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Let G be a digraph and .A(é) be its adjacency
matriz. The spectrum of GG, denoted by Spec G is

= Ao A Ap_
Spec G= ("% 71 Pl
mg Mmi mp_1
where Ao, A\1,...,Ap_1 are the eigenvalues of
A(G) and mg,my,...,m — 1 are their corre-

sponding multiplicities. This paper discusses some

properties of the spectrum of four different classes
of asymmetric, circulant, and r-reqular digraphs
and their complements. The digraphs considered
in this paper are orientations of the rth power
of a cycle, a complete graph, a complete bipartite
graph, and a digraph whose adjacency matriz is
circulant with first row entries all zeros exccpt the
(d + 1)st and nth column entries which are both
1s.

Introduction

The ordered pair G = (V(G), A(G)), is called
a digraph. In G, V(@) is a nonempty set of

elements called wertices and A(G) is a subset
of V(G) x V(G). The elements of A(G) are
called arcs. If z € V(G), then the set NT(z) =
{yl(z,y) € A(G)} is called the out-neighbors of
and the set N~ (z) = {y|(y,z) € A(G)} is called
the in-neighbors of z. If [N (z)| = [N~ (z)| = r,
vz € V(G), then G is said to be r-regular.
If (z,y) € A(G), then (y,z) ¢ A(G), where

z,y € V(G), then the digraph G is asymmetric.

To each digraph G with n vertices, a square
matrix of order n can be obtained. This ma-
trix called the adjacency matriz of G and de-
noted by A(G) = [as;] is defined as: a; = 1
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whenever (z;,z;) € A(G) and a;; = 0 whenever
(zi,25) & A(G),Vai,z; € V(G). It A(G) is sin-
gular, then G is singular, otherwise G is nonsin-
gular.

Two classes of asymmetric, circulant, and r-
regular digraphs were defined in [3]. These di-
graphs were denoted by ég and 4C,. The former
is an orientation of the rth power of the cycle
Cy. Another pair of asymmetric, circulant, and
r-regular digraphs were introduced in [4]. One
belongs to the class of tournaments, denoted by
T, n and the other is an orientation of a class of
complete bipartite graphs, denoted by Km,m- In
[3] and [4], the singularity and nonsingularity of
these classes of digraphs were investigated. Also,
in [4], the natural extension of the complement



VoL. 5 No. 1 January 2002

of a graph was used to define the complement
of a digraph. We will use this definition of the
complement of a digraph and this is given below:

Definition 1.1. Given a digraph é, the comple-
ment of G, denoted by G¢ is the digraph with
V(G = V(G) and Va,y € V(GY), with & # y,
(y,z) € A(G®) if and only if (2,7) € A(G); and
(z,y) and (y,z) are in A(G®) whenever neither

-

(x,y) nor (y,x) are in A(G).

In [4], the singularity and nonsingularity of
the complements of the special classes of digraphs
discussed above, were established.

In [1] the spectrum of a graph is defined. We
now define the spectrum of a digraph.

Definition 1.2. Let G be a digraph. The spec-
trum of G is the set of numbers which are the
eigenvalues of A(G) together with with their mul-
tiplicities. Thus if Ag, A1,...,Ap—1 are the eigen-
values of A(G) with their corresponding multi-
plicities to be mq,m1,...,mp_1, then the spec-

trum of A(G) is

Ao A1
mgo my

Spec G= (

Some Preliminary Results

The digraphs considered in this paper are cir-
culant. We say that a digraph is circulant if its
adjacency matrix is circulant. In [1], a theorem
is given to determine the eigenvalues of such ma-
trix. We present this theorem below:

Theorem 2.1. Suppose that 0,a9,as,...,a, are
the first row entries of a circulant matriz A.
Then the eigenvalues of A are

)\S = Z a/jw(j_l)s’
=2

where s = 0,1,2,....,n — 1 and w

isin 2Z,
n

o
n

coSs +
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Given a digraph of order n, we observe that
if this digraph is circulant then its eigenvalues
As and Ap, where s,p € {1,2,...,n — 1} and
s+ p = n, are complex conjugates of each other.
This relation is true because

M =Y a7 = 3 iD=
j=1 j=1

n n
=3 4l DD 2§ g,
j=1 j=1

n
2

Furthermore, we note that w™ =1 and w
—1.

