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A digraph is called singular or nonsingular tion formulas are established in this paper. Fur-
according as tts adjacency matriz is singular or thermore, using these reduction formulas, we de-
nonsingular. An expression of the determinant of termine which of the directed fans are singular.
the adjqcency matriz of a digraph z'n‘terms of the Moreover, we show that if a directed fan F,, is
determinant of smaller digraphs obtained from the nonsingular, then the determinant of its adjacency
given one is called a reduction formula. Reduc- matriz is (—1)".

1 Introduction K Example 1.1 The drawing below represents the
digraph D with V(D) = {z1,29,23,24} and
A digraph D is an ordered pair D = (V, A) where A(D) = {2122, 221, 2222, T2T3, T2T4, T3T1, T4T1 }-

V = V(D) is a non-empty set whose elements are
called vertices and A = A(D) is a subset of V xV
whose elements are called arcs. If zy,29,...,2,
are the vertices of the digraph D, the n x n ma-
trix A(D) = [a;;] where a;; = 1if (z;,2;) € A(D)
and a;; = 0if (2;,z;) § A(D), is called the adja-
cency matriz of D. For convenience, an arc (z, y)
will be written as zy.

1 T2

Definition 1.1 A digraph D is singular if the
adjacency matrix A(D) is singular. Otherwise,
D is nonsingular.

Note that the adjacency matrix of a digraph
is constructed based on a known ordering of its
vertices. However, the value of the determinant
of the adjacency matrix is independent of the or- The digraph in Example 1.1 is singular be-
dering of the vertices of the digraph. cause its adjacency matrix

Ty T3
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is singular, i.e., det A(D) = 0.

Based on our definition, we could tell whether
a digraph is singular or not by computing for the
determinant of A(D). The digraph D is singular
if and only if det A(D) = 0. We shall develop
here some reduction formulas that will enable us
to express A(D) in terms of determinants of ad-
jacency matrices of smaller digraphs constructed
out of D.

2 Reduction Formulas

An expression for det A(D) in terms of the deter-
minant of smaller digraphs obtained from D by
some operations is a reduction formula.

A digraph D is connected if for every pair of
distinct vertices  and y in D, there exists a se-
quence vy, vy, ..., v; of vertices in D where v; =
z, v = y such that for each ¢ = 1,2,...,k =1,
either v;v;41 or vi41v; is an arc of the digraph.
A component of a digraph D is a maximal con-
nected subdigraph of D.

The next theorem is easy and the proof is
omitted.

Theorem 2.1 Let D be a digraph with compo-
nents Dy, Dy, ..., Dy. Then, det A(D) =
det A(D,) det A(Dy) - - -det A(Dyg).

By the definition, the above theorem is con-
sidered as a reduction formula. However, it is
only useful when applied to digraphs with two or
more components.

Theorem 2.2 [2] Let z and y be distinct vertices
in a graph such that N*(z) C N*t(y). Obtain
a digraph D’ from D by deleting all arcs of the
form yz, where z € N*(z). Then det A(D) =
det A(D').
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Corollary 2.2.1 Let = be a vertez in a digraph
D with with a unique out-neighbor y # z. Obtain
a digraph D(z) from D by deleting all arcs of the
form 2y and then identifying the vertices z and
y. Then det A(D) = — det A(D(z)).

The circuit or order n, denoted by Ch, is the
digraph on n vertices, say z1,%2,...,2, Whose
arcs are 1y, 223, « .., Tn—12y and z,, ;. The
circuit (3"6 is shown below.

Theorem 2.3 For each 23, the circuit C,, is
non-singular and det A(C,,) = (—1)""1.

Proof: 1t is easy to check that det.A(Cs) =
(=1)3! = 1. Let n > 3 and consider the ar-
cuit C,,. The vertex 1 has a unique out-acighbor,
namely 2. By Corollary 2.2.1, we can remowe
the arc 12 and identify the vertices 1 and 2 but
reverse the sign of the new determinant. Thus,
det A(C,) = —det A(C,—1). The theorem fol-
lows by mathematical induction. O

An immediate corollary follows from this the-
orem. We first define an r-regular digraph to be
a digraph where every vertex has outdegree r and
indegree r.

