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By the appropriate use of the Fock-Schwinger gauge properties, we derive the closed integral form of the
‘point-split’ non-local background gauge connection originally expressed as a finite sum. This is achieved in
the limit when the finite sum becomes infinite. With this closed integral form of the connection, we obtain the
same exact results in the calculation of one-loop effective Lagrangian accommodating arbitrary orders of
covariant field derivatives in quantum field theory of arbitrary spacetime dimensions and of arbitrary gauge
group. Particularly, we display the one-loop effective Lagrangian for real boson fields up to 8 mass
dimensions—the same result obtained when the connection was yet in the finite sum form.

INTRODUCTION

Methods for calculating the 1-loop
effective Lagrangian based on the background
field approach of Brown and Duff! exist in the
literature. Some of these methods extend Brown
and Duff's covariantly constant field strength
restriction to include higher order derivatives in
the formulation?*. Customarily, one begins by
imposing covariant restrictions on the
background converting the nonlocal equation
satisfied by the Green function to a quasilocal
one. An exactly soluble portion of the resulting
Green function equation is then identified and
its solution is used as basis of a perturbative
solution. This can be done in the strong but
slowly-varying background field approximation*?
for then one can claim that invariants involving
higher order covariant derivatives of the field
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strength tensor are significantly smaller than
those with lower order derivatives of the same
mass-dimensionality.

It is important to include higher derivative
corrections in the formalism since it has already
been demonstrated® that the bare Lagrangian for
higher dimensional field theories should include
invariants of higher dimensions in order to
achieve renormalizability. Also, the effective
Lagrangians of nonabelian field theories
necessarily includes higher derivatives of the
field. The accommodation of these has been
achieved in a recent paper’ via the general form
of the background connection expressed as a
finite sum of n covariant differentiations of the
field strength tensor.

In this paper, we will review some aspects
of the background field formalism, particularly
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the background gauge connection expressed in
terms of the field strength tensor, and its n
covariant derivatives in finite sum form. From
these, we will show that in the completely non-
local limit when the finite sum becomes infinite-
the background gauge connection may be
expressed in a closed integral form by the
appropriate use of the Fock-Schwinger gauge
properties. We will obtain the same results as it
was derived7 when the background gauge
connection is yet in its finite sum form.

THE BACKGROUND FIELD APPROACH
In the background field method, the

L(¢), is expanded in ¢

1 8°L !
5, ,_A¢i+55¢,-5¢,- '-A¢.‘¢,-+...s (1)

where A is the classical background relative to
which quantum fluctuations of the field f are
measured. By appealing to the classical equation

oL 0
of motion for the background >, =Y,
5¢1 g=A

original Lagrangian,
about A, ?

L{p+A)=L(A)+ L

the effective Lagrangian becomes

(¢ + A) = L(A) + %m [diglexp [d®xL

where -

(2

_¢ ¢6¢,

is bilinear in the quantum fields that governs the
one-loop effects. Eqn (2), then, prescribes the

¢, 3)

fA

calculation of the effective Lagrangian, L,

Lg=L%+L? (4)

up to one-loop expansion. In comparison with (2),
the first term on the right-hand side is the classical
Lagrangian with the classical background as its
argument, while the second term represents the one-
loop quantum correction. The effective Lagrangian
(4) serves as a generating functional of the proper
functions. It is an important tool in the
renormalization process since it can lead to an
ultraviolet finite field theory.
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In particular, for real boson fields @, in
D-dimensions, the most general form of the
bilinear Lagrangian (3) is given by!>?*
L=20,8WSAR.8 +#NI(AR,6' + 4O (5)
where W, N, and M are external space-time
dependent source functions which, through
adding total derivatives to L, may be chosen to
have (anti)symmetry properties:

i Wi Wi, Ni=o_N7,and ppi _ pr 5.
W, =W, =W)> N,=-N, M =M
Throughout this paper, we will be working in
flat Euclidean D-dimensional spacetime metric

6, with all indices lowered, in which
i o_ if _ d si_ .
W, =-6,0"6, =D ad 5% =p

The bilipear Lagrangian (5) can be
rewritten in the manifestly covariant form?®

1
L=—¢(D*+x)p, ©
if one form the tensor quantities
X=M-N/N, @)

Y, =d,N,-a,N,+[N,,N,]
which together with transforms according to
%)

for some arbitrary antisymmetric matrix AY (x).

X — @ Xe 2™, etc.