The Digraph ,C, and its Complement

In [3], the class of digraphs denoted by iCh,
was defined. This digraph is with n > 2d + 1
and d > 1, and has a circulant adjacency ma-
trix with first row entries a 1 on the d + 1st and
nth columns and all other first row entries are
zeros. The complement of dén is also circulant
with its adjacency matrix having first row entries
all 1's except the entries on the first, (d + 1)st,
and nth columns. This digraph, (4C,)¢ is non-
asymmetric.

Example 3.1. Consider the digraph 2Cs. The
first row entries of A(3Cg) are 0,0,1,0,0,1 and

001001
100100
- 010010
ARCe) =15 51 0 0 1
100100
01 00 1 0

A pictorial representation of »Cls is shown be-
low.

I i) I3 Xa x e



THE MANILA JOURNAL OF SGIENCE

Example 3.2. The adjacency matrix of the com-
plement of 2Cj is

010110
001011
... 100101
A(QCG):llo()lO
01100 1
10110 0

A pictorial representation of (256)6 is shown
below.

Theorem 3.1. Given the digraph aChr. 0 is an
eigenvalue of A(4Cpn) with multiplicity ged(d +
1,n) if and only if n is even and ged(d+1,n) ‘ 5,
Proof: Since 4Cp s circulant, then for s =
1,2,...,n—1,

. .
— 1+ wldHDsy,

A = wds + w(n—l)s —

Moreover,

2r(d+1)s
n

(d+1)s _

As =0 w = —1 < cos( )= —1.

This implies that, for some integer k,

2(d+ 1)sm

=(14+2k)r < (d+1)s= - +nk

& (d+1)s =

o303

This linear congruence has a solution if and
only if ged(d + 1,n) l 5. Furthermore, this linear
congruence has ged(d + 1, n) solutions. O

Corollary 3.1.1. Given the digraph 4Cn. If n
is even and d = 5 — 1, then 0 is an eigenvalue of

A(Cy) with multiplicity 5.

mod n.
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Proof: Since n is even and d = § — 1, then
ged(d +1,n) = ged(3,n) = 5. 515,
thus 0 is an eigenvalue of A(dﬁn) with multiplic-
ity 5. O

In the digraph dén, ifnisevenand d = 51,
then for s =1,2,...,n — 1,

Moreover

A = wds +w = w(%—l)s +w s
=w (1 +w?®) = w (1 4+ (=1)%).
If s is odd, A; = 0 and if s is even, A; =
2w = 2(cos 223 —isin 2%5) Also, Ay = 2, hence,
the spectrum of dC_”n, Spec d(jn with n even and

d=%—1is

- A .8 . 2m(n—2)
2 0 Z2cisTt QCIS% 2cis = —
121 1. 1

Theorem 3.2. In dén, suppose n =0 mod 4.

1. If d=0 mod 4, then 1 i are eigenvalues
of A(4C.,) each with multiplicity 1.

2. If d =1 mod 4, then —2 is an eigenvalue
of A(4Cy,) with multiplicity 1.

3. Ifd =2 mod 4, then —1+1i are eigenvalues
of A(4Cr) each with multiplicity 1.

4. If d =3 mod 4, then +2i are eigenvalues
of A(4Cr) each with multiplicity 1.

Proof: We note that A\, = w® + w® and since
n = 0 mod 4, then 7§ and § are integers such
that 0 <7 <5 <n—1

1. Since d = 0 mod 4, then d = 4k for some
integer k. Thus,

INE

)\ﬁ = w(4k)(%) +w_% = (wn>k + w™
4
:1+cosg—ising:1—i.

