The Spectra of Some Asymmetric, Circulant and r-regular Digraphs and their Complements

Isagani B. Jos Department of Mathematics De La Salle University 2401 Taft Avenue, 1004 Manila josi@dlsu.edu.ph

Keywords: spectrum of a digraph, asymmetric, circulant, r-regular, complement of a digraph

Let \vec{G} be a digraph and $\mathcal{A}(\vec{G})$ be its adjacency matrix. The spectrum of \vec{G} , denoted by Spec \vec{G} is

Spec
$$\vec{G} = \begin{pmatrix} \lambda_0 & \lambda_1 & \dots & \lambda_{p-1} \\ m_0 & m_1 & \dots & m_{p-1} \end{pmatrix}$$
,

where $\lambda_0, \lambda_1, \ldots, \lambda_{p-1}$ are the eigenvalues of $\mathcal{A}(\vec{G})$ and $m_0, m_1, \ldots, m-1$ are their corresponding multiplicities. This paper discusses some

properties of the spectrum of four different classes of asymmetric, circulant, and r-regular digraphs and their complements. The digraphs considered in this paper are orientations of the rth power of a cycle, a complete graph, a complete bipartite graph, and a digraph whose adjacency matrix is circulant with first row entries all zeros except the (d+1)st and nth column entries which are both 1's.

Introduction

The ordered pair $\vec{G} = \langle V(\vec{G}), A(\vec{G}) \rangle$, is called a digraph. In \vec{G} , $V(\vec{G})$ is a nonempty set of elements called vertices and $A(\vec{G})$ is a subset of $V(\vec{G}) \times V(\vec{G})$. The elements of $A(\vec{G})$ are called arcs. If $x \in V(\vec{G})$, then the set $N^+(x) = \{y | (x,y) \in A(\vec{G})\}$ is called the out-neighbors of x and the set $N^-(x) = \{y | (y,x) \in A(\vec{G})\}$ is called the in-neighbors of x. If $|N^+(x)| = |N^-(x)| = r$, $\forall x \in V(\vec{G})$, then \vec{G} is said to be r-regular. If $(x,y) \in A(\vec{G})$, then $(y,x) \notin A(\vec{G})$, where $x,y \in V(\vec{G})$, then the digraph \vec{G} is asymmetric.

To each digraph \vec{G} with n vertices, a square matrix of order n can be obtained. This matrix called the *adjacency matrix* of \vec{G} and denoted by $\mathcal{A}(\vec{G}) = [a_{ij}]$ is defined as: $a_{ij} = 1$

whenever $(x_i, x_j) \in A(\vec{G})$ and $a_{ij} = 0$ whenever $(x_i, x_j) \notin A(\vec{G}), \forall x_i, x_j \in V(\vec{G})$. If $\mathcal{A}(\vec{G})$ is singular, then \vec{G} is singular, otherwise \vec{G} is nonsingular.

Two classes of asymmetric, circulant, and r-regular digraphs were defined in [3]. These digraphs were denoted by \vec{C}_n^r and $_d\vec{C}_n$. The former is an orientation of the rth power of the cycle C_n . Another pair of asymmetric, circulant, and r-regular digraphs were introduced in [4]. One belongs to the class of tournaments, denoted by \vec{T}_n and the other is an orientation of a class of complete bipartite graphs, denoted by $\vec{K}_{m,m}$. In [3] and [4], the singularity and nonsingularity of these classes of digraphs were investigated. Also, in [4], the natural extension of the complement

of a graph was used to define the complement of a digraph. We will use this definition of the complement of a digraph and this is given below:

Definition 1.1. Given a digraph \vec{G} , the complement of \vec{G} , denoted by \vec{G}^c is the digraph with $V(\vec{G}^c) = V(\vec{G})$ and $\forall x, y \in V(\vec{G}^c)$, with $x \neq y$, $(y,x) \in A(\vec{G}^c)$ if and only if $(x,y) \in A(\vec{G})$; and (x,y) and (y,x) are in $A(\vec{G}^c)$ whenever neither (x,y) nor (y,x) are in $A(\vec{G})$.

In [4], the singularity and nonsingularity of the complements of the special classes of digraphs discussed above, were established.

In [1] the spectrum of a graph is defined. We now define the spectrum of a digraph.

Definition 1.2. Let \vec{G} be a digraph. The *spectrum* of \vec{G} is the set of numbers which are the eigenvalues of $\mathcal{A}(\vec{G})$ together with with their multiplicities. Thus if $\lambda_0, \lambda_1, \ldots, \lambda_{p-1}$ are the eigenvalues of $\mathcal{A}(\vec{G})$ with their corresponding multiplicities to be $m_0, m_1, \ldots, m_{p-1}$, then the spectrum of $\mathcal{A}(\vec{G})$ is

Spec
$$\vec{G} = \begin{pmatrix} \lambda_0 & \lambda_1 & \dots & \lambda_{p-1} \\ m_0 & m_1 & \dots & m_{p-1} \end{pmatrix}$$

Some Preliminary Results

The digraphs considered in this paper are circulant. We say that a digraph is circulant if its adjacency matrix is circulant. In [1], a theorem is given to determine the eigenvalues of such matrix. We present this theorem below:

Theorem 2.1. Suppose that $0, a_2, a_3, \ldots, a_n$ are the first row entries of a circulant matrix \mathbf{A} . Then the eigenvalues of \mathbf{A} are

$$\lambda_s = \sum_{i=2}^n a_i \omega^{(j-1)s},$$

where $s = 0, 1, 2, \dots, n-1$ and $\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.

Given a digraph of order n, we observe that if this digraph is circulant then its eigenvalues λ_s and λ_p , where $s, p \in \{1, 2, ..., n-1\}$ and s+p=n, are complex conjugates of each other. This relation is true because

$$\begin{split} \lambda_p &= \sum_{j=1}^n a_j \omega^{(j-1)p} = \sum_{j=1}^n a_j \omega^{(j-1)(n-s)} \\ &= \sum_{j=1}^n a_j \omega^{(j-1)n} \omega^{(j-1)(-s)} = \sum_{j=1}^n a_j \omega^{-s(j-1)}. \end{split}$$

Furthermore, we note that $\omega^n = 1$ and $\omega^{\frac{n}{2}} = -1$.

