On Semi-Continuous Functions

Sergio R. Canoy, Jr. Julius V. Benitez Department of Mathematics College of Science and Mathematics MSU-Iligan Institute of Technology Iligan City 9200

Keywords: semi-open, semi-continuous, semi-closure

This paper gives equivalent statements of semi-continuity, a concept introduced by N. Levine [4] in 1963. In particular, we give a characterization of semi-continuity which utilizes the concept of semi-closure of a set defined by one of the authors in [1]. Also, we characterize semi-continuity of maps into the space of real numbers with the standard topology.

Introduction

N. Levine introduced the concept of semi-continuity for functions defined on a topological space into another topological space. It is easily verified that the condition for semi-continuity is strictly weaker than the condition for continuity of a function. However, even for functions into the space R of real numbers with the standard topology, semi-continuity is not generally preserved under algebraic sum, product and composition of functions. Among others, this paper offers other equivalent statements of semi-continuity of a function. As a direct consequence, we characterize semi-continuity of functions into the space R with the standard topology.

Definitions and Preliminary Results

Throughout this paper, X, Y, and Z are topological spaces. The space of real numbers with the standard topology is denoted by \Re .

Definition 2.1 A subset O of X is semi-open if $O \subset cl[int(O)]$ (closure of the interior of O). Equivalently, O is semi-open if there exists an open set G in X such that $G \subset O \subset cl(G)$. A subset F of X is semi-closed if the complement F^c of F is semi-open.

Theorem 2.2 (Levine) Let $\{O_{\alpha} : \alpha \in I\}$ be a collection of semi-open sets in X. Then $\cup \{O_{\alpha} : \alpha \in I\}$ is a semi-open set in X.

Definition 2.3 A function $f: X \longrightarrow Y$ is semi-continuous on X if $f^{-1}(O)$ is semi-open in X for every open set O in Y.

Since every open set is semi-open, the following statement is clear.

Remark 2.4 If $f: X \longrightarrow Y$ is continuous on X, then it is semi-continuous there.

Remark 2.5 If $f : X \longrightarrow Y$ is semi-

continuous on X and $g: Y \longrightarrow Z$ is continuous on Y, then the composition $g \circ f$, defined by $(g \circ f)(x) = g(f(x))$ for every $x \in X$, is semicontinuous on X.

To see this, let O be an open set in Z. Since g is continuous on Y, $g^{-1}(O)$ is an open set in Y. Thus, since f is semi-continuous on X, $f^{-1}(g^{-1}(O) = (g \circ f)^{-1}(O)$ is a semi-open set in X. Therefore, $g \circ f$ is semi-continuous on X.

Definition 2.6 Let A be a subset of X. A point $p \in X$ is a semi-closure point of A if for every semi-open set G in X,

$$p \in G \Longrightarrow G \cap A \neq \emptyset$$
.

We denote by scl(A) the set of all semi-closure points of A.

Theorem 2.7[1] Let $A \subset X$. Then

- (a) $A \subset scl(A)$ and
- (b) A is semi-closed if and only if A = scl(A).

The following result is known as the Cauchy criterion for uniform convergence. A proof can be found in [3, pp. 84-85].

Theorem 2.8 A sequence $\{g_n : X \longrightarrow R\}$ of functions converges uniformly if and only if for every $\epsilon > 0$, there exists a natural number N such that for all natural numbers n and m with $n \geq m \geq N$ and for all $x \in X$, we have $|g_n(x) - g_m(x)| < \epsilon$.

Results The following theorem gives our main results.

Theorem 3.1 Let $f: X \longrightarrow Y$ be a function. Then the following statements are equivalent.

- (a) f is semi-continuous on X.
- (b) $f^{-1}(K)$ is semi-closed for every closed set K in Y.

- (c) $f^{-1}(B)$ is semi-open for every element B of a basis for Y.
- (d) For every $p \in X$ and every open set V in Y containing f(p),

there exists a semi-open set O in X such that $p \in O$ and $f(O) \subset V$.