Moreover, )\% and An_% are complex con-
jugates, thus /\n,% =1+41.
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2. Since d = 1 mod 4, then d = 4k + 1 for
some integer k. Thus,

T

(Wi w2

{4h+1){

b3

}—H.u
= -2

)\n =w

=2cosm

3. Since d = 2 mod 4, then d = 4k + 2 for
some integer k. Thus,

T

(W w? 4w

5)

An = DR -0

L]

b
(cosw +isinm) + (COSE —igin

[N

—1 —1.

Morcover, An and )\”J—i are complex con-
jugates, thus }\n_,g =—-1+41.

4. Since d =3 mod 4, the d = 4k+3 for some
integer k. Thus,

An = QURENE) L =T = (s )"w? +w
4

(cos S+ isin o) + (cos & — i sin &)

= 08 —1T sl — 7w CO8 — — 1811 —

2 2 2 2

—2t.

Moreover, )\n and )\n,% are complex con-
jugates, thus Ap_ n =21,

In dC_fn_, if we relax the condition that d > 1
and let d = 1, then dén reduces to the cy-
cle of order n, Cy. For s = 1,2,....n — 1,
As = w' +w™® = 2cos 2”. We note that the
eigenvalues of A{C,,) are all real, Furthermore, if
n is cven, then A= = 2cos L(L =2cosm = —2,
Thus, we have the following result as given in [1]

Theorem 3.3. The spectrum of the cycle C,, s

2 QCOS% 20054T QCOSM
1 2 2 2 i

Corollary 3.3.1. Given the cycle, Cy, if n =0
mod 4, then 0 is an eigenvalue of A(C,) with
multiplicity 2.
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Proof. Since n =0 mod 4, then % is an integer.
Lets—ﬁthen)\;:*QwM = (.
Since )\% and )\n__ arc complex corl]uo"dtf,b then
A”’% =0 O

We note that the complement of dén is also
circulant and n — 3 regular but not necessarily
asymmetric. Thus, the eigenvalues of A(4C,)"
are \p=n—3and for s =1,2,...,n—1,

=2cosj

4 wnﬁl) _ (1 + wn’.s;)

— (1 +w®™)

(I+w®+w+...
1Mw,(71—1).q
1—ws

1
- -1+

As

W 4 w(d+l)5).

Theorem 3.4. Given the digraph (dén)c, if n
and d + 2 are both multiples of 3. then 0 is an
etgenvalue of A(2Cn)® with multiplicity 2.

Proof: Since n is a multiple of 3, then there exists
an integer s such that n = 3s. Thus, there is an
eigenvalue Az such that

]. T 1
1

e (14w
L,L)s

A

w3

5 + MCanIky

7).

But since d + 2 is a multiple of 3 we have
WHDE — (™) = 1. Morcover, w? + w™§
2(osi3—) = . = —1. Hence, ,\n = 0.
Furthermore As. where s = 1 — Tis a Complex
conjugate of )\% and thus is alse 0. O

Theorem 3.5. Given the digraph (dérl)c.
Among the eigenvalues of its adjacency matriz
is n — 3 with multiplicity 1. Furthermore, —1
is an eigenvalue of A(dén)“ with multiplicity
gedid + 1,n) if and only if ged(d + 1,n) | 2

Proof: We know that A\g = n — 3. For s =
L2, . on—1, A = =L (14w +w%) Thus
for A, = —1 we must have

1 5
"J(IJY_W +w(d+1]g)=—1.
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or equivalently,

2m(d + 1
COSL(+—>S+iSin
n

m(d+1)s s _ g

This will hold if and only if 2@ — 7 4 o7p
for some integer k. This equation reduces to
(d+1)s = % + kn which is equivalent to the
linear congruence

(d+1)s= mod n.

|3

This linear congruence has a solution if and only
if ged(d + 1, n) ln and it has ged(d + 1, n) incon-
gruent solutions modulo n. O

Corollary 3.5.1. If n is even and d = 5 — 1,
then n — 3 and —1 are eigenwalues of A(4C,)°

with multiplicities 1 and § respectively.

