A Closer Look on the Components of Disconnected (n,k)-Cubes

Severino V. Gervacio Department of Mathematics De La Salle University 2401 Taft Avenue, 1004 Manila

Gloria A. Rosalejos Department of Mathematics Mindanao State University Marawi City

Keywords: Graph, regular graph, isomorphic graphs, n-cube, (n,k)-cube, binary n-tuple

This paper presents some properties of the components of the graph called the (n,k)-cube, written Q(n,k), whenever the said graph is disconnected.

1 Preliminaries

By a binary n-tuple, we mean an n-tuple where each coordinate is either a 0 or a 1. The term binary sequence of n digits is also used by some authors. Let k be an integer such that $1 \le k \le n$. We define a graph called the (n, k)-cube, written, Q(n, k), to be the graph whose vertices are the binary n-tuples $a_1a_2...a_n$ and where two vertices $a_1a_2...a_n$ and $b_1, b_2...b_n$ are adjacent if and only if $a_i \ne b_i$ for exactly k values of i. When k = 1, Q(n, k) is precisely the n-cube Q_n . The graphs

2 Properties of the (n,k)-Cubes

The following properties of the (n, k)-cubes are proved in [1].

Q(3,k) for k=1,2,3 are shown in Figure 1.

Let $x=a_1,a_2...a_n$ be a binary n-tuple. We call a_i the i^{th} coordinate of x. For $1 \leq i \leq n$, the complement of a_i , denoted by a_i^c , is defined as follows: $a_i^c=1$ if $a_i=0$ or $a_i^c=0$ if $a_i=1$. We say that $y=b_1,b_2...b_n$ is the complement of x, written, x^c , if and only if $a_i \neq b_i \quad \forall i=1,2,...,n$. We define the weight of x, written wt(x), as the sum of its coordinates. We say that x is even or odd, if its weight is even, or odd, respectively.

- 1. Q(n,k) is an $\binom{n}{k}$ -regular graph of order 2^n and size $\binom{n}{k}$ 2^{n-1} .
- 2. If n is even and $n \geq 2$, then Q(n, 1) and Q(n, n 1) are isomorphic.

Figure 1: The graphs Q(3,k), k=1,2,3

- 3. If k is odd and k < n, Q(n, k) is connected and is Hamiltonian for all $n \ge 2$.
- 4. $Q(n,n) = 2^{n-1}P_2$, for all $n \ge 1$.
- 5. If k is even, Q(n, k) is disconnected.
- 6. If k is even and k < n, Q(n, k) has exactly two components: one contains all the odd vertices of Q(n, k) and the other contains all the even vertices of Q(n, k).

3 Main Result

We learned from properties 5 and 6 of Q(n, k) that if k is even, Q(n, k) is disconnected, and if in addition k < n, Q(n, k) has exactly two components: one contains all the odd vertices of Q(n, k) and the other contains all the even vertices. In [1], the component of Q(n, k) which contains all the odd vertices is denoted by $H_o(n, k)$, and the one that contains all the even vertices, $H_e(n, k)$.

The following theorem of Dirac, is used in proving our main result:

Dirac [2]

Theorem 3.1 . A simple r-regular graph of order n has size $\frac{rn}{2}$.

We now state our main theorem.

Theorem 3.2 Let k be even, k < n and n > 2. Suppose $H_e(n,k)$ and $H_o(n,k)$ are the even and the odd components of Q(n,k), respectively.

Then $H_e(n,k)$ and $H_o(n,k)$ are isomorphic. Furthermore, each of these components is regular of degree $\binom{n}{k}$, order 2^{n-1} and size $\binom{n}{k}2^{n-2}$.

Proof: We prove the first claim by exhibiting a mapping from one component into the other which is one-to-one, onto and is adjacency preserving.

Let x' be the vertex obtained by complementing the last coordinate of x. Then, the following mapping defines an isomorphism:

$$\tau: H_e(n,k) \to H_o(n,k)$$
 where $\tau(x) = x'$.

(i) τ is one-to-one.

Let $x, y \in V(H_e(n, k))$ such that $\tau(x) = \tau(y)$. Then, x' = y' which implies x = y.

(ii) τ is onto.

Let $z \in V(H_o(n,k))$. We show that there exists a $y \in V(H_e(n,k))$ such that $\tau(y) = z$. Since z is an odd vertex, z' is even. Hence, $z' \in V(H_e(n,k))$. Take y = z'.

(iii) τ preserves adjacency.

Suppose $[x,y] \in E(H_e(n,k))$. Then both x and y are even and they differ in exactly k coordinates.

Observe that since x is even, x' is odd. Thus, $x' \in V(H_o(n, k))$. Similarly, since y is even, y' is odd and consequently $y' \in V(H_o(n, k))$. Clearly, x' and y' also differ in exactly k coordinates. Thus,

$$[x',y'] \in E(H_o(n,k)).$$

This proves that τ preserves adjacency. This completes the proof of the first claim.

To prove the second claim, we proceed as follows:

That each component is $\binom{n}{k}$ -regular is clear since there are $\binom{n}{k}$ ways of complementing k coordinates of a binary n-tuple. That is, every vertex has degree $\binom{n}{k}$.

Moreover, each component has order 2^{n-1} because of the first claim and the fact that Q(n, k) has order 2^n . Finally, each component has size $\binom{n}{k} 2^{n-2}$ following Dirac's theorem and the fact that each component is $\binom{n}{k}$ -regular of order 2^{n-1} .

This completes the proof of the second claim and so proves the theorem. \Box

The figures that follow will illustrate the preceding theorem:

Figure 2: The graph for Q(3,2)

Figure 3: A graph for the even component $H_e(4,2)$ of Q(4,2)

Figure 4: A graph for the odd component $H_o(4,2)$ of Q(4,2)

References

- 1. G. M. Alipan, On the Generalized n-Cubes, Masteral Thesis, MSU-IIT, 1995.
- 2. J. Bondy and U. S. R. Murty, *Graph Theory* with Applications. Macmillan Press, 1976.
- 3. G. Chartrand and L. Lesniak, *Graphs and Digraphs*, Wadsworth Inc., 1986.
- 4. S. V. Gervacio, *Graph Theory*, NRCP Research Bulletin, vol. 39 no. 2(1984) and vol. 40 no. 2(1985).