- (e) $f(scl(A)) \subset cl(f(A))$ for every subset A of X.
- (f) $scl(f^{-1}(B)) \subset f^{-1}(cl(B))$ for every subset B of Y.

Proof: $(a) \Longrightarrow (b)$: Suppose f is semi-continuous on X and let K be a closed set in Y. Then K^c is an open set in Y. Semi-continuity property of f now implies that $f^{-1}(K^c) = (f^{-1}(K))^c$ is semi-open in X. Therefore, by Definition 2.1, $f^{-1}(K)$ is semi-closed in X.

- $(b) \Longrightarrow (a)$: Assume that statement (b) holds. Let O be an open set in Y. Then O^c is closed. Hence by assumption, $f^{-1}(O^c) = (f^{-1}(O))^c$ is semi-closed. By Definition 2.1, $f^{-1}(O)$ is semi-open in X. Therefore, by Definition 2.3, f semi-continuous on X.
- $(a) \Longrightarrow (c)$: Let Ω be a base for Y and let $B \in \Omega$. Then B is an open subset of Y. By semi-continuity of f, it follows that $f^{-1}(B)$ is semi-open in X.
- $(c) \Longrightarrow (a)$: Suppose $f^{-1}(B_{\alpha})$ is semi-open in X for every member B_{α} of a base $\Omega = \{B_{\alpha} : \alpha \in I\}$ for Y. Let O be an open set in X. Then there exists $J \subset I$ such that $O = \bigcup \{B_{\alpha} : \alpha \in J\}$. Hence, $f^{-1}(O) = \bigcup \{f^{-1}(B_{\alpha}) : \alpha \in J\}$. By Theorem 2.2, $f^{-1}(O)$ is a semi-open set. Therefore, by Definition 2.3, f is semi-continuous on X.
- (a) \Longrightarrow (d): Assume that f is semi-continuous on X. Let $p \in X$ and V an open set in Y containing f(p). Put $O = f^{-1}(V)$. Since f is semi-continuous, O is a semi-open set in X. Moreover, $p \in O$ and $f(O) = f(f^{-1}(V)) \subset V$.

Therefore, (d) holds.

 $(d) \Longrightarrow (e)$: Suppose statement (d) holds. Let A be a subset of X, $p \in scl(A)$ and G an open set in Y containing f(p). Then by assumption, there exists a semi-open set O containing p such that $f(O) \subset G$. Now, since $p \in scl(A)$, $O \cap A \neq \emptyset$. Consequently, $\emptyset \neq f(O \cap A) \subset f(O) \cap f(A) \subset G \cap f(A)$. This shows that $f(p) \in cl(f(A))$. Therefore, $f(scl(A)) \subset cl(f(A))$ and so, (e) holds.

 $(e) \implies (f)$: Assume that statement (e) holds. Let $B \subset Y$ and set $A = f^{-1}(B)$. Then by the assumption, $f(scl(A)) \subset cl(f(A))$. Therefore,

$$scl(f^{-1}(B)) = scl(A)$$

$$\subset f^{-1}(f(scl(A)))$$

$$\subset f^{-1}(cl(f(A)))$$

$$= f^{-1}(cl(f(f^{-1}(B))))$$

$$\subset f^{-1}(cl(B)).$$

This shows that (f) holds.

 $(f) \Longrightarrow (b)$: Assume that (f) holds. Let K be a closed set in Y. By assumption, $scl(f^{-1}(K)) \subset f^{-1}(cl(K)) = f^{-1}(K)$. Combining this with Theorem 2.7(a) we get $scl(f^{-1}(K)) = f^{-1}(K)$. Therefore, by Theorem 2.7(b), $f^{-1}(K)$ is semiclosed in X. This shows that (b) holds.

The proof of the theorem is complete.

The following, which is a quick consequence of Theorem 3.1, characterizes semi-continuous functions into the space \Re .