Proof: We know that Ag = n—3. Since n is even,
ged(d +1,n) = ged(5,n) = 5 and 5|5, thus —1
is an eigenvalue of A(4Cp)¢, with multiplicity 2 5
[

‘We note that in A(dén)c, where n is even and

d= 75 —1, Ay = —1 whenever s is odd.
Theorem 3.6. In (,C,)¢, suppose n = 0
mod 4.

1. Ifd =0 mod 4, then —241 are eigenvalues
of A(4Cp)¢ each with multiplicity 1;

2. Ifd=1 mod 4, then 1 is an eigenvalue of
A(4Cr)¢ with multiplicity 1;

3. If d =2 mod 4, then +i and 1 are eigen-
values of A(4Cp)¢ each with multiplicity 1;

4. If d =3 mod 4, then —142i are eigenval-
ues of A(4Cr)¢ each with multiplicity 1;

Proof: We note that since n =0 mod 4, then 7
and 7 are integers with 0 < 2 < § <n—1. Also,
As = —H (14w + w(d“)s)
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. Since d = 0 mod 4, then there exists an

integer r such that d = 4r. Thus,

»MS

(1+wi +oW+DT)
(142wi)=—-2—4.

A

= —w

w3

»z:l:

—w

Since )\n and )\nk; are complex conjugates,
/\n,Z = —2 + 1.

. Since d = 1 mod 4, then there exists an

integer r such that d = 4r + 1.

MI§

A (1+w? +oW23)

(2+w2):1

= —w

|3

w\a

= —w

. Since d = 2 mod 4, then there exists an

integer r such that d = 4r 4 2.

(1 + w4 + w(47‘+3)%)

NS

An = —w
4

>¢>~|§

= w14 wd +w4)=i.

Since )\% and )\n__ are complex conjugates,

Apn = —1. Moreover
4
Ao = —w “H1 4 w? w33
= —w (14 w? +w2)=1.

. Since d = 3 mod 4, then there exists an

integer r such that d = 4r + 3. Thus,

An = —w T (14 wi 4+ W97

w3

= —w 1(2+4wi)=—1+2i

Since )\% and An,_ are complex conjugates,
)‘n—% =—-1-2 \:‘
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The Digraph ¢’ amd its Complement

In [3] an orientation of the rth power graph of the
cycle of order n was introduced. This digraph,
denoted by (:’; with n > 2r has a circulant adja-
cency matrix whose entries for its first row starts
with a zero followed by r 1's and then followed by
n —r — 1 zeros. The complement of the digraph
('iﬁ is also circulant and n — r — 1 regular but not
necessarily asymunetric. Its adjacency matrix is
circulant with first row entries having r + 1, 0's
followed by n —r — 1, 1's.

Example 4.1. Consider the digraph 685 The
first row entries of its adjacency matrix are
0,1,1,1,0,0.0,0. Its adjaceney matrix is

011100 0 0
0111000
00011100
-~ 00001110
A(CB)_00(100111
100000 11
11000001
11100 0 0 0]

A pictorial represental of CF is given helow

o I3
I Ly
3 5
&Iy g
Theorem 4.1. Given the digraph dﬁ T 5 an
eigenvalue of A(CT) with multiplicity 1. Fur-
thermore, among the eigenvalues of A(CT) is 0

with multiplicity ged(r,n) — 1 if and only if the
ged(r,n) > 1.

