trajectories, we 

have 

ββ aa ±≈⋅
��

             (35) 

where the +(-) is for the journey toward (away 

from) the source when the vectors β
�

 and a
�

 are 

essentially parallel (antiparallel). This sign flip 

in the dynamical law should occur during its 

periapsial encounter and could therefore explain 

why the Pioneer and the fly-by anomalies of 

satellites seem to have been switched on right 

after their swing-by at the source of gravity. 

The inertial law becomes 
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6. CIRCULAR TRAJECTORIES 
 

For almost circular trajectories, one has 

0≈⋅ β
��

a  and the governing dynamical 

equations are significantly simplified and very 

different from that of unbound trajectories:
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Our sample implementation of the generalized 

cosmic time has led us to a trajectory-sensitive 

law of inertia. This is precisely what is needed 

if one is to explain the Sun-ward acceleration 

anomaly and the fly-by anomaly.     

 

 

CONCLUSION 

 

We presented motivations for a modified 

metric which depends on an acceleration 

parameter. Expressions for an extended special 

relativity were developed.  From extremizing 

the resulting action using Ostrogradsky’s 

method, a Lagrange equation is generated from 

which a generalized geodesic equation results. 
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