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The cartesian product of two graphs G and H, written G X H, 1s the graph with verter set
VI(G) x V(H) and with (uy,v1) adjacent to (ug, v3) if uy is adjacent to us in G and vy = vy
or 41 = Uy end vy is adjacent to vz in H. This paper establishes the bandwidth of the cartesian

product of a double star and a path.

1 INTRODUCTION

The bandwidth of the cartesian product of two
graphs was first investigated by Chavitaloval

who found an upper bound of the bandwidth of

a product in terms of the bandwidth of its com-
ponents and the bandwidth of products involving
cycles and paths.

In this paper, we investigate the bandwidth
of the product of a double star Dy, ., and a
path F,. A doublestar is a caterpillar? with ex-
actly two norpendant vertices. In the following
section, these two nonpendant vertices are de-
noted by z; and z; whose degrees are m; and
my, respectively, where m; > my and my; > 3.
We shall use the following concepts.

Definition 1.1 Let G = (V, E) be a connected

graph on n vertices. A 1-1 mapping f : V
— {1,2,..,n} is called a proper labeling of (.
The bandwidth of a proper labeling [ of G, de-
noted B;((G), is the number

maz{|f(w) — fW)| :wo € E(G)}.

Definition 1.2 The bandwidth of a graph GG, de-
noted B((G), is the number

min{Bf(G) : f is a proper labeling of G'}.

Definition 1.3 The cartesian product of two
graphs G and H, written G x H, is the graph
with vertex set V(G) x V(H) and with (uy, 1)
adjacent to (ug,vy) if u; is adjacent to uy in G
and v; = v3 or u; = uy and v; is adjacent to vy
in H.

*This work was done under the supervision of Dr. Severino V. Gervacio of De La Salle University, Manila and Dr. Kiyoshi

Ando of University of Electro-Communications, Tokyo
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For § C V(G), S denotes V(G) — S and 9§
denotes the set of vertices in .S adjacent to those
in S. For u,v € V(G), we denote by d(u,v) the
distance between u and v. The symbol n(G)
denotes the number of vertices of the graph &,
which is referred to as the order of G. The fol-
lowing propositions are used in the proofs that

follow.
1

Proposition 1.4 ! If H is a subgraph of G, then
B(H) < B(G).

Proposition 1.5 {Harper)! For any connected
graph G,

B(G) > max min |35].
kE |S|=k

For a labeling f, let w; = f~'(i) (1 < ¢ <

[V]) be the vertex whose label is i. Denote S
= {uy, ug, .., ux} = f71({1,2,...,k}) for 1 < &
< |V|. Then Propositions 1.6 and 1.7 follow di-
rectly from Proposition 1.5.

Proposition 1.6 * For any labeling f of G,

Bi{G) 2 B |0.Sk|.

Proposition 1.7 3 For any labeling f of G,

B/ (&) > Sl
f(G) > | ax, |2Sk|

Proposition 1.8 (Chavatalova and Opatrny)*

B(Kl,m X Pg) =

Im+ 2
4

Proposition 1.9 (Chavatal)!
proper labeling of G, then

Let f be a

(f(u} = f(v)] < B(G) - d(u,v)
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2 BANDWIDTH OF THE CARTESIAN
PRODUCT OF A DOUBLE STAR AND
A PATH

For the proofs we will use the following notations:

DY), = Gvsu):l<i<m
and (v;, u;) € V(G)}]
PU = GH{(v,u) c 21 = vy
and (v, u;) € V(G)}]
P = Gl{{(vm, 1) : 22 = Uy
and (vm,u;) € V(G)}]
PO = G(viu):1<j<n
C and () € VG
{‘,’7)?11 Kim, in Dﬂ(‘fla.mz
-l(fa)n = Kim,in Dﬂ(ﬂ{z,mz
.’E(lﬁ = Ijin Dm,mz
m(zj) = z3in Ds;l)l Mz