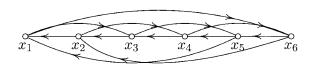
The Digraph $_d\vec{C}_n$ and its Complement

In [3], the class of digraphs denoted by $_d\vec{C}_n$, was defined. This digraph is with $n \geq 2d+1$ and d>1, and has a circulant adjacency matrix with first row entries a 1 on the d+1st and nth columns and all other first row entries are zeros. The complement of $_d\vec{C}_n$ is also circulant with its adjacency matrix having first row entries all 1's except the entries on the first, (d+1)st, and nth columns. This digraph, $(_d\vec{C}_n)^c$ is non-asymmetric.

Example 3.1. Consider the digraph $_2\vec{C}_6$. The first row entries of $\mathcal{A}(_2\vec{C}_6)$ are 0, 0, 1, 0, 0, 1 and

$$\mathcal{A}(2ec{C}_6) = egin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 \ 1 & 0 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 1 \ 1 & 0 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

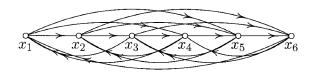
A pictorial representation of $_2\vec{C}_6$ is shown below.



Example 3.2. The adjacency matrix of the complement of $_2\vec{C}_6$ is

$$\mathcal{A}(2ec{C}_6)^c = egin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 & 0 & 1 \ 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

A pictorial representation of $({}_{2}\vec{C}_{6})^{c}$ is shown below.



Theorem 3.1. Given the digraph $_{d}\vec{C}_{n}$. 0 is an eigenvalue of $\mathcal{A}(_{d}\vec{C}_{n})$ with multiplicity $\gcd(d+1,n)$ if and only if n is even and $\gcd(d+1,n) \mid \frac{n}{2}$,.

Proof: Since $_{d}\vec{C}_{n}$ is circulant, then for $s=1,2,\ldots,n-1,$

$$\lambda_s = \omega^{ds} + \omega^{(n-1)s} = \frac{1}{\omega^s} (1 + \omega^{(d+1)s}).$$

Moreover,

$$\lambda_s = 0 \Leftrightarrow \omega^{(d+1)s} = -1 \Leftrightarrow \cos(\frac{2\pi(d+1)s}{n}) = -1.$$

This implies that, for some integer k,

$$\frac{2(d+1)s\pi}{n} = (1+2k)\pi \Leftrightarrow (d+1)s = \frac{n}{2} + nk$$
$$\Leftrightarrow (d+1)s \equiv \frac{n}{2} \mod n.$$

This linear congruence has a solution if and only if $\gcd(d+1,n) \mid \frac{n}{2}$. Furthermore, this linear congruence has $\gcd(d+1,n)$ solutions. \square

Corollary 3.1.1. Given the digraph $_{d}\vec{C}_{n}$. If n is even and $d = \frac{n}{2} - 1$, then 0 is an eigenvalue of $\mathcal{A}(_{d}\vec{C}_{n})$ with multiplicity $\frac{n}{2}$.

Proof: Since n is even and $d = \frac{n}{2} - 1$, then $\gcd(d+1,n) = \gcd(\frac{n}{2},n) = \frac{n}{2}$. Moreover, $\frac{n}{2} \mid \frac{n}{2}$, thus 0 is an eigenvalue of $\mathcal{A}(d\vec{C}_n)$ with multiplicity $\frac{n}{2}$. \square

In the digraph $_{d}\vec{C}_{n}$, if n is even and $d = \frac{n}{2} - 1$, then for $s = 1, 2, \ldots, n - 1$,

$$\lambda_s = \omega^{ds} + \omega^{-s} = \omega^{(\frac{n}{2} - 1)s} + \omega^{-s} = \omega^{-s} (1 + \omega^{\frac{n}{2}s}) = \omega^{-s} (1 + (-1)^s).$$

If s is odd, $\lambda_s = 0$ and if s is even, $\lambda_s = 2\omega^{-s} = 2(\cos\frac{2\pi s}{n} - i\sin\frac{2\pi s}{n})$. Also, $\lambda_0 = 2$, hence, the spectrum of $d\vec{C}_n$, Spec $d\vec{C}_n$ with n even and $d = \frac{n}{2} - 1$ is

$$\begin{pmatrix} 2 & 0 & 2\operatorname{cis}\frac{4\pi}{n} & 2\operatorname{cis}\frac{8\pi}{n} & \dots & 2\operatorname{cis}\frac{2\pi(n-2)}{n} \\ 1 & \frac{n}{2} & 1 & 1 & \dots & 1 \end{pmatrix}$$

Theorem 3.2. In ${}_{d}\vec{C}_{n}$, suppose $n \equiv 0 \mod 4$.

- 1. If $d \equiv 0 \mod 4$, then $1 \pm i$ are eigenvalues of $\mathcal{A}(d\vec{C}_n)$ each with multiplicity 1.
- 2. If $d \equiv 1 \mod 4$, then -2 is an eigenvalue of $\mathcal{A}(_{d}\vec{C}_{n})$ with multiplicity 1.
- 3. If $d \equiv 2 \mod 4$, then $-1 \pm i$ are eigenvalues of $\mathcal{A}(d\vec{C}_n)$ each with multiplicity 1.
- 4. If $d \equiv 3 \mod 4$, then $\pm 2i$ are eigenvalues of $\mathcal{A}(d\vec{C}_n)$ each with multiplicity 1.

Proof: We note that $\lambda_s = \omega^{ds} + \omega^s$ and since $n \equiv 0 \mod 4$, then $\frac{n}{4}$ and $\frac{n}{2}$ are integers such that $0 < \frac{n}{4} < \frac{n}{2} < n - 1$.

1. Since $d \equiv 0 \mod 4$, then d = 4k for some integer k. Thus,

$$\lambda_{\frac{n}{4}} = \omega^{(4k)(\frac{n}{4})} + \omega^{-\frac{n}{4}} = (\omega^n)^k + \omega^{-\frac{n}{4}}$$
$$= 1 + \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} = 1 - i.$$

Moreover, $\lambda_{\frac{n}{4}}$ and $\lambda_{n-\frac{n}{4}}$ are complex conjugates, thus $\lambda_{n-\frac{n}{4}}=1+i$.