Corollary 2.8.1 Let D be a 1-regular digraph of
order n, with k components. Then det A(D) =
(_l)n—k.

We shall always assume that zq, 2o, ..., Zp
denote the vertices of a digraph D. The adja-
cency ‘matrix of D is denoted by A(D) = [a;;].
The determinant of the n X » matrix [a;;] is de-
fined to be
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where the summation ranges over all permuta-
tions iyig---i, of 1, 2, ..., n. The value of (&)
is 1 if the permutation is even and -1 otherwise.
In the case of A(D), the product ay;, a3, - - - api,
is non-zero if and only if each aj;, is equal to
1. The product ai;, a2, - -ani, therefore de-
termines a set of arcs of the digraph forming
a spanning subdigraph of D such that through
each vertex, exactly one arc goes in and ex-
actly one arc comes out. This is called a span-
ning 1-regular subdigraph. We can think of the
term (£)ayi, a2, « - - @ni, as the determinant of
one spanning 1-regular subdigraph. We have
therefore established the following result.

det[a;;] “cOngy,

Theorem 2.4 Let Dy, D,, ..., Di be the span-
ning 1-reqular subdigraphs of the digraph D.
Then

k
det A(D) =)~ det A(D;)
i=1

In particular, a digraph without a 1- regular span-
ning subdigraph is singular.

For convenience, we denote det A(D) by a
drawing of the digraph D enclosed between two
vertical lines. For example,

Notice that the digraph in this example has no
1-regular spanning subdigraph.

Example 2.1 Consider the digraph D given be-
low.
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The digraph D has exactly two 1-regular
spanning subdigraphs and we compute for the
determinant of A(D) as follows.

10 4

= (1" 4 (~1)+2 =0

The next lemma is a well-known result.

Lemma 2.1 Let A = [a;;] be a square matriz of
order n. For a fized i, denote by A;; the matriz
obtained from A by changing a;; to 0 for every
k#j. Then

det A = det A;; + det A;p + ~-- +det A;,

Example 2.2 For the 3 X 3 determinant below,
we use t = 1.

1 2 3 1 00 0 2 0 0 0 3
4 5 6/=14 5 6/]+14 5 6/+4 5 6
7 89 7.8 9 7 8 9 7 8 9

From Lemma 2.1 we immediately obtain the
following reduction formula.

Theorem 2.5 Let D be a digraph and let = be a
verter in D whose out-neighbors are z1, o, ...,
z. Denote by D(z,z;) the digraph obtained from
D by deleting all arcs zx; where j # i. Then,

det A(D) = det A(D(z, 1)) + det A(D(z, 2))+

-+ + det A(D(z, =)
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Example 2.3 We illustrate here the theorem

using a for the vertex z.

=04 (-1)*=-1

Corollary 2.5.1 Let D be a digraph and let z
bé a vertex in D whose out-neighbors are 21, 22,
..., Zx. Denote by D*(z, z;) the digraph obtained
Jrom D by deleting all arcs zx; where j # i, all
arcs yz;, and then identifying x and z;. Then,

det A(D) = — det A(D*(z, z1))—det A(D*(z, z4))—
-« —det A(D*(z, zx))

Example 2.4 We rework Example 2.3 to illus-
trate Corollary 2.5.1 using a for the vertex z.

T2
Let D :=
a T1
Then,
Ty Z3
D*(a,z) == —
a 21 a

Thus, det A(D*(a,21)) = (-1)? = 1.

