On Minimal Rigidity of Prisms

Gloria A. Rosalejos* and Severino V. Gervacio**

- *Department of Mathematics, Mindanao State University, Marawi City
- ** Department of Mathematics, De La Salle University, 2401 Taft Avenue, Manila

Keywords: Euclidean space, cartesian product, prism, rigid, flexible

The Cartesian product $C_m \times P_n$ of a cycle C_m and a path P_n , $n \geq 2$, is called a prism. It can be checked from [2] that points in the Euclidean space R^3 can be chosen to represent the vertices of the prism such that the distance between points representing adjacent vertices is 1. Thus, $C_m \times P_n$ is a so called unit graph in R^3 . Clearly, this graph is

flexible (not rigid) in R^3 . We can flex the prism so that the distance between some non-adjacent vertices will be equal to 1. Then, a new unit edge can be added to join such a pair of vertices. This paper will show how to do such addition of edges, using only the minimum number of edges, to transform the prism to a rigid unit graph in R^3 .

PRELIMINARIES

Definition 1.1 A graph G=(V(G),E(G)) is a pair of disjoint sets V(G) and E(G), where V(G) is a finite nonempty set of elements called vertices and E(G) is a set of unordered pairs of distinct elements of V(G) called edges. V(G) is called the vertex set of G, and E(G) is the edge set. The order of a graph G, denoted by o(G), is the number of its vertices, and the size of G, denoted by e(G), is the number of its edges.

Definition 1.2 A graph G is said to be *flexible* in R^d (or d-flexible), if its vertices can be continuously moved in R^d , so that at least a pair of its non-adjacent vertices change their mutual distance. A graph G is said to be rigid in R^d (or d-rigid), if it is not d-flexible. A d-rigid graph G is a minimal d-rigid graph, if for any edge e of G, G-e is d-flexible.

Definition 1.3 The Cartesian product $G \times H$ of two graphs G and H, is the graph where $V(G \times H) = V(G) \times V(H)$ and where two vertices (a,b) and (c,d) are adjacent if and only if a=c and $[b,d] \in E(H)$, or b=d and $[a,c] \in E(G)$.

Definition 1.4 The Euclidean n-space R^n is the set of all ordered n-tuple $(x_1, x_2, ..., x_n)$ of real numbers x_i . The elements of R^n are called points. If p and q are points in R^n , the Euclidean distance between them is denoted by |p-q|.

Definition 1.5 A unit representation of a graph G in \mathbb{R}^n is a one-to-one mapping $\phi: V(G) \to \mathbb{R}^n$ such that $|\phi(x) - \phi(y)| = 1$ whenever $[x, y] \in E(G)$.

Definition 1.6 A graph G is a *unit graph* in \mathbb{R}^n if it has a unit representation in \mathbb{R}^n .

Definition 1.7 The dimension of a graph G, written dim(G) is the smallest integer m such that G has a unit representation in \mathbb{R}^m .

Theorem 1.1 [5]. $dim(K_n) = n - 1$ for each $n \ge 1$.

We introduce a graph operation which enables one to construct a bigger rigid graph from a smaller rigid one.

Definition 1.8 [9] The Henneberg operation A_d : Choose d distinct vertices $v_1, v_2, ..., v_d$ of G, and add a new vertex w to G, together with the edges $wv_1, wv_2, ..., wv_d$. The resulting graph is denoted by A_dG .

Theorem 1.2 [9]. G is d-rigid if and only if A_dG is d-rigid.

Theorem 1.3 [7] A minimal d-rigid graph of order $n \ge d$ has size $nd - \frac{d(d+1)}{2}$.

Theorem 1.4 [6], [10]]. The generalized octahedron $O_n = K(2, 2, ..., 2)$, is rigid in \mathbb{R}^n .

Corollary 1.4.1 . The octahedron $O_3 = K(2,2,2)$ is 3-rigid.

Theorem 1.5 [1], [10]. K_n is d-rigid, for $d \ge n-1$.

We now prove a theorem which is used in proving main results of this paper.

Theorem 1.6 If G is a minimal d-rigid graph, then so is A_dG .

Proof: Assume that G is a minimal d-rigid graph of order n. Then G is d-rigid, and $e(G) = nd - \frac{d(d+1)}{2}$, by Theorem 1.3. From Theorem 1.2, A_dG is also d-rigid. Observe that by graph construction, $o(A_dG) = n + 1$ and

 $e(A_dG) = e(G) + d$. We show that A_dG is a minimal d-rigid graph by contradiction.

Suppose that A_dG is a d-rigid graph but is not minimal. Then we must have $e(A_dG) > d(n+1) - \frac{d(d+1)}{2}$. But this is a contradiction since

$$e(A_dG) = [nd - \frac{d(d+1)}{2}] + d = d(n+1) - \frac{d(d+1)}{2}.$$

Hence, A_dG must be minimal. \square

Let A_d^sG be a graph obtained by applying the Henneberg operation A_d to G, s times in succession. By repeated application of Theorem 1.6, the next result is established.