Theorem 2.1 Let G = Dy, i, X P
and m = mq + my. Then
(] i <o)
- 2m1

i3 [3m82] o,
+3(?, - 1) <my <

B(G) =
(&) = 9 3 [¥A2) 9y 4+ 3i
where
1 <i< |m=2
L 7 otherwise.
Proof. Let V(Dnymy) = {v1,--.,0m}

V(Py} = {u1,uz} and f:V(G) > {1,...,2m}.
3m1—|—2

Suppose mg <3 - 2m,. For
(vi,u;) € V(G), define the labeling of
Kim, X Py as follows: f((vy,uy)} = [2242]

+1, f((vmym)) = 2352} 4+ 1, f((v2, up)
=3 [3E2] _2my + 1, f((Um, u2)) = 5 [22412]
—2m; + 1. Label the other vertices accordingly

2
as in Figure 1 below. Then B(G) < [3ml4+ ]
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Since K, x P, is a subgraph of G, then
it follows from Propositions 1.4 and 1.8 that

B(G) > [3’”‘: 2].

Therefore,

3m1+2
3
=

B(G) [3771{4-{—2

‘l - le.

2
Now, suppose 3 [3m14+ ] —2my 4+ 3 ~ 1)
3 2
< mg < 3|- m;-i— ] — 2my + 37 where
. 3 2
1<i<my— Mt . For (v, u;) € V(G),

4

define the labeling of G with the labeling of

K1 m, X Py as follows:

o, = | 2222

f((vzaul)):'l! ey my
£ (o)) =[],
((pgper)) =203+

.‘+i+1,

IOy w1)) = g + [%j—] +1,
Fl{vm,u1)) =2 [3m;+ ﬂ + 2041,
F(n ) = [3”’”4”} TS P
Jl(v2. ug)) = [m?l-l +1,...,

(e yos) =212

THe ManiLa JournaL OF Science

— Mmoo
(o)) =+ 2] 2
f((vmyyu2)) = 2my + 1,

o [3mat+2 mq
Sl ) =2 [FHE2] [
Label the remaining vertices accordingly as in
Figure 2 below.

] +2i+1

Since 3 l-

dmy + 2
4

]—2ml+3(i—1)<m2

<3I73m1+2
- 4

]

4
B(G) S |'3m14+2'| i

]—2m1+35 where 1 < @ <

then from the labeling above,

Next we have to show that B(G) >
|'3m1+2

4
B(G) < [

|

2m — ([*4F] +i-1) - 2B(G)

> 2m— [2AE] 4
_2|'3m41i2‘| _21+2

-‘ + %. Suppose to the contrary that

3m1 + 2

4

3mi+2
4

i

3 -’—-2m1+3(z—1)<m2§
2

+

Since
3m1
4

" - 2my + 34, it follows that
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> 2m + 6 |22 S ]+6(z—1)
—4my — 3 [ZUt2] — 3+ 3
= 3[1“"‘4—-1-1'-]-1—32—27711—3
2 Mg — 3
> 0.
Therefore,

2m — ([3’"14“" 2] ti- 1) >2B(G) (1)

From Proposition 1.9 and (1), we may

assume that f~1(1) € D).  Without
loss of generality, we suppose that f~!{1) €

K. Since d(f7'(3), f71(2m)) > 2 from
(1), where :=1,..., [3m1 +2

.‘-’f—z'—l, it fol-

lows that f~1(2m) € K£ T)M and :t:?),a:2 ¢ Sk
where k£ = |73m14+2.‘ +1¢— 1. We consider the

following cases to exhaust all possible labelings

of (5.
Case 1. 5N Dgz'mz # 0.

Subcase 1. 3:1 ESk

3 2
Since 3!» MLt -|+3(z'-1)—2m1<m2,
we have
0526] > m+mi+1-2k
3 2
= m+m1+1—2[m1+ -‘—22+2
3 2
> 2m1+3[m1+ ]—2m1+3(i—1)
+1—2[3m‘4+2]—2i+2

2
= [3m14—|— -| +:

which contradicts the upper bound above by
Proposition 1.7.

