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The Cartesian product Cp, X Py, of a cycle C)y,
and a path Pp, n > 2, is called a prism. It can be
checked from [2] that points in the Euclidean space
R3 can be chosen to represent the vertices of the
prism such that the distance between points repre-
senting adjacent vertices is 1. Thus, Cpy, X Py is
a so called unit graph in R3. Clearly, this graph is

flezible(not rigid) in R3. We can flex the prism so
that the distance between some non-adjacent ver-
tices will be equal to 1. Then, a new unit edge can
be added to join such a pair of vertices. This paper
will show how to do such addition of edges, using
only the minimum number of edges, to transform
the prism to a rigid unit graph in R3.

PRELIMINARIES

Definition 1.1 A graph G=(V(G),E(G)) is a
pair of disjoint sets V(G) and E(G), where
V(G) is a finite nonempty set of elements called
vertices and E(G) is a set of unordered pairs of
distinct elements of V(G) called edges. V(G) is
called the vertez set of G, and E(G) is the edge
set. The order of a graph G, denoted by o(G),
is the number of its vertices, and the size of G,
denoted by e(G), is the number of its edges.

Definition 1.2 A graph G is said to be flexible
in R%(or d-flexible), if its vertices can be con-
tinuously moved in R?, so that at least a pair
of its non-adjacent vertices change their mutual
distance. A graph G is said to be rigid in R%(or
d-rigid), if it is not d-flexible. A d-rigid graph G
is a minimal d-rigid graph, if for any edge e of G,
G-e is d-flexible.
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Definition 1.3 The Cartesian product G x H
of two graphs G and H, is the graph where
V(G x H) = V(G) x V(H) and where two
vertices (a, b) and (c, d) are adjacent if and only
ifa =cand [bd € E(H),or b= d and
[a,c] € E(G).

Definition 1.4 The FEuclidean n-space R™ is the
set of all ordered n-tuple (xy,x2,...,x,) of real
numbers z;. The elements of R"™ are called
points. If p and g are points in R™, the Euclidean
distance between them is denoted by |p-g|.

Definition 1.5 A unit representation of a
graph G in R" is a one-to-one mapping
¢ V(G) — R™ such that |¢(z) — o(y)|=1
whenever [z,y] € E(G).

Definition 1.6 A graph G is a unit graph in
R™ if it has a unit representation in R™.
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Definition 1.7 The dimension of a graph G,
written dim(G) is the smallest integer m such
that G has a unit representation in R™.

Theorem 1.1 [5].
n > 1.

dim(K,) = n — 1 for each

We introduce a graph operation which en-
ables one to construct a bigger rigid graph from
a smaller rigid one.

Definition 1.8 [9] The Henneberg operation Ag:
Choose d distinct vertices vi,v9,...,v9 of G,
and add a new vertex w to G, together with
the edges wwy, wvy, ..., wvy. The resulting graph
is denoted by AyG.

Theorem 1.2 [9)].
AyG is d-rigid.

G is d-rigid if and only if

Theorem 1.3 [7] A minimal d-rigid graph of
nd — dd+1)

order n>d has size 5 -

Theorem 1.4 [6],[10]]. The generalized octahe-

n

—~—
dron O, = K (2,2,...,2), is rigid in R™.

Corollary 1.4.1 .
K(2,2,2) is 3-rigid.

The octahedron Os;

Theorem 1.5 [1],[10]. K, is d-rigid, for d >
n—1.

We now prove a theorem which is used in
proving main results of this paper.

Theorem 1.6 If G is a minimal d-rigid graph,
then so is AygG.

Proof: Assume that G is a minimal d-rigid
graph of order n. Then G is d-rigid, and
e(G) = nd — Ud+l) ty Theorem 1.3. From
Theorem 1.2, A;G is also d-rigid. Observe that

2
by graph construction, o(AzG) n + 1 and
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e(A4G) = e(@) + d. We show that A4G is a min-
imal d-rigid graph by contradiction.