2. Since $d \equiv 1 \mod 4$, then d = 4k + 1 for some integer k. Thus,

$$\lambda_{\frac{n}{2}} = \omega^{(4k+1)(\frac{n}{2})} + \omega^{-\frac{n}{2}} = (\omega^n)^{2k} \omega^{\frac{n}{2}} + \omega^{-\frac{n}{2}}$$
$$= 2\cos \pi = -2.$$

3. Since $d \equiv 2 \mod 4$, then d = 4k + 2 for some integer k. Thus,

$$\begin{split} \lambda_{\frac{n}{4}} &= \omega^{(4k+2)(\frac{n}{4})} + \omega^{-\frac{n}{4}} = (\omega^n)^k \omega^{\frac{n}{2}} + \omega^{-\frac{n}{4}} \\ &= (\cos \pi + i \sin \pi) + (\cos \frac{\pi}{2} - i \sin \frac{\pi}{2}) \\ &= -1 - i. \end{split}$$

Moreover, $\lambda_{\frac{n}{4}}$ and $\lambda_{n-\frac{n}{4}}$ are complex conjugates, thus $\lambda_{n-\frac{n}{4}} = -1 + i$.

4. Since $d \equiv 3 \mod 4$, the d = 4k+3 for some integer k. Thus,

$$\lambda_{\frac{n}{4}} = \omega^{(4k+3)(\frac{n}{4})} + \omega^{-\frac{n}{4}} = (\omega^n)^k \omega^{\frac{3n}{4}} + \omega^{-\frac{n}{4}}$$
$$= (\cos \frac{3}{2}\pi + i \sin \frac{3}{2}\pi) + (\cos \frac{\pi}{2} - i \sin \frac{\pi}{2})$$
$$= -2i.$$

Moreover, $\lambda_{\frac{n}{4}}$ and $\lambda_{n-\frac{n}{4}}$ are complex conjugates, thus $\lambda_{n-\frac{n}{4}}=2i$. \square

In $_{d}\vec{C}_{n}$, if we relax the condition that d>1 and let d=1, then $_{d}\vec{C}_{n}$ reduces to the cycle of order n, C_{n} . For $s=1,2,\ldots,n-1$, $\lambda_{s}=\omega^{s}+\omega^{-s}=2\cos\frac{2\pi s}{n}$. We note that the eigenvalues of $\mathcal{A}(C_{n})$ are all real. Furthermore, if n is even, then $\lambda_{\frac{n}{2}}=2\cos\frac{2\pi(\frac{n}{2})}{n}=2\cos\pi=-2$. Thus, we have the following result as given in [1]

Theorem 3.3. The spectrum of the cycle C_n is

$$\begin{pmatrix} 2 & 2\cos\frac{\pi}{n} & 2\cos\frac{4\pi}{n} & \dots & 2\cos\frac{2\pi(n-1)}{n} \\ 1 & 2 & 2 & \dots & 2 \end{pmatrix}.$$

Corollary 3.3.1. Given the cycle, C_n , if $n \equiv 0 \mod 4$, then 0 is an eigenvalue of $\mathcal{A}(C_n)$ with multiplicity 2.

Proof. Since $n \equiv 0 \mod 4$, then $\frac{n}{4}$ is an integer. Let $s = \frac{n}{4}$, then $\lambda_{\frac{n}{4}} = 2\cos\frac{2\pi(n/4)}{n} = 2\cos\frac{\pi}{2} = 0$. Since $\lambda_{\frac{n}{4}}$ and $\lambda_{n-\frac{n}{4}}$ are complex conjugates, then $\lambda_{n-\frac{n}{4}} = 0$. \square

We note that the complement of $_d\vec{C}_n$ is also circulant and n-3 regular but not necessarily asymmetric. Thus, the eigenvalues of $\mathcal{A}(_d\vec{C}_n)^c$ are $\lambda_0 = n-3$ and for $s=1,2,\ldots,n-1$,

$$\lambda_s = (1 + \omega^s + \omega^2 + \dots + \omega^{n-1}) - (1 + \omega^{ds})$$

$$= \frac{1 - \omega^{(n-1)s}}{1 - \omega^s} - (1 + \omega^{ds})$$

$$= -\frac{1}{\omega^s} (1 + \omega^s + \omega^{(d+1)s}).$$

Theorem 3.4. Given the digraph $({}_{d}\vec{C}_{n})^{c}$, if n and d+2 are both multiples of 3, then 0 is an eigenvalue of $\mathcal{A}({}_{d}\vec{C}_{n})^{c}$ with multiplicity 2.

Proof: Since n is a multiple of 3, then there exists an integer s such that n=3s. Thus, there is an eigenvalue $\lambda_{\frac{n}{2}}$ such that

$$\lambda_{\frac{n}{3}} = -\frac{1}{\omega^{\frac{n}{3}}} (1 + \omega^{\frac{n}{3}} + \omega^{(d+1)\frac{n}{3}})$$
$$= -\frac{1}{\omega^{\frac{n}{3}}} (1 + \omega^{\frac{n}{3}} + \omega^{(d+2)\frac{n}{3}} \omega^{-\frac{n}{3}}).$$

But since d+2 is a multiple of 3, we have $\omega^{(d+2)\frac{n}{3}}=(\omega^n)^{\frac{d+2}{3}}=1$. Moreover, $\omega^{\frac{n}{3}}+\omega^{-\frac{n}{3}}=2\cos\frac{2\pi(\frac{n}{3})}{n}=2\cos\frac{2}{3}\pi=-1$. Hence, $\lambda_{\frac{n}{3}}=0$. Furthermore, λ_s , where $s=n-\frac{n}{3}$ is a complex conjugate of $\lambda_{\frac{n}{3}}$ and thus is also 0. \square

Theorem 3.5. Given the digraph $({}_{d}\vec{C}_{n})^{c}$. Among the eigenvalues of its adjacency matrix is n-3 with multiplicity 1. Furthermore, -1 is an eigenvalue of $\mathcal{A}({}_{d}\vec{C}_{n})^{c}$ with multiplicity $\gcd(d+1,n)$ if and only if $\gcd(d+1,n) \mid \frac{n}{2}$.