Corollary 1.6.1 If G is a minimal d-rigid graph, then so is the graph A_d^sG for each $s \geq 1$.

It can easily be verified that the complete graph K_4 and the octahedron O_3 , are minimal 3-rigid graphs.

MAIN RESULTS

We use the symbol $mu_3(G)$ to denote the minimum number of unit edges necessary to extend G to a minimal 3-rigid graph.

Theorem 2.1 For $n \ge 3$, $mu_3(C_3 \times P_n) = 3n - 3$.

Proof: Let $G = C_3 \times P_n$ and let $\{1,2,3\}, \{4,5,6\}, ..., \{3n-2,3n-1,3n\}$ be the vertex sets of the n copies of C_3 . Vertex labels are made so that $[j,j+3] \in E(G)$, for j=1,2,3,...,3n-3. To fix G in R^3 , we proceed as follows:

Case 1. When n is even, $n \geq 2$.

Add to G the paths [3, 5, 1, 6], [4, 8, 6, 7], [9, 11, 7, 12], [10, 14, 12, 13], ..., [3n-3, 3n-1, 3n-5, 3n].

Case 2. When n is odd, $n \geq 3$.

Add to G the paths [3,5,1,6], [4,8,6,7], [9,11,7,12], [10,14,12,13], ..., [3n-5,3n-1,3n-3,3n-2].

Denoting the resulting graph by G^* , it can then be verified that G^* is a unit graph and $G^* \cong A_3^s$ K_4 , s = 3n - 4. Thus, by Corollary 1.6.1 and Theorem 1.3, G^* is a minimal 3-rigid graph of size 3(3n - 4) + 6 = 9n - 6. Since e(G) = 3n + 3(n - 1) = 6n - 3, it needs (9n - 6) - (6n - 3) = 3n - 3 edges to extend G to G^* . \square

A 3-rigid graph obtained from $C_3 \times P_3$ is shown in Figure 1.

Figure 1: A 3-rigid graph obtained from $C_3 \times P_3$.

Lemma 2.1 (a) $mu_3(C_4 \times P_3) = 10$ and (b) $mu_3(C_4 \times P_4) = 14$.

Proof: To show part (a), let $L = C_4 \times P_3$ and let $\{1, 2, 3, 4\}$, $\{5, 6, 7, 8\}$, $\{9, 10, 11, 12\}$ be the vertex sets of the three copies of C_4 . Vertex labels are made so that $[j, j + 4] \in E(L)$, for j = 1, 2, ..., 8. We fix L in R^3 by adding the cycles [2, 4, 7, 2], [1, 6, 8, 1] and the tree [5, 10, 12], [10, 8, 11].

Then the resulting graph is isomorphic to a graph A_3^6 O_3 , which is a minimal 3-rigid graph of size 3(6) + 12 = 30. Since $e(C_4 \times P_3) = 20$, $mu_3(C_4 \times P_3) = 10$.

Figure 2: A 3-rigid graph obtained from $C_4 \times P_4$.

To prove (b) let $M = C_4 \times P_4$ and let $\{1, 2, 3, 4\}$, ..., $\{13, 14, 15, 16\}$ be the vertex sets of the four copies of C_4 . Labels are made so that $[j, j+4] \in E(M)$ for j = 1, 2, 3, ..., 12. We fix M in R^3 as follows:

- 1. Fix the first 3 copies of C_4 by doing part (a).
- 2. To fix the fourth copy of C_4 , add the tree [9, 14, 16], [14, 12, 15]. (Please see Figure 2.) for the said graph).

It can then be verified that the resulting graph is isomorphic to a graph $A_3^{10}O_3$, which is a minimal 3-rigid graph of size 42. Since e(M) = 28, $mu_3(M) = 14$.

This completes the proof of the Lemma. \Box

Theorem 2.2 For $n \geq 3$, $mu_3(C_4 \times P_n) = 4n - 2$.

Proof: Let $G = C_4 \times P_n$ and let $\{1, 2, 3, 4\}$, $\{5, 6, 7, 8\}$, $\{9, 10, 11, 12\}$, ..., $\{4n - 3, 4n - 2, 4n - 1, 4n\}$, be the vertex sets of the n copies of C_4 . Vertex labels are made so that $[j, j + 4] \in E(G)$, j = 1, 2, ..., 4n - 4. To fix G in R^3 , we proceed as follows:

- 1. Fix the first three copies of C_4 by doing part (a) of Lemma 2.1.
- 2. Next, fix the fourth copy of C_4 by doing part (b) of Lemma 2.1.
- 3. Continue fixing the next copies of C_4 , up to the *nth* copy, by adding the following trees:

$$[17, 22, 24], [22, 20, 23], \dots,$$

$$[4n-7,4n-2], [4n-2,4n], [4n-2,4n-4], [4n-4,4n-1].$$
 $[1, n-1, 2, n-2, 3, n-3,...,t-1, t+1],$

(Please see illustration for the edges added to fix the *n*th copy of C_4 .)