Suppose that A4G is a d-rigid graph but is not
minimal. Then we must have e(A44G) > d(n+

1) — gl@ But this is a contradiction since
dld+1 d(d+1
e(A,G) = [na— 4 EV Ly d(n+1)_%‘

Hence, A;G must be minimal. O

Let AjG be a graph obtained by applying
the Henneberg operation A, to G, s times in suc-
cession. By repeated application of Theorem 1.6,
the next result is established.

Corollary 1.6.1 If G is a minimal d-rigid
graph, then so is the graph AjG for each s > 1.

It can easily be verified that the complete
graph K, and the octahedron Og, are mini-
mal 3-rigid graphs.

MAIN RESULTS

We use the symbol mus(G) to denote the
minimum number of unit edges necessary to ex-
tend G to a minimal 3-rigid graph.

Theorem 2.1 For n > 3, muz(Cs x P,) =
3n — 3.

Proof: Let G C3 x P, and let
{1,2,3},{4,5,6},...,{3n — 2,3n — 1,3n} be the
vertex sets of the n copies of (3. Vertex
labels are made so that [j,7 + 3] € E(G), for
§=1,23,..,3n—3. To fix G in R3, we proceed
as follows:

Case 1. When n is even, n > 2.

Add to G the paths [3,5,1,6], [4,8,6,7],
[9,11,7,12], [10,14,12,13], ..., [3n—3, 3n—1, 3n—
5, 3n).

Case 2. When n is odd, n > 3.
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Add to G the paths [3,5,1,6], [4,8,6,7],
[9,11,7,12], [10,14,12,13], ..., [3n—5,3n—1,3n—
3,3n —2].

Denoting the resulting graph by G*, it can
then be verified that G* is a unit graph and
G* = 45 K4, s = 3n — 4. Thus, by Corollary
1.6.1 and Theorem 1.3, G* is a minimal 3-
rigid graph of size 3(3n —4) + 6 = 9n — 6.
Since e(G) = 3n+ 3(n — 1) = 6n — 3, it needs
(9n — 6) — (6n — 3) = 3n — 3 edges to extend G
to G*. O

A 3-rigid graph obtained from C3 x P3 is
shown in Figure 1.

Figure 1: A 3-rigid graph obtained from Cs x Ps.

Lemma 2.1 (a) mus(Cy x P3) = 10 and (b)
mU3(C4 X P4) = 14.

Proof: To show part (a), let L = C4 x P3 and
let {1,2,3,4}, {5,6,7,8}, {9,10,11,12} be the
vertex sets of the three copies of Cj. Vertex
labels are made so that [j,7 + 4] € E(L), for
j=1,2,...,8 Wefix L in R? by adding the cy-
cles [2,4,7,2], [1,6,8,1] and the tree [5,10,12],
(10,8, 11].

Then the resulting graph is isomorphic to a
graph A§ Os, which is a minimal 3-rigid graph
of size 3(6) + 12 = 30. Since e(Cy x P3) = 20,
mU3(C4 X Pg) = 10.
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Figure 2: A 3-rigid graph obtained from Cy x Fj.

To prove (b) let M = Cy x Py and let {1,2,3,4},
vy, {13,14,15,16} be the vertex sets of the four
copies of Cy. Labels are made so that [, j+4] €
E(M) for j =1,2,3,...,12. We fix M in R? as
follows:

1. Fix the first 3 copies of C4 by doing part (a).

2. To fix the fourth copy of Cy, add the tree
9,14, 16], [14,12,15]. (Please see Figure 2.) for
the said graph).

It can then be verified that the resulting
graph is isomorphic to a graph A%OOg, which

is a minimal 3-rigid graph of size 42. Since
e(M) =28, mus(M) = 14.
This completes the proof of the Lemma. O

Theorem 2.2 For n > 3, muz(Cy x Pp)
An — 2.