Proof: We know that $\lambda_0 = n - 3$. For $s = 1, 2, \ldots, n - 1$, $\lambda_s = -\frac{1}{\omega^s}(1 + \omega^s + \omega^{(d+1)s})$. Thus for $\lambda_s = -1$ we must have

$$-\frac{1}{\omega^s}(1+\omega^s+\omega^{(d+1)s})=-1,$$

or equivalently,

$$\cos \frac{2\pi (d+1)s}{n} + i \sin \frac{2\pi (d+1)s}{n} = \omega^{(d+1)s} = -1.$$

This will hold if and only if $\frac{2\pi(d+1)s}{n} = \pi + 2\pi k$ for some integer k. This equation reduces to $(d+1)s = \frac{n}{2} + kn$ which is equivalent to the linear congruence

$$(d+1)s \equiv \frac{n}{2} \mod n.$$

This linear congruence has a solution if and only if $\gcd(d+1,n) \mid n$ and it has $\gcd(d+1,n)$ incongruent solutions modulo n. \square

Corollary 3.5.1. If n is even and $d = \frac{n}{2} - 1$, then n - 3 and -1 are eigenvalues of $\mathcal{A}(_{d}\vec{C}_{n})^{c}$ with multiplicities 1 and $\frac{n}{2}$ respectively.

Proof: We know that $\lambda_0 = n-3$. Since n is even, $\gcd(d+1,n) = \gcd(\frac{n}{2},n) = \frac{n}{2}$ and $\frac{n}{2} \mid \frac{n}{2}$, thus -1 is an eigenvalue of $\mathcal{A}(d\vec{C}_n)^c$, with multiplicity $\frac{n}{2}$.

We note that in $\mathcal{A}(d\vec{C}_n)^c$, where n is even and $d = \frac{n}{2} - 1$, $\lambda_s = -1$ whenever s is odd.

Theorem 3.6. In $({}_{d}\vec{C}_{n})^{c}$, suppose $n \equiv 0 \mod 4$.

- 1. If $d \equiv 0 \mod 4$, then $-2 \pm i$ are eigenvalues of $\mathcal{A}(d\vec{C}_n)^c$ each with multiplicity 1;
- 2. If $d \equiv 1 \mod 4$, then 1 is an eigenvalue of $\mathcal{A}(_{d}\vec{C}_{n})^{c}$ with multiplicity 1;
- 3. If $d \equiv 2 \mod 4$, then $\pm i$ and 1 are eigenvalues of $\mathcal{A}(d\vec{C}_n)^c$ each with multiplicity 1;
- 4. If $d \equiv 3 \mod 4$, then $-1 \pm 2i$ are eigenvalues of $\mathcal{A}(_{d}\vec{C}_{n})^{c}$ each with multiplicity 1;

Proof: We note that since $n \equiv 0 \mod 4$, then $\frac{n}{4}$ and $\frac{n}{2}$ are integers with $0 < \frac{n}{4} < \frac{n}{2} < n-1$. Also, $\lambda_s = -\frac{1}{\omega^s}(1 + \omega^s + \omega^{(d+1)s})$.

1. Since $d \equiv 0 \mod 4$, then there exists an integer r such that d = 4r. Thus,

$$\lambda_{\frac{n}{4}} = -\omega^{-\frac{n}{4}} (1 + \omega^{\frac{n}{4}} + \omega^{(4r+1)\frac{n}{4}})$$
$$= -\omega^{-\frac{n}{4}} (1 + 2\omega^{\frac{n}{4}}) = -2 - i.$$

Since $\lambda_{\frac{n}{4}}$ and $\lambda_{n-\frac{n}{4}}$ are complex conjugates, $\lambda_{n-\frac{n}{4}}=-2+i$.

2. Since $d \equiv 1 \mod 4$, then there exists an integer r such that d = 4r + 1.

$$\lambda_{\frac{n}{2}} = -\omega^{-\frac{n}{2}} (1 + \omega^{\frac{n}{2}} + \omega^{(4r+2)\frac{n}{2}})$$
$$= -\omega^{-\frac{n}{2}} (2 + \omega^{\frac{n}{2}}) = 1.$$

3. Since $d \equiv 2 \mod 4$, then there exists an integer r such that d = 4r + 2.

$$\lambda_{\frac{n}{4}} = -\omega^{-\frac{n}{4}} (1 + \omega^{\frac{n}{4}} + \omega^{(4r+3)\frac{n}{4}})$$
$$= -\omega^{-\frac{n}{4}} (1 + \omega^{\frac{n}{4}} + \omega^{\frac{3n}{4}}) = i.$$

Since $\lambda_{\frac{n}{4}}$ and $\lambda_{n-\frac{n}{4}}$ are complex conjugates, $\lambda_{n-\frac{n}{4}} = -i$. Moreover,

$$\lambda_{\frac{n}{2}} = -\omega^{-\frac{n}{2}} (1 + \omega^{\frac{n}{2}} + \omega^{(4r+3)\frac{n}{2}})$$
$$= -\omega^{-\frac{n}{2}} (1 + \omega^{\frac{n}{2}} + \omega^{\frac{3n}{2}}) = 1.$$

4. Since $d \equiv 3 \mod 4$, then there exists an integer r such that d = 4r + 3. Thus,

$$\begin{split} \lambda_{\frac{n}{4}} &= -\omega^{-\frac{n}{4}} (1 + \omega^{\frac{n}{4}} + \omega^{(4r+4)\frac{n}{4}}) \\ &= -\omega^{-\frac{n}{4}} (2 + \omega^{\frac{n}{4}}) = -1 + 2i. \end{split}$$

Since $\lambda_{\frac{n}{4}}$ and $\lambda_{n-\frac{n}{4}}$ are complex conjugates, $\lambda_{n-\frac{n}{4}} = -1 - 2i$. \square

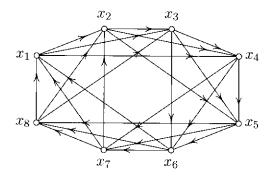
The Digraph $ec{C}_n^r$ amd its Complement

In [3] an orientation of the rth power graph of the cycle of order n was introduced. This digraph, denoted by \vec{C}_n^r , with n>2r has a circulant adjacency matrix whose entries for its first row starts with a zero followed by r 1's and then followed by n-r-1 zeros. The complement of the digraph \vec{C}_n^r is also circulant and n-r-1 regular but not necessarily asymmetric. Its adjacency matrix is circulant with first row entries having r+1, 0's followed by n-r-1, 1's.