45

THE MaNILA JOURNAL OF SCIENCE

Proof: Clearly, \g = 7. If s =1,2,... ,n—1, then

s
.sl w

4vrs_ —_—
+ w = w l_wS—O

M= P+

if and only if rs = 0 mod n. This lincar con-
gruence always have a solution since ged{r, n) |(].
Moreover, it has ged{r,n) incongruent solutions
modulo n. However, one of its solution iz s = 0
mod n and since s # 0, then the number of in-
congruent solutions modulo n of rs = 0 mod n
excluding s = 0 mod n is ged{r,n) — 1. Further-
more, s = 0 mod n if and only if ged(r,n) > 1.
O

We note that in the last theorem, the values
of s where A, — 0 satisfies ¢ = ¢
t=1,2,...,ged{r.n) — 1.

n .
ged{rn)? where

Theorem 4.2. Given the digraph (_“‘,2

i3

2
eigenvalues of A(CT) is —1 with multiplic-

1. If nis even and r = 1, then among the

2
. . 8In —
ity r. Moreover, hy = i for all odd
s —COS oy
2 Ifn is odd and r = ”;1, then Ay =

1 . osin

—_— — e
2 2(1+cos ZF)
As =

for all even s, s # 0 and

for all odd s

sin £
I

1 e
-5+ LQ(]fcos’:—f)"

2

Proof: MM s=1,2,...,n— 1, we know that

5 I —w

1 —ws’

24 :
As = W+ + W

=
1. Suppose n is even and r = 5 — 1, then

1— Wiz b 1= {=1)pw

1 —ws

Ag =’ —
w™F—1

Moreover, suppose s is even. Then, for

r =5 — 1 values of even s,

_ 1—w™*

Ay = ——— =
w—1

—1.
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Now, suppose s is odd, then

14+w™* 14+ w?
AS: =
ws—1 1—ws
71+00527r5+zsm@
1 — cos 27 2 — ¢sin &2 2”5
) smﬂ
2242
1 — cos 2&8
2. If nis odd and r = "T_l, then for s =
1,2,...,n—1,
n—1 K
l—wz?® 1—(-1)%w"2
As = w = (-1)°w .
1—ws wF—1
If s is even, then
1 1
)\S:_ 5 —
14+w™ 2 l—i-cos——zsm—
1 . bln—

2 2(1+Cos 3

Finally, if s is odd, then

VoL. 5 No. 1 January 2002

Ifin @g, r =1, then C’;Z reduces to the circuit
Cy. Since A(C}) is circulant with the first row

entries a 1 on the second column and all other

entries zeros, then, A\; = w® = cos @ + i sin &£ 27“9

In particular, Ay = 1. Thus,

- 2t gl jg2n=L)m
SpechL:<1 0151 c1sln ... cis ln )

Theorem 4.4. Given the circuit 6;;

1. If n =0 mod 3 then 1 and —%ii@ are

eigenvalues of A(C*) each of multiplicity 1.

2. If n=0 mod 4 then +1 and +i are eigen-
values of A(CY) each of multiplicity 1.

8. If n =0 mod 6 then £1 and % :tz’§ are
eigenvalues of A(C_";’;) each of multiplicity 1.
Proof: For all cases \g = w® = 1.

1. Since n = 0 mod 3, then n = 3k for some
integer k. Thus,

N S 1 !
s 3 3k 3k
S NP L 2 2 1 V3
N 2+12(1—cos%3) :cos—7r+isin§7rz—§+i?.

Theorem 4.3. Given the digraph (j}; Ifn=20
mod 4 and r = % — 1, then —1 is an eigenvalue

of A(CT) with multiplicity .

Proof: We know that As = w? 1 “=- Let s = 4k
where £ =1,2,. — 1. Then,
N WDk anl= Wk~ 4k
T 1—wt 1 —wik
4k1_7ﬂ = 1.0
1—wi
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Since /\% and /\n,, are complex conjugates,

then /\n,% = —% - z@

2. If n =0 mod 4, then n = 4k for some in-
teger k. Thus,

27 (2k)
4k

2k _

N3

2m(2k
An = w2 =w oS 7Tik)—i-isin

N3

=cosm+isinm = —1.

Also,
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27k L 27k

= — in —

cos m 75l i
1 1

:cos§7r+isin—7r:i.

n
Z:wk

A

=w

|3

Since )\% and )\n,g are complex conjugates,
then /\n,%

—1.