Subcase 2. a:l ﬁf Sk-
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Since f~1(1} € KSL, then f(wgl)) =k+1
for otherwise, _f(:zgl)) -
argument, we have

1 > k. Using a similar

|0S2%41] 2 m+my+1-2k-1

-214+2-1
> 2m1+3|‘3m14+2-|+3(i—1)
—omy -2 [3’"’1: 2} 242
- "3m14+2-’+3._1

which is also a contradiction by Proposition 1.7.

Case 2. S C D.,(,,L) ma
It is easy to see that :c( ) € S, for otherwise,
fl= 5”) = k+1 and the vertex adjacent to f~1(1)

in Kﬁg‘l will have a label of greater than & + 1
which is a contradiction.

Hence, from a similar argument in Case
1, |8S%%| > [Sm;-{- 2-1 + 1t which contradicts

Proposition 1.7.

Ruling out all the possibilities by way of
3m1 +2-|
o

contradiction, we have B(G) > [
Therefore, B(G) = [3m14-|- 2-| 4iif3 "3m1 + 2"

—2m1+3(i—-1)<m <3 [
m1—2
1 .

wherel§i<[

For cases not mentioned above, let f be a
simple sequential labeling for (v;, ) where 2 < 1
< m; and label the remaining vertices accord-
ingly with no two adjacent vertices labeled to

have a difference of more than m; as in Figure 3.
Hence B(G) < m;.
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Next we have to show that B(G) >
m. Suppose that B{(G) < m; -

3 2 B
1. Since mo >3 [ m14+ —l —2m4y + 3¢ and

-2
i:{ml J“1=m1—[3m1+2]—1itfolu
g g

lows that 2m — (m; — 1) — 2B(G)

2 2m-m14+1-—-2m; 42
= 2m2—m1+3
2
> 6[3m14+ ]——4m1+6i—m1+3
3mi+ 2 3my + 2
= 6[ y ]-&—Gml—ﬁ[ v ]—6
—5m1+3
> 0.
Therefore,
2m — (m1 — 1) > 2B(G) (2)

From Proposition 1.9 and (2), we may assume
that f1(1) € D& .
ality, we suppose that f~1(1} € K%lr)nl
d(f (i),
f~H2m)) > 2 from (2), where i = 1,...,m; — 1
, it follows that f~!(2m) ¢ K@ 2)

Without loss of gener-

Since

(2
1oy and z;”,
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xgl) ¢ S, where k = m; — 1. We consider the
following cases to exhaust all possible labelings

of f.
Case 1. Sg N Di,f,’,m # 0.

Subcase 1. 1:&1) € Sk-

my > 3 [3m34—§— 2-1 4+ 31 —2mp  and

.I — 1, we have

Since

t=1Mm — 1

105k] > m+mi+1-—2k
= m+m4+1-—2m;+2
= ma+3
3m1+2
3[ .

3 2
3" my +

]+—2m1+3i+3

“ - 2m1—|—3m1

_3[3m14+2]“_3+3

= mi.
This is a contradiction by Proposition 1.7.

Subcase 2. mgl) ¢ Sk.
Since f-1(1) € K

1,mp
for otherwise, f(:z&”}

argument, we have

then f(z(ll)) =k+1
— 1 > k. Using a similar

|852k+1| > m+ml—|—1—(2k‘+l)
= m+m +1—-2m+1
= my+2
> 3 le;_ Z-I —2m+ 31+ 2
: 2
= 3[3m1+ ]—27?114—37711
2
_3"3m1+ ]_3+2
4
= ml—l.
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which contradicts Proposition 1.7.

Case 2. 5; C Dﬁ,}f,mz

It is easy to see that :1:&1) € Si for otherwise,
f(a:il)) = k+1 and the vertex adjacent to f~1(1)
in K{iz,“ will have a label greater than k+1. This
gives a contradiction.

Hence, by a similar argument to Case 1, we
obtain (@524 > m; which is a contradiction to
Proposition 1.7.

Ruling out all the possibilities by way of con-
tradiction, we have B(G) > m;.