Here, the covariant derivative is defined by
Dg¢=0p+N,p, (10)
DT=3,T+[N,T (11)

where T represents any of the tensors Y and X,

and their covariant derivatives. The background-

dependent potential term X may be chosen so
that it transforms covariantly. The field strength

tensor Y ,is defined in terms of the background
connectlon N, (A) by

Y, =d,N,-a,N,+[N,N,] (12

The one-loop effective Lagrangian is
calculated from the coincidence limit of the two-
point (Green) function associated with the
bilinear Lagrangian (6),"
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[dsp@pe)d”
[¢]edexL .(13)

The right-hand side is simply the second
term in (2), after making functional
differentiation. The Green function (13) satisfies
the differential equation

[(a” +N, (x))2 + X(x)] G(x,x") = -6(x,x"), (14)
Provided one can find some way of solving

this nonlocal equation, the one-loop correction
to the effective Lagrangian is given by!!

G(x,x') = (#(0)p(x") =

- (15)

Various schemes have been devised to
address this nonlocal problem, *5 13 141516, 17, 18

1
(1) op— !
LY = Trde G(x,x").

CLOSED FORM OF THE POINT-SPLIT
NONLOCAL CONNECTION

We now come to the main result of our
paper. We shall solve (15) in a similar scheme
except that the background gauge connection
from its finite sum form is expressed in the
closed integral form.

Recently, it was shown’ that the general
form of the background connection is given by
the finite sum '

N, (x)=e P3P + 2 m(D"'lY(x)) o(x-x). (16)

provided that p"y =(. Here, A(x) is some
antisymmetric matrix. The notation used is

n —
Dl‘xl‘z~~~l‘n = D/‘l D#z "Dﬂn and
(P ° Q) = Hafy b Qﬂl#zu-l‘m#muml‘n 1f ms=n
His 3 oo :
o Pllxl‘z Hnbini1-Hm Qi‘l/‘z eHp if mzn

We shall now show that in the completely
non-local limit (n—>) of (16) may be
expressed in a closed integral form appropriate
for the 'point-splitting procedure’ needed in the
calculation of the two point function G(x,x")

in (15). Once this Green function is obtained
up to a certain order in derivatives, the 1-loop
effective Lagrangian can be determined from its
coincidence limit.

19

THe MantLa JOURNAL OF SGIENCE

If we use the gauge transformation’

N, —feA(‘)(aﬂ+N#)e'A(") (17)
DY (x) = e *® DY (x)e"® (18)

we are brought to the so-called Fock-Schwinger
gauge (with respect to a fixed point x') whose
fundamental property is given by

(x—x')#N#(x)=O (19)

Differentiating this with respect to x, we
obtain

Ny(x)+(x—x')#avN#(x)=O (20)

Repeated differentiations with respect to
x yields the general property

N1+
(x=x")""09'N (x)=0
which implies that
(x=x")? oD, (x)=(x-x")"97Y, (x) (22)

By assuming that the quantities D?Y(x)

(21)

and 9°Y(x) areregular at x', it can be shown'
that the previous equation (22) implies
(x-x")o D”Ym, (=) =(x-x)"3%7,,(x") (23)

where

37y, (x) =077, (x)]

=x'?

etc., (24)

The field strength tensor at the spacetime
point z is

_ oN (z) ON (z) [ ]
0z

Y. () (25)

,u v

Multiplying both sides by —(z-2"),,

-V @ =-2), DD 2,

;t

[N N ] ' aN# (z)

u(z)7 V(Z) + (Z -z )v T_ 26)
and applying the properties (19) and (20) of the
Fock-Schwinger gauge to the second and first
terms of the right-hand side, respectively, we

obtain

-(2-2)Y, () =N, () +(z-2), ——= D

Y ( Y 27)
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"To obtain the desired closed integral form
of Nu, we rescale the manifold through
z=0x
Equation (27) becomes

N,
N, (o) + alx - x)y;amﬁ";;—] - x).Y,, @) (29)

(28)

It is implied that in the 'point-splitting'
procedure, f(x) is equivalent to f(x—x") for

some arbitrary fixed reference point x'. The left-

hand side of (29) can be written as a total
differential with respect to a:

o (@) 3
6( ox) da

where the point x is 'point-splitted’ first into
x —x' before applying partial differentiation by

chain rule to recover the left-hand side of (29).
Upon integrating (29) and (30) over «,