3. Sine n = 0 mod 6, then n = 6k for some
integer k. Thus,

A w? k= cos 2mk +1is 2mk
n = =W = — 4 isin ——
6 6k 6k
1 1 1 3
= COS§7T+iSin§7T = 3 +i§'

Since )\n and A, _% are complex conjugates,
then A, _

g

=1_
=2
Theorem 4.5. Given the complement of the di-
graph C’;ﬁ, then n — r — 1 is an eigenvalue of
A(CT)e with multiplicity 1. Moreover, among
the eigenvalues of A(C)¢ is 0 with multiplicity
ged(r 4+ 1,n) — 1 4f and only if ged(r +1,n) > 1.

Proof. Clearly, \y = n—r — 1. For s =
1,2,...,n—1,
/\S — w(r+1)s + w(r—l—Q)s 4.+ CL)(n—l)s
_ sz winmr s 0
1 —ws

if and only if (r +1)s = 0 mod n. This linear
congruence always has a solution since ged(r +
1,n) ’ 0, in fact it has ged(r + 1,n) incongruent
solutions modulo n. However, one of its solutions
is s = 0 mod n and since s # 0, then the number
of incongruent solutions modulo n of (r+1)s =0
mod n excluding s = 0 mod nis ged(r+1,n)—1.
Furthermore, (r + 1)s = 0 mod n if and only if
ged(r+1,n) > 1. O
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Theorem 4.6. Given the complement of C7,.

1. If n is even and v = 5 — 1, then 0 us

an eigenvalue of A(ér) with multiplicity T
2,,8 for all odd

sin

Moreover, Ay = —1 — s

S.

n—1

2. If n is odd and r 5=,

then A

sin =2

—% + Z'W for all nonzero s and
As=—1-— zQ(f“—O for all odd s.
Proof. We know that for s =1,2,... ,n—1,
/\S _ w(r+1)s 1— w(nfrfl)s _ w(r-}—l)s -1
1—ws 1—ws
1. If nis even and r = § — 1, then
(W2 —1 (=1 -1
AS == =
1 —ws 1 —ws

Thus if s is even, then Ay = 0. We note
that there are r = § — 1 even integers from
1ton—1. If sis odd, then

9 gin 278 21s

/\Sz_l—ws :_1_i1—c0:2”5'

2. If nisodd and r = —2—1 then

(1w -1
Ag = TR
If s is even, then
11 1
A= T ;
I -ws 1+ w2
1 . sin®®

i
2 2(14cosT?)

If s is odd, then
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Theorem 4.7. Given the complement of the cir-
cuit Cr. Then, the eigenvalues of A(C))¢ are
M=n—2and fors=1,2,...,n—1,

27s

2rs ..
As=-~1—w=—-1—cos— —isin —.
n n

Proof. Clearly, \p=n—2. If s=1,2,...,n—1,

0l — w—2)s

e =wP 40P+ fws =y
1—w*

1_w2$

1—ws

= (14

2rs .. 27s
=—1—cos—— —1sin —
n n

O

Corollary 4.7.1. Given the complement of the
circuit C%. If n = 0 mod 4, then among the
eigenvalues of A(C*)¢ are n —2,0,—1 + i, each
of multiplicity 1.

Proof. It can easily be shown that \g = n — 2,
)\% =0, )\% :—1—iand/\%n =—-1440

The Tournament 7,

Other classes of asymmetric, circulant, and
r-regular digraphs were introduced in [4]. One
of these is a special class of tournaments with an
odd order, denoted by T, and whose adjacency
matrix is circulant with first row entries an alter-
nating series of 0’s and 1’s, beginning and ending
with a zero. It was also noted in [4] that T, is
isomorphic to its complement.