Corollary 3.2 A function $f: X \longrightarrow \Re$ is semi-continuous on X if and only if the set $\{x \in X: a < f(x) < b\}$ is semi-open for all $a,b \in Q(a < b)$, where Q denotes the set of all rational numbers.

Proof: Suppose f is semi-continuous on X. Let $a, b \in Q$ with a < b. Then (a, b) is an open subset of R. It follows that $f^{-1}((a, b)) = \{x \in X : a < f(x) < b\}$ is semi-open by Definition 2.3. Conversely, suppose that $f^{-1}((a, b)) = \{x \in X : a < f(x) < b\}$ is semi-open for all $a, b \in Q(a < b)$. Since $\Omega = \{(a, b) : a, b \in Q\}$ is a base for the standard topology on R, the result now follows from Theorem 3.1(c).

Theorem 3.3 Let $\{f_n: X \longrightarrow R\}$ be a sequence of semi-continuous functions such that $|f_n| \le M_n$ for each n, where $\sum_{n=1}^{\infty} M_n$ is a convergent series. If the function $g_n = f_1 + f_2 + ... + f_n$ is semi-continuous for each n, then the function f defined by $f(x) = \sum_{n=1}^{\infty} f_n(x)$

exists and is semi-continuous on X.

Proof: For each n, let $g_n = f_1 + f_2 + ... + f_n$. Let $\epsilon > 0$. Since $\sum_{n=1}^{\infty} M_n$ is a convergent series, there exists a natural number N such that $\sum_{i=N}^{\infty} M_i < \epsilon$. Let n and m be natural numbers such that $n \geq m \geq N$. Then for all $x \in X$,

$$|g_n(x) - g_m(x)| < |\sum_{i=m}^n f_i(x)|$$

$$\leq \sum_{i=m}^n |f_i(x)|$$

$$\leq \sum_{i=N}^\infty M_n$$

$$< \epsilon.$$

By Theorem 2.8, this means that the sequence $\{g_n\}$ converges uniformly on X. For each $x \in X$, define $f: X \longrightarrow R$ by

$$f(x) = \lim_{n \to \infty} g_n(x).$$

Since $g_n \longrightarrow f$ uniformly on X, it follows that

$$f(x) = \sum_{n=1}^{\infty} f_n(x).$$

It remains to show that f is semi-continuous on X. To this end, let $\epsilon > 0$ and $p \in X$. Since $g_n \longrightarrow f$ uniformly on X, there exists a natural number m such that for all $x \in X$, we have

$$|g_m(x) - f(x)| < \frac{\epsilon}{3}.$$

Since g_m is semi-continuous, there exists a semiopen set W_{ϵ} containing p such that for all $z \in W_{\epsilon}$, we have

$$|g_m(z)-g_m(p)|<\frac{\epsilon}{3}.$$

Thus, for all $z \in W_{\epsilon}$, we have

$$|f(z) - f(p)| = |f(z) - g_m(z)| + |g_m(z) - g_m(p)| + |g_m(p) - f(p)| \le \epsilon$$

This means that for every (basic) open set $V = (f(p) - \epsilon, f(p) + \epsilon)$ containing f(p), there exists a semi-open set W_{ϵ} containing p such that $f(W_{\epsilon}) \subset V$. Therefore, by Theorem 3.1, f is

semi-continuous on X.

The first author has also characterized semiopen and semi-closed functions. The paper will appear in another journal.

References

- [1] Canoy, S. R., and Lemence, R. S., Semiopen sets and semi-closure of a set, to appear in Journal of Mindanao Mathematics.
- [2] Dugundji, J., Topology, New Delhi Prentice Hall of India Private Ltd, 1975.
- [3] Hutson, V., and Pym, J. S., Applications of Functional Analysis and Operator Theory, Vol. 146, 1980.
- [4] Levine, N., Semi-open sets and semicontinuity in topological spaces, American Math. Monthly, 70(1963), 36-41.