—(aN(wC)) N, (o) + — (@), (30)

fda—azv (@)]=-[daa(x-x),Y, @) (31)

we find the closed form for the connection

N, ()= [da aY,, (@) (x-x),

which already anticipates the point-splitting’
procedure to the spacetime points x and x'. .
This can be expanded to any order since

the Yvﬂ(ax) can be expanded in a Taylor series

Y, () ="y, @] =, (33)
This is simply an infinite series in powers

(32)

of (x-x"). Thus, a rescaling of the manifold

x — ax will not affect the coefficients of
expansion. We can then write Y as

Y, () = ey, (x)] = 7% [mx) (34)

where in the last step, we have used the Fock-
Schwinger property. Eqn (32) and (34) is an
alternative expression for N (x) in (16), which
can be evaluated to any desired order of the
derivatives. Formally, this alternative nonlocal
expression for N (x) may be substituted into the
Green function equation (13) that satisfies (14),
in which (15) may then be solved using various
methods.3#5 13 141516, 17,18 Eor instance, if one
sets the first covariant derivatives of the field
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strength tensor while retaining the first covariant
derivative of the matrix potential,

DY, =0, D,X=0, (35)

then, if one follows the momentum space
techniques of Refs 1 and 3, Eqn (15) becomes

5 Te[dX [d”p G, @)2(A (pXG,(P)', (36)

2(2 )”
where
Go(p) -}ds exp[Xs + %trlnseciYs +DX -(iY)™ (taniYs - iYs)- DX

° (37)

+2iDX 'Y *(1-seci¥s) p+ %p -2iY " tani¥s - p].

The leading term (g = 0) of (36) is

8o(P)Go(p)= - (38)
which is analogous to (14). Here,
o 1_, d°
0(p)_'—p +X - pr ap 4va ap”apv (39)

To recover the free Euclidean propagator

limG,(p) = (40)

p2 +m2
one simply switches the background off , i.e.,
N,—0> X —-m’

The succeeding terms when g >0 in (36)

can be calculated from the exact result (37). This
then provides the unrestricted Green function G
that accommodates all covariant derivative
corrections through the perturbative expansion

6(p)--(8:(0)+ 2PN =GP 3 (0PN (P, (41)

where A (p) is the nonsoluble part of the
operator

A(p)= 2( 1)quX

=

N Z 2A-ifQ+q)

2+q)

) S M

97
)
ap

(— Pl rieg)

2+r)(2+q)'

n-1 n‘l

+221 é' 0940
r0 g

l+r

x[D'Y o 9 :
ap

l+q

D% o LR
op

(42)
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appearing in the (36), i.e., A(p)= A (p)+ A (p).
For strong and slowly varying background fields,

A, << A,, the expansion (35) is assured to be

convergent. The 1-loop effective Lagrangian (36)
is then calculated from the coincidence limit of
the 2-point function in coordinate space.

Corresponding to the leading term (q = O) in (36)
with (37) may be shown to be

) EO

h d ~1-D/2 -m's
=———Tr[ dss €
’ 24m)°? J‘;

x {epr:s - Lirin(i¥s) " sini¥s
+Dy-(Y)*(2tanLi¥s— i¥s) Dy)- e

(43)
where X, represents the zero reference”of the
background potential X. Note that the covariant
derivatives of Y is absent from this result. The
1-loop effective Lagrangian derived by Brown and
Duff! and the Lagrangian of Schwinger '’ come as
special cases of (43). Brown and Duff’s result,
for instance, does not involve Dy while that of
Schwinger is good only for QED. Because of our
closed expression (32) to (34) for N (x) the one-
loop effective Lagrangian (43) can now be
evaluated to any desired order of the derivatives
but the ensuing proper time (s) and momentum (p)
integrations are expected to become more and more
tedious. Here we simply display the one-loop
correction to the effective action up to eight mass
dimensions that can be extracted from (43),

o= —h——TT{F(l_—ZDD/l)(,‘(—Zo)

2Adr)°’? m*
L gty

4-D A
m 2

TG-D/2)[1 1 1
+ —gmsT[g(l’ -7 )'l—z'lwl»p + Y

1 1
- %Yuv-va-n - ﬁylﬂ'ﬂyﬂy'ﬂ]

Tr@4-n/21 1
e [EZ(Z‘ -7 )+§4~ZZY,,VY,,V
1 1
+ EgYm Y, YooY po - 3_60_Ym'vaYdeﬂy ES

(44)

Our formulation is quite general in that it is
done in arbitrary number of covariant field
derivatives, in arbitrary spacetime dimensions, and
in arbitrary gauge, but still confined to the one-loop
approximation. We will generalize further, in a future
paper, by extending this one-loop effective
Lagrangian calculation to arbitrary number of loops.
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