Let the resulting graph be $rig_3(G)$. Then it can be verified that $rig_3(G)$ is a unit graph and $rig_3(G) \cong A_3^s O_3$, s = 4n - 6. Thus, by Corollary 1.6.1 and Theorem 1.3, $rig_3(G)$ is a minimal 3rigid graph of size 3(4n-6) + 12 = 12n - 6. And since e(G) = 4n + 4(n-1) = 8n - 4, $mu_3(G) = 4n - 2$. \square

Theorem 2.3 For $n \geq 5$, $mu_3(P_2 \times C_n) =$ 3n - 6.

Proof: Let $\{1, 2, 3, ..., n\}$ and $\{n + 1, n + 2, n + 1, n + 2, n + 1, n +$ 3, ..., 2n} be the vertex sets of the two copies of C_n . Vertex labels are made so that $[k, k+n] \in$ E(G), k = 1, 2, 3, ..., n. To fix G in \mathbb{R}^3 , we proceed as follows:

1. To each of the two copies of C_n , add the following edges, in each of the following cases:

Case 1. When n is odd $(n \ge 5)$.

Let $j = \lceil n/2 \rceil$. Adjoin to the first copy of C_n , the path

$$[n, 2, n-1, 3, n-2, 4, ..., j-1, j+1]$$

and to the second copy, the path

$$[2n, n+2, 2n-1, n+3, 2n-2, n+4, ..., j+n-1, j+n+1].$$

Case 2. When n is even $(n \ge 6)$.

Let t = n/2. Adjoin to the first copy of C_n the path

$$[1, n-1, 2, n-2, 3, n-3, ..., t-1, t+1]$$

and to the second copy, the path

$$[n+1, 2n-1, n+2, 2n-2, n+3, 2n-3, ..., t+n-1, t+n+1]$$

2. Next, add edges on the top and on the bottom rectangular faces of G, as follows:

Case 1. When n is odd $(n \ge 5)$.

Let $j = \lceil n/2 \rceil$. On the top diagonal faces, add the edges [j+2, j+n+1], [j+3, j+n+2],..., [n, 2n-1], and for the bottom diagonal faces, add the edges [1, n+2], [2, n+3], [3, n+4], ...,[j-1, j+n].

Case 2. When n is even(n > 6).

Let t = n/2. Add the edges [n, 2n - 1], [n-1, 2n-2], ..., [t+2, 3t+1], on the top diagonal faces and the edges [1, n+2], [2, n+3], $[3, n+4], \ldots, [t-1, 3t],$ for the bottom diagonal faces.

3. Finally, add at the leftmost portion of the graph, the edges [j+n, j+1] and [j+n-1, j+2], if n is odd, or the edges [t+n,t+1] and [t + n - 1, t + 2], if *n* is even.

Denote the resulting graph by $rig_3(G)$. It can then be verified that $rig_3(G) \cong A_3^s O_3$, s = 2n - 6. Thus, by Corollary 1.6.1 and Theorem 1.3, $riq_3(G)$ is a minimal 3-rigid unit graph of size 3(2n-6)+12=6n-6. And since e(G)=3n, $mu_3(G) = 3n - 6$. \Box

A 3-rigid graph obtained from $P_2 \times C_7$ is shown in Figure 3.

Figure 3: A 3-rigid graph obtained from $P_2 \times C_7$.

REFERENCES

- L. Asimow and B. Roth, Rigidity of Graphs, Trans. Amer. Math. Soc., 245,279-289, 1978.
- 2. Baylon, R., On the Geometric Index of Graphs, Masteral Thesis, MSU-IIT, 1996.
- 3. J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan Press, London, 1977.

- 4. G. Chartrand and L. Lesniak, *Graphs and Digraphs*, Wadsworth Inc., Belmont, California, 1986.
- 5. Severino V. Gervacio, Unit Embedding of Graphs in the Euclidean n-Space, Plenary paper, AMC'95, Suranaree University, Thailand.
- 6. Hiroshi Maehara, Extending a Flexible Unit-Bar Framework to a Rigid One, Discrete Mathematics, 108(1992), 167-174.
- 7. Hiroshi Maehara, Geometry of Frameworks, Expository paper, August 1998.
- 8. B. Roth, Rigid and Flexible Frameworks, American Math. Monthly, 88(1981).
- 9. T.S. Tay and W. Whiteley, Generating Isostatic Frameworks, Structural Topology, 11(1995),21-69.
- 10. J. A. Uy, On the Span of Graphs, Doctoral Dissertation, MSU-IIT, 1999.