Example 5.1. The adjacency matrix of the tour-
nament 77 and its graphical representation are
given below

0101010
0010101
1001010

ATH)=10 10 0 1 0 1
1010010
0101001
101010 0
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Theorem 5.1. Given the digraph T,,. Among
the eigenvalues of A(T,) is n — 2 with multi-

plicity 1. Moreover, for all i = 1,2,....,n — 1,
- 27s
_ 1 . sin =5
As = 2 +Z2(1+cos 27sy

Proof. Clearly, \g =n—2. Fors=1,2,...,n—1,

s = w® 4w + 0 .. w28
1—wln=1s 1

_ .8 _
T T L 14w

This is equivalent to

1

- 2ms | i 2ms
1+ cos oo T isin<

s =

2rs s 1 27S
_1+Cos o — tsin ==

2
2(1 + cos 22)

27s
"
2 2(1+cos %

n

1 . sin

An Oriented Complete Bipartite Graph
and its Complement

Another class of asymmetric, circulant, and
r-regular digraphs introduced in [4] is an orienta-
tion of a complete bipartite graph. This digraph,
denoted by I?m,m has the restriction that m > 4
and m =0 mod 4. Moreover, its adjacency ma-
trix’s first row entries starts with 4 pairs of 0-1s,
followed by m zeroes. The complement of I_('m,m,
([?m,m)c will also have a circulant adjacency ma-
trix whose first row entries start with a pair of
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zeroes, followed by %t —1 pairs of 1—0’s, then fol-
lowed by m 1’s. We note that the corresponding

complement is 37”272 regular but not asymmetric A = o 1—ws® 1= (=1) 2
and that n = 2m. ST 1—wis 1—w?2 w4 ws
1 27s
Example 6.1. The adjacency matrix and picto- T ienZm YT
rial representation of K"474 are given below. "
O
01 0100 0 0] Theorem 6.2. Given the complement of the di-
00101000 graph I?m,m, where m > 4 and m = 0 mod 4.
00010100 Among the eigenvalues of A(I?,%m) are 3 —
Auﬁyzzg 00010 10 and —% — 1, both with multiplicity 1. Further-
00000101 more, A\ = —1, for all even s, except when
10000010 s = 0,5 and A\s = —1 —icsc 225, for all odd
01000001 s.
1 01 0 0 0 0 0O

Proof. For s=0,1,2,...,n—1,

n__

A = w25 +w4s +... +w(2 2)s +w(%)s +w(%+l)s

+w(E2s 4 4D,

. ' Thus,
Theorem 6.1. Given the digraph K, m, where

m >4 and m =0 mod 4. Among the eigenval-
ues of A(Km,m) are § and —7%, both with mul- Ao = [w?©@ 4 o* O 4 (GO 4 [w(2)(0), (5 +1)(0)
tiplicity 1. Furthermore, A\s = 0, for all even s,

(n—=1)(0)
except when s = 0,5 and As :icsc%, for all Teotw ]
odd s. _(n_ 1 no_ 3n 1
(4 )+ 2 4 '
Proof. Clearly, A\g = 7 and )\% = —%. For
s=1,2,...,0 1,2 41,....,n—1, o
2 2 Az = [w2(2) + 43 4 w(s 2)(2)] + [w(a)(g)
Xy = W'+ W oz = wsl — wis. +wEE 4w
— S n n
b = (=124 (D (DR [(-D)E
If s is even, that is s = 2k for some integer k, + (=D (=D
then n n o n
=G -+ (-T+ D)
n 4 4 4
1— w3z k) 1—wn* n
Ay =wk =% =0. =——1
1 — w2(2k) 1 — wik 4
If s is odd, then For all values of s other that 0 and 7,
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n_

A= w4+ wE
+wEHs 4 s

2)s +w(%)s _’_w(%—l-l)s

(ws + w2s 4.+ w(n—l)S)
— (W H W+ w(%fl)s)

JA—wl s 1y
=w —w
1—ws 1— w?s
(w1 4wt) - (1 —wef)
i 1 —w?s
w2 —1—w* 4 (—1)%w?

/\s_wQS—l—ws-ﬂus -1
1—w2s
If s is odd, then
)\S_w2s—1—ws—w5 1 2w’
1—w?s 1—w?s
2 2
=—-1- ——1—icsc—7r§
w4+ ws
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