Example 4.1. Consider the digraph \vec{C}_8^3 . The first row entries of its adjacency matrix are 0, 1, 1, 1, 0, 0, 0, 0. Its adjacency matrix is

$$\mathcal{A}(\vec{C}_8^3) = egin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A pictorial represental of \vec{C}_8^3 is given below



Theorem 4.1. Given the digraph \vec{C}_n^r , r is an eigenvalue of $\mathcal{A}(\vec{C}_n^r)$ with multiplicity 1. Furthermore, among the eigenvalues of $\mathcal{A}(\vec{C}_n^r)$ is 0 with multiplicity $\gcd(r,n)-1$ if and only if the $\gcd(r,n)>1$.

Proof: Clearly, $\lambda_0 = r$. If $s = 1, 2, \dots, n-1$, then

$$\lambda_s = \omega^s + \omega^{2s} + \ldots + \omega^{rs} = \omega^s \frac{1 - \omega^{rs}}{1 - \omega^s} = 0$$

if and only if $rs \equiv 0 \mod n$. This linear congruence always have a solution since $\gcd(r,n) \mid 0$. Moreover, it has $\gcd(r,n)$ incongruent solutions modulo n. However, one of its solution is $s \equiv 0 \mod n$ and since $s \neq 0$, then the number of incongruent solutions modulo n of $rs \equiv 0 \mod n$ excluding $s \equiv 0 \mod n$ is $\gcd(r,n)-1$. Furthermore, $rs \equiv 0 \mod n$ if and only if $\gcd(r,n)>1$.

We note that in the last theorem, the values of s where $\lambda_s = 0$ satisfies $s = t \frac{n}{\gcd(r,n)}$, where $t = 1, 2, \ldots, \gcd(r, n) - 1$.

Theorem 4.2. Given the digraph \vec{C}_n^r .

- 1. If n is even and $r = \frac{n}{2} 1$, then among the eigenvalues of $\mathcal{A}(\vec{C}_n^r)$ is -1 with multiplicity r. Moreover, $\lambda_s = i \frac{\sin \frac{2\pi s}{n}}{1 \cos \frac{2\pi s}{n}}$, for all odd s.
- 2. If n is odd and $r = \frac{n-1}{2}$, then $\lambda_s = -\frac{1}{2} i \frac{\sin \frac{\pi s}{n}}{2(1 + \cos \frac{\pi s}{n})}$ for all even $s, s \neq 0$ and $\lambda_s = -\frac{1}{2} + i \frac{\sin \frac{\pi s}{n}}{2(1 \cos \frac{\pi s}{n})}$, for all odd s

Proof: If s = 1, 2, ..., n - 1, we know that

$$\lambda_s = \omega^s + \omega^{2s} + \ldots + \omega^{rs} = \omega^s \frac{1 - \omega^{rs}}{1 - \omega^s}.$$

1. Suppose n is even and $r = \frac{n}{2} - 1$, then

$$\lambda_s = \omega^s \frac{1 - \omega^{(\frac{n}{2} - 1)s}}{1 - \omega^s} = \frac{1 - (-1)^s \omega^{-s}}{\omega^{-s} - 1}.$$

Moreover, suppose s is even. Then, for $r = \frac{n}{2} - 1$ values of even s,

$$\lambda_s = \frac{1 - \omega^{-s}}{\omega^{-s} - 1} = -1.$$

Now, suppose s is odd, then

$$\lambda_s = \frac{1 + \omega^{-s}}{\omega^{-s} - 1} = \frac{1 + \omega^s}{1 - \omega^s}$$
$$= \frac{1 + \cos\frac{2\pi s}{n} + i\sin\frac{2\pi s}{n}}{1 - \cos\frac{2\pi s}{n} - i\sin\frac{2\pi s}{n}}$$
$$= i\frac{\sin\frac{2\pi s}{n}}{1 - \cos\frac{2\pi s}{n}}.$$

2. If n is odd and $r = \frac{n-1}{2}$, then for $s = 1, 2, \ldots, n-1$,

$$\lambda_s = \omega^s \frac{1 - \omega^{\frac{n-1}{2}s}}{1 - \omega^s} = \frac{1 - (-1)^s \omega^{-\frac{s}{2}}}{\omega^{-s} - 1}.$$

If s is even, then

$$\lambda_s = -\frac{1}{1 + \omega^{-\frac{s}{2}}} = -\frac{1}{1 + \cos\frac{\pi s}{n} - i\sin\frac{\pi s}{n}}$$
$$= -\frac{1}{2} - i\frac{\sin\frac{\pi s}{n}}{2(1 + \cos\frac{\pi s}{n})}.$$

Finally, if s is odd, then

$$\lambda_s = \frac{1 + \omega^{-\frac{s}{2}}}{\omega^{-s} - 1} = -\frac{1}{1 - \omega^{-\frac{s}{2}}} = -\frac{1}{1 - \cos\frac{\pi s}{n} + i\sin\frac{\pi s}{n}}$$
$$= -\frac{1}{2} + i\frac{\sin\frac{\pi s}{n}}{2(1 - \cos\frac{\pi s}{n})}.$$

Theorem 4.3. Given the digraph \vec{C}_n^r . If $n \equiv 0 \mod 4$ and $r = \frac{n}{4} - 1$, then -1 is an eigenvalue of $\mathcal{A}(\vec{C}_n^r)$ with multiplicity r.