L2 Qa

D*(a,z2) ==

a £S5 0331

Thus, det A(D*(a, 22)) = 0. Therefore,

det A(D) = — det A(D*(a, 21))—det A(D"(a, 2))
==-1—-0=-1.
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3 The Directed Fan

Consider the circuit of order n, C,. Add a new
vertex zo and for each j = 1,2,...,n add the
arc z;ro or Zoz; but not both. Then we have
constructed a directed wheel with a circuit. In
the paper “Singular and Nonsingular Oriented
Wheels,” it was shown that a directed wheel is
singular if and only if either it has a source or
a sink or the vertices xq, Zs, ..., 2, do not form
a circuit. Another class of digraphs, called di-
rected fans, consists of digraphs whose under-
lying graph is the fan, F,,. Directed fans may
be classified into two types. One type we will
call standard directed fans, denoted by 13";: and
the other type we will call nonstandard directed
fans, denoted by F**. Let V(F*) = V(F**) =
{z0,21,+.-,Zn-1,2,}. Let B be the set of arcs
defined as B = {zjz;31 | 7= 0,1,...,n — 1} U
{znzo}. If the set B is a subset of set of arcs of
the directed fan, then the directed fan is stan-
dard, otherwise it is nonstandard. The standard
directed fan, Fg and an example of the nonstan-
dard directed fan, F* are illustrated below. It is
easy to see that F* will neither have a sink nor
a source. However, it is possible for F-;’;* to have
a sink or a source. Since all digraphs which has
either a sink or a source is singular, we will con-
sider only nonstandard directed fans which has
neither a sink nor a source.

r3 T4

I3 s

Ty Zg

To

A Standard Directed Fan Fg

37



THe ManiLa JOURNAL OF SCIENCE

I3 T4
T2 Ty
zy e

o
A Nonstandard Directed Fan Fg*

The next two theorems identifies Which 6f’f‘he :

directed fans is singular and nonsingular.

Theorem 3.1 The oriented fan F* is nonsingu-
lar. Moreover, det A(F) = (-1)".

Proof: Let D = F’;’:. Note that z; € NT(zo).
Thus, by Theorem 2.5, we have

det A(D) = det A(D(zq, z1))+ Z det A(D(zo, 71)),

€L

where Z = N*(zg)\ z1. However, for all z; € Z,
D(zg, zr) will always have a source at z;. Thus,
> onez det A(D(zo, zx)) = 0. Also, A(D(zo,21))
reduces to an upper triangular matrix with main
diagonal entries all 1’s after performing type I
column operations n times so its first column
moves to the (n + 1)st column and all other
columns move one column to the left. Therefore,

det A(F) = det A(D(zo, 21)) = (=1)".

Theorem 3.2 The oriented fan F** is singular.

Proof: Let D = F**,
Suppose {z1,2,} C N*(zo). Then,

det A(D) = det A(D(zg, £1)) + det A(D(z¢,25))

+ Y det A(D(zo, 1)),
cp€X
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where X = NT(z¢) \ {z1,2.}. However,
D(zg,z1) has a source or a sink at z, and
D(zo, z,,) has a source or a sink at z;. Thus,

det A(D(zo, 1)) = det A(D(zo, 2,)) = 0.

Furthermore, for all zx € X, D(zo, zi) will have
either a sink or a source in zg. Thus,

LY det A(D(zo, 21)) = 0.

- tkEX

foq

Therefore, det A(F**) = 0.

Analogously, the same result follows if
{z1,2,} € N~ (o).

Suppose z; € N7¥(zo) and z, € N~ (zo).
Then there is at least one %, where ¢ €
{2,3,...,mn — 1} such that z; € V(D) and
{&izi-1, 2i%it1, 2oz} C A(D). Thus,

det A(D) = det A(D(zo,21)) + det A(D(z0, 2:))

+ ) det A(D(zo, 1)),
z €Y i
where Y = Nt (29)\{z1, z;}. However, D(z¢, 21)
has a source at z; and D(xg, 2;). has a source or
a sink at z;. Also, for every z; € Y, D(zo, zk)
will also have a source at z;. Therefore,

det A(F?*) = 0.

Analogously, the same result follows if z; €
N~ (zo) and z, € N*(zo).
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