Proof: Let G = C4 x P, and let {1,2,3,4},
{5,6,7,8), {9,10,11,12}, ..., {4n—3,4n—2,dn—
1,4n}, be the vertex sets of the n copies of Cy.
Vertex labels are made so that [j,j+4] € F(G),
j=1,2,..,4n —4. To fix G in R3, we proceed
as follows:
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1. Fix the first three copies of Cy by doing
part (a) of Lemma 2.1.

2. Next, fix the fourth copy of C4 by doing
part (b) of Lemma 2.1.

3. Continue fixing the next copies of Cjy, up
to the nth copy, by adding the following trees:

[13,18,20],[18, 16, 19],

17,22, 24], [22, 20, 23], ...,

[4n—7,4n—2], [4n—2,4n], [4n—2,4n—4], [4n—4,4n—-1]. [1, n—

(Please see illustration for the edges added to fix
the nth copy of Cy.)

4dn — 6 dn — 5

dn — 3

Let the resulting graph be rig3(G). Then it
can be verified that rigs3(G) is a unit graph and
rigs(G) =2 A503, s = 4n — 6. Thus, by Corollary
1.6.1 and Theorem 1.3, rigs(G) is a minimal 3-
rigid graph of size 3(4n — 6) + 12 = 12n — 6.
And since e(G) = 4n +4(n - 1) = 8n — 4,
muz(G) =4n —2. 0

Theorem 2.3 For n > 5, mug(P, x Cp) =
3n — 6.

Proof: Let {1,2,3,...,n} and {n + 1,n+2,n +
3,...,2n} be the vertex sets of the two copies of
Ch,. Vertex labels are made so that [k, k +n] €
E(G), k=1,2,3,...,n. To fix G in R3, we pro-
ceed as follows :

1. To each of the two copies of C),, add the
following edges, in each of the following cases:
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Case 1. When n is odd(n > 5).
Let 7 = [n/2]. Adjoin to the first copy of

C,, the path
m, 2, n—1,3 n—24,..,j—1, j+1]

and to the second copy, the path

[2n, n+2, 2n—1, n+3, 2n—2, n+4, ..., j+n—1, j+n+1].

Case 2. When n is even(n > 6).
Let ¢ = n/2. Adjoin to the first copy of
C, the path

1,2, n—2 3 n=3,..,t—1, t+1],

and to the second copy, the path

[n+1, 2n—1, n+2, 2n—2, n+3, 2n—3, ..., t+n—1, t+n+1]

2. Next, add edges on the top and on the
bottom rectangular faces of G, as follows:

Case 1. When n is odd(n > 5).

Let j = [n/2]. On the top diagonal faces,
add the edges [j+2,7+n—+1],[j+3,7+n+2],
..y [n,2n — 1], and for the bottom diagonal faces,
add the edges [1,n+2], [2,n+ 3], [3,n+4], ...,
J—1,j+n]

Case 2. When n is even(n > 6).

Let t = n/2. Add the edges [n,2n — 1],
[n—1,2n—2], ..., [t + 2,3t + 1], on the top di-
agonal faces and the edges [1,n + 2], [2,n + 3],
[3,n+4], ..., [t — 1, 3t], for the bottom diagonal
faces.

3. Finally, add at the leftmost portion of the
graph, the edges [j+n,j+1] and [j+n—1,7+2],
if n is odd, or the edges [t + n,t+ 1] and
[t+n—1,t+2],if n iseven. ~

Denote the resulting graph by rig3(G). It
can then be verified that rigs3(G) = A50s3,
s = 2n—=6. Thus, by Corollary 1.6.1 and Theorem
1.3, rig3(G) is a minimal 3-rigid unit graph of size
3(2n — 6) + 12 = 6n — 6. And since e(G) = 3n,
mug(G) =3n—6. O
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A 3-rigid graph obtained from P, x C7 is
shown in Figure 3.

12 13 14

Figure 3: A 3-rigid graph obtained from P x C7.
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