Proof: We know that $\lambda_s = \omega^s \frac{1-\omega^{rs}}{1-\omega^s}$. Let s=4k where $k=1,2,\ldots,\frac{n}{4}-1$. Then,

$$\lambda_s = \omega^{4k} \frac{1 - \omega^{(\frac{n}{4} - 1)(4k)}}{1 - \omega^{4k}} = \omega^{4k} \frac{1 - \omega^{nk} \omega^{-4k}}{1 - \omega^{4k}}$$
$$= \omega^{4k} \frac{1 - \omega^{-4k}}{1 - \omega^{4k}} = -1.\Box$$

If in \vec{C}_n^r , r=1, then \vec{C}_n^r reduces to the circuit \vec{C}_n^* . Since $\mathcal{A}(\vec{C}_n^*)$ is circulant with the first row entries a 1 on the second column and all other entries zeros, then, $\lambda_s = \omega^s = \cos\frac{2\pi s}{n} + i\sin\frac{2\pi s}{n}$. In particular, $\lambda_0 = 1$. Thus,

Spec
$$\vec{C}_n^* = \begin{pmatrix} 1 & \operatorname{cis} \frac{2\pi}{n} & \operatorname{cis} \frac{4\pi}{n} & \dots & \operatorname{cis} \frac{2(n-1)\pi}{n} \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}$$
.

Theorem 4.4. Given the circuit \vec{C}_n^* .

- 1. If $n \equiv 0 \mod 3$ then 1 and $-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ are eigenvalues of $\mathcal{A}(\vec{C}_n^*)$ each of multiplicity 1.
- 2. If $n \equiv 0 \mod 4$ then ± 1 and $\pm i$ are eigenvalues of $\mathcal{A}(\vec{C}_n^*)$ each of multiplicity 1.
- 3. If $n \equiv 0 \mod 6$ then ± 1 and $\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ are eigenvalues of $\mathcal{A}(\vec{C}_n^*)$ each of multiplicity 1.

Proof: For all cases $\lambda_0 = \omega^0 = 1$.

1. Since $n \equiv 0 \mod 3$, then n = 3k for some integer k. Thus,

$$\lambda_{\frac{n}{3}} = \omega^{\frac{n}{3}} = \omega^k = \cos\frac{2\pi k}{3k} + i\sin\frac{2\pi k}{3k}$$
$$= \cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi = -\frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

Since $\lambda_{\frac{n}{3}}$ and $\lambda_{n-\frac{n}{3}}$ are complex conjugates, then $\lambda_{n-\frac{n}{2}} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$.

2. If $n \equiv 0 \mod 4$, then n = 4k for some integer k. Thus,

$$\lambda_{\frac{n}{2}} = \omega^{\frac{n}{2}} = \omega^{2k} = \cos\frac{2\pi(2k)}{4k} + i\sin\frac{2\pi(2k)}{4k}$$
$$= \cos\pi + i\sin\pi = -1.$$

Also,

$$\lambda_{\frac{n}{4}} = \omega^{\frac{n}{4}} = \omega^k = \cos\frac{2\pi k}{4k} + i\sin\frac{2\pi k}{4k}$$
$$= \cos\frac{1}{2}\pi + i\sin\frac{1}{2}\pi = i.$$

Since $\lambda_{\frac{n}{4}}$ and $\lambda_{n-\frac{n}{4}}$ are complex conjugates, then $\lambda_{n-\frac{n}{4}} = -i$.

3. Sine $n \equiv 0 \mod 6$, then n = 6k for some integer k. Thus,

$$\lambda_{\frac{n}{6}} = \omega^{\frac{n}{6}} = \omega^{k} = \cos\frac{2\pi k}{6k} + i\sin\frac{2\pi k}{6k}$$
$$= \cos\frac{1}{3}\pi + i\sin\frac{1}{3}\pi = \frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

Since $\lambda_{\frac{n}{6}}$ and $\lambda_{n-\frac{n}{6}}$ are complex conjugates, then $\lambda_{n-\frac{n}{6}} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Theorem 4.5. Given the complement of the digraph \vec{C}_n^r , then n-r-1 is an eigenvalue of $\mathcal{A}(\vec{C}_n^r)^c$ with multiplicity 1. Moreover, among the eigenvalues of $\mathcal{A}(\vec{C}_n^r)^c$ is 0 with multiplicity $\gcd(r+1,n)-1$ if and only if $\gcd(r+1,n)>1$.

Proof. Clearly, $\lambda_0 = n - r - 1$. For $s = 1, 2, \dots, n - 1$,

$$\lambda_s = \omega^{(r+1)s} + \omega^{(r+2)s} + \dots + \omega^{(n-1)s}$$
$$= \omega^{(r+1)s} \frac{1 - \omega^{(n-r-1)s}}{1 - \omega^s} = 0$$

if and only if $(r+1)s \equiv 0 \mod n$. This linear congruence always has a solution since $\gcd(r+1,n) \mid 0$, in fact it has $\gcd(r+1,n)$ incongruent solutions modulo n. However, one of its solutions is $s \equiv 0 \mod n$ and since $s \neq 0$, then the number of incongruent solutions modulo n of $(r+1)s \equiv 0 \mod n$ excluding $s \equiv 0 \mod n$ is $\gcd(r+1,n)-1$. Furthermore, $(r+1)s \equiv 0 \mod n$ if and only if $\gcd(r+1,n)>1$. \square

Theorem 4.6. Given the complement of \vec{C}_n^r .

- 1. If n is even and $r = \frac{n}{2} 1$, then 0 is an eigenvalue of $\mathcal{A}(\vec{C}_n^r)$ with multiplicity r.

 Moreover, $\lambda_s = -1 i \frac{\sin \frac{2\pi s}{n}}{1 \cos \frac{2\pi s}{n}}$ for all odd s.
- 2. If n is odd and $r = \frac{n-1}{2}$, then $\lambda_s = -\frac{1}{2} + i \frac{\sin \frac{\pi s}{n}}{2(1+\cos \frac{\pi s}{n})}$, for all nonzero s and $\lambda_s = -\frac{1}{2} i \frac{\sin \frac{\pi s}{n}}{2(1-\cos \frac{\pi s}{n})}$, for all odd s.

Proof. We know that for s = 1, 2, ..., n - 1,

$$\lambda_s = \omega^{(r+1)s} \frac{1 - \omega^{(n-r-1)s}}{1 - \omega^s} = \frac{\omega^{(r+1)s} - 1}{1 - \omega^s}.$$

1. If n is even and $r = \frac{n}{2} - 1$, then

$$\lambda_s = \frac{(\omega^{\frac{n}{2}})^s - 1}{1 - \omega^s} = \frac{(-1)^s - 1}{1 - \omega^s}.$$

Thus if s is even, then $\lambda_s = 0$. We note that there are $r = \frac{n}{2} - 1$ even integers from 1 to n - 1. If s is odd, then

$$\lambda_s = -\frac{2}{1 - \omega^s} = -1 - i \frac{\sin\frac{2\pi s}{n}}{1 - \cos\frac{2\pi s}{n}}.$$

2. If n is odd and $r = \frac{n-1}{2}$, then

$$\lambda_s = \frac{(-1)^s \omega^{\frac{s}{2}} - 1}{1 - \omega^s}.$$

If s is even, then

$$\lambda_s = \frac{\omega^{\frac{s}{2}} - 1}{1 - \omega^s} = -\frac{1}{1 + \omega^{\frac{s}{2}}} \\ = -\frac{1}{2} + i \frac{\sin \frac{\pi s}{n}}{2(1 + \cos \frac{\pi s}{n})}.$$

If s is odd, then

$$\lambda_s = \frac{-\omega^{\frac{s}{2}} - 1}{1 - \omega^s} = -\frac{1}{1 - \omega^{\frac{s}{2}}} \\ = -\frac{1}{2} - i \frac{\sin\frac{\pi s}{n}}{2(1 - \cos\frac{\pi s}{n})}.$$

Theorem 4.7. Given the complement of the circuit \vec{C}_n^* . Then, the eigenvalues of $\mathcal{A}(\vec{C}_n^r)^c$ are $\lambda_0 = n-2$ and for s = 1, 2, ..., n-1,

$$\lambda_s = -1 - \omega = -1 - \cos \frac{2\pi s}{n} - i \sin \frac{2\pi s}{n}.$$

Proof. Clearly, $\lambda_0 = n - 2$. If s = 1, 2, ..., n - 1,

$$\lambda_s = \omega^{2s} + \omega^{3s} + \dots + \omega^{(n-1)s} = \omega^{2s} \frac{1 - \omega^{(n-2)s}}{1 - \omega^s}$$
$$= -\frac{1 - \omega^{2s}}{1 - \omega^s} = -(1 + \omega^s)$$
$$= -1 - \cos\frac{2\pi s}{n} - i\sin\frac{2\pi s}{n}$$

Corollary 4.7.1. Given the complement of the circuit \vec{C}_n^* . If $n \equiv 0 \mod 4$, then among the eigenvalues of $\mathcal{A}(\vec{C}_n^*)^c$ are $n-2,0,-1 \pm i$, each of multiplicity 1.

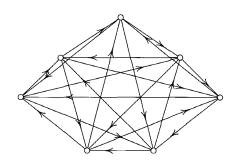
Proof. It can easily be shown that $\lambda_0 = n-2$, $\lambda_{\frac{n}{2}} = 0$, $\lambda_{\frac{n}{4}} = -1 - i$ and $\lambda_{\frac{3n}{4}} = -1 + i \square$

The Tournament $\vec{T_n}$

Other classes of asymmetric, circulant, and r-regular digraphs were introduced in [4]. One of these is a special class of tournaments with an odd order, denoted by \vec{T}_n and whose adjacency matrix is circulant with first row entries an alternating series of 0's and 1's, beginning and ending with a zero. It was also noted in [4] that \vec{T}_n is isomorphic to its complement.

Example 5.1. The adjacency matrix of the tournament \vec{T}_7 and its graphical representation are given below

$$\mathcal{A}(\vec{T_7}) = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$



Theorem 5.1. Given the digraph $\vec{T_n}$. Among the eigenvalues of $\mathcal{A}(\vec{T_n})$ is n-2 with multiplicity 1. Moreover, for all i=1,2,...,n-1, $\lambda_s = \frac{1}{2} + i \frac{\sin \frac{2\pi s}{n}}{2(1+\cos \frac{2\pi s}{n})}$.

Proof. Clearly, $\lambda_0 = n-2$. For $s = 1, 2, \ldots, n-1$,

$$\lambda_s = \omega^s + \omega^{3s} + \omega^{5s} + \dots + \omega^{(n-2)s}$$

$$= \omega^s \frac{1 - \omega^{(n-1)s}}{1 - \omega^{2s}} = -\frac{1}{1 + \omega^s}.$$

This is equivalent to

$$\lambda_s = -\frac{1}{1 + \cos\frac{2\pi s}{n} + i\sin\frac{2\pi s}{n}}$$

$$= -\frac{1 + \cos\frac{2\pi s}{n} - i\sin\frac{2\pi s}{n}}{2(1 + \cos\frac{2\pi s}{n})}$$

$$= -\frac{1}{2} + i\frac{\sin\frac{2\pi s}{n}}{2(1 + \cos\frac{2\pi s}{n})}.$$

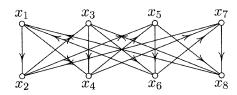
An Oriented Complete Bipartite Graph and its Complement

Another class of asymmetric, circulant, and r-regular digraphs introduced in [4] is an orientation of a complete bipartite graph. This digraph, denoted by $\vec{K}_{m,m}$ has the restriction that $m \geq 4$ and $m \equiv 0 \mod 4$. Moreover, its adjacency matrix's first row entries starts with $\frac{m}{2}$ pairs of 0-1's, followed by m zeroes. The complement of $\vec{K}_{m,m}$, $(\vec{K}_{m,m})^c$ will also have a circulant adjacency matrix whose first row entries start with a pair of

zeroes, followed by $\frac{m}{2}-1$ pairs of 1-0's, then followed by m 1's. We note that the corresponding complement is $\frac{3m-2}{2}$ regular but not asymmetric and that n=2m.

Example 6.1. The adjacency matrix and pictorial representation of $\vec{K}_{4,4}$ are given below.

$$\mathcal{A}(ec{K}_{4,4}) = egin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$



Theorem 6.1. Given the digraph $\vec{K}_{m,m}$, where $m \geq 4$ and $m \equiv 0 \mod 4$. Among the eigenvalues of $\mathcal{A}(\vec{K}_{m,m})$ are $\frac{n}{4}$ and $-\frac{n}{4}$, both with multiplicity 1. Furthermore, $\lambda_s = 0$, for all even s, except when $s = 0, \frac{n}{2}$ and $\lambda_s = i \csc \frac{2\pi s}{n}$, for all odd s.

Proof. Clearly, $\lambda_0 = \frac{n}{4}$ and $\lambda_{\frac{n}{2}} = -\frac{n}{4}$. For $s = 1, 2, \dots, \frac{n}{2} - 1, \frac{n}{2} + 1, \dots, n - 1$,

$$\lambda_s = \omega^s + \omega^{3s} + \omega^{5s} + \dots + \omega^{(\frac{n}{2} - 1)s} = \omega^s \frac{1 - \omega^{\frac{n}{2}s}}{1 - \omega^{2s}}.$$

If s is even, that is s = 2k for some integer k, then

$$\lambda_s = \omega^{2k} \frac{1 - \omega^{\frac{n}{2}(2k)}}{1 - \omega^{2(2k)}} = \omega^{2k} \frac{1 - \omega^{nk}}{1 - \omega^{4k}} = 0.$$

If s is odd, then

$$\lambda_s = \omega^s \frac{1 - \omega^{\frac{n}{2}s}}{1 - \omega^{2s}} = \omega^s \frac{1 - (-1)^s}{1 - \omega^{2s}} = \frac{2}{\omega^{-s} + \omega^s}$$
$$= -\frac{1}{i \sin \frac{2\pi s}{n}} = i \csc \frac{2\pi s}{n}.$$

Theorem 6.2. Given the complement of the digraph $\vec{K}_{m,m}$, where $m \geq 4$ and $m \equiv 0 \mod 4$. Among the eigenvalues of $\mathcal{A}(\vec{K}_{m,m}^c)$ are $\frac{3n}{4} - 1$ and $-\frac{n}{4} - 1$, both with multiplicity 1. Furthermore, $\lambda_s = -1$, for all even s, except when $s = 0, \frac{n}{2}$ and $\lambda_s = -1 - i \csc \frac{2\pi s}{n}$, for all odd s.

Proof. For $s = 0, 1, 2, \dots, n - 1$,

$$\lambda_s = \omega^{2s} + \omega^{4s} + \dots + \omega^{(\frac{n}{2} - 2)s} + \omega^{(\frac{n}{2})s} + \omega^{(\frac{n}{2} + 1)s} + \omega^{(\frac{n}{2} + 2)s} + \dots + \omega^{(n-1)s}.$$

Thus,

$$\lambda_0 = \left[\omega^{2(0)} + \omega^{4(0)} + \dots + \omega^{\left(\frac{n}{2} - 2\right)(0)}\right] + \left[\omega^{\left(\frac{n}{2}\right)(0)}\omega^{\left(\frac{n}{2} + 1\right)(0)} + \dots + \omega^{(n-1)(0)}\right]$$
$$= \left(\frac{n}{4} - 1\right) + \frac{n}{2} = \frac{3n}{4} - 1.$$

$$\lambda_{\frac{n}{2}} = \left[\omega^{2(\frac{n}{2})} + \omega^{4(\frac{n}{2})} + \dots + \omega^{(\frac{n}{2} - 2)(\frac{n}{2})}\right] + \left[\omega^{(\frac{n}{2})(\frac{n}{2})} + \omega^{(\frac{n}{2} + 1)(\frac{n}{2})} + \dots + \omega^{(n-1)(\frac{n}{2})}\right]$$

$$= \left[(-1)^2 + (-1)^4 + \dots + (-1)^{\frac{n}{2} - 1}\right] + \left[(-1)^{\frac{n}{2}} + (-1)^{\frac{n}{2} + 1} + \dots + (-1)^{n-1}\right]$$

$$= (\frac{n}{4} - 1) + (-\frac{n}{4} + \frac{n}{4})$$

$$= \frac{n}{4} - 1$$

For all values of s other that 0 and $\frac{n}{2}$,

$$\lambda_{s} = \omega^{2s} + \omega^{4s} + \dots + \omega^{(\frac{n}{2} - 2)s} + \omega^{(\frac{n}{2})s} + \omega^{(\frac{n}{2} + 1)s} + \omega^{(\frac{n}{2} + 2)s} + \dots + \omega^{(n-1)s}$$

$$= (\omega^{s} + \omega^{2s} + \dots + \omega^{(n-1)s}) - (\omega^{s} + \omega^{3s} + \dots + \omega^{(\frac{n}{2} - 1)s})$$

$$= \omega^{s} \frac{1 - \omega^{(n-1)s}}{1 - \omega^{s}} - \omega^{s} \frac{1 - \omega^{\frac{n}{2}s}}{1 - \omega^{2s}}$$

$$= \omega^{s} \frac{(1 - \omega^{-s})(1 + \omega^{s}) - (1 - \omega^{\frac{n}{2}s})}{1 - \omega^{2s}}$$

$$= \frac{\omega^{2s} - 1 - \omega^{s} + (-1)^{s} \omega^{s}}{1 - \omega^{2s}}$$

If s is even, then

$$\lambda_s = \frac{\omega^{2s} - 1 - \omega^s + \omega^s}{1 - \omega^{2s}} = -1.$$

If s is odd, then

$$\lambda_s = \frac{\omega^{2s} - 1 - \omega^s - \omega^s}{1 - \omega^{2s}} = -1 - \frac{2\omega^s}{1 - \omega^{2s}}$$
$$= -1 - \frac{2}{\omega^{-s} + \omega^s} = -1 - i\csc\frac{2\pi s}{n}.$$

References

- [1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1996.
- [2] R. V. Churcill, J. W Brown & R. F. Verhey, Complex Variables and Applications, McGraw-Hill Inc., 1974.
- [3] S. V. Gervacio & I. B. Jos, Singular and Nonsingular Circulant Asymmetric Digraphs, *Manila Journal of Science*, **1** (2000), 35-39.
- [4] S. V. Gervacio & I. B. Jos, Singularity and Nonsingularity of some r-regular, Circulant and Asymmetric Digraphs and their Complements, preprint.
- [5] I. B. Jos, On Singular and Nonsingular Digraphs, PhD Dissertation, De La Salle University-Manila, 2000.

Acknowledgment

The author wishes to thank the De La Salle University-Manila's **University Research** Council Office for funding this project.