Combining the two inequalities we have
B(G) =my. O

Theorem 2.2 Let G = Dy, X P3 and m =
my + mg. Then

B(G)=m1+[%]

Proof. Let V(Dm, m,) = {v1,...,un}, V() =
{u1,u2,u3} and f : V(G) = {1,...,3m}. For
{vi,u;) € V(G), define a labeling of K; ,,, x Ps
as follows:

Fllonu) = mi+ [Z2] 41,

f((”%”l)) =1,.. -1f((vf#117u1)) =my — 1,
f((”ma ul)) =2m + 2 ’-“3_2.‘ +1,

f((vls u2)) = 2m; + [%&]1

f((v2, u2)) = my

f((vmuu?)) =2my — 1’m

[((vm, u2)) = 3my +2 [ 22,

and label the other vertices in K ﬁll accordingly.

P, ) = 3my + | 22 ]

f((v21 ’H.3)) = 2m1,
f((vm1vu3)) = 3my,
f((vm,’u,g)) = 3m1 -+ 2?712 + 1if My S [%],

%1, and

label the other vertices in Kﬁ)m accordingly.
Then label the remaining vertices of Ky o, X
P3; with unused labels where the difference

otherwise let f((vp,,u3)) = 4my + 2 [
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between two adjacent labels will not exceed
my + ’7%1 as in Figure 4 below.

Figure 4, Dy37 X Ps

Hence B(G) < m; + [-T%]

Next we have to show that B(G)} > m; + [@-‘ .

With the given labeling above, it follows that
B(G) <m + [%-ﬁ—] Hence,

3m—1-3B(G) > 3m—1—3m1-3[%]
_ _g[M2] _
= 3my 3[3} 1
> 0
and therefore,
3m ~1>3B(G) (3)

From Proposition 1.9 and (3), we may as-
sume that f~1(1) € D,E},mz and f~1(3m) €
DT(,?Lmz. Without loss of generality, we suppose

that f~1(1) € K{};l. Let k =m; + [%2], and
exhaust all possible labelings of G.

If S C Dgf'mz then obviously, |85y =
m which is a contradiction to Proposition 1.7.
Hence, Sy N D,(,ﬂ,mz # 0.

if 2 € S, then it follows that =\ ¢ S,
for otherwise we will have the same situation as
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above where |35k| = m. For f to be optimal
it follows that |, N D) | > [Z2]. Hence,

1S36N DY) s | > ma+1 and |SsxNDE | > my.
Therefore,

|SZUC—1) DE)’?]}_,THQI <—
ma
= 2m;+2 [——3 1

—2m1—1

- o[-

2k—2m1—1

Thus,

0826-1)] = m—|Sy-yn DL |

mi,may

+ |82y N D |

my,mz

— |Sopk—1y N D) |

mi,mz

+ |Sak-1y N DD |

Ty ,ma

—183(6-1) N DE) |

M1 ,Ma
me 2[3%”
m2-|'
3

v

2 m1+[

While if zgl) ¢ Sk, it clearly follows that |8S;| =
k.

Therefore we conclude from Proposition 1.6

and 1.7 that B(G) > m; + l'_fg_z]
Combining the two inequalities, the proof is
complete. O

Theorem 2.3 Let G =
m = my + mq. Then

-1
B(G) = {
m otherwise

Proof. Let V(D m,) =4{v1,...,vm}, V(Py) =
{u1, ug,u3,u4} and f: V(G) = {1,...,4m}.

Suppose m; = mg where m; > 5. For
(vi,u;) € V(G), let f label & such that

Doyimg X Py and

ifmy=ma>5
or mg < my < 2mq — 2.
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f((v1, 1)) = 2my,

F{(vm, u1)) = 4my - 1,
F((v1,u2)) = 3my — 1,
f((vm, u2)) = 5my — 2,
F((v1, ua)}) = 4my — 2,
F{(vim, u3)) = 6m; — 3,

f((UI)ﬂ"i)) =5my — I,

fl(vm, uq)) = Tmy — 2.

Label the remaining vertices accordingly as in
Figure 5.

4 3 2/6) 41 )42 13 ”»
] 45

& . 20 39 o 48
8§ ] 51
(312 19/69 62 53 )M -
14 5%
Gs ” 29 a8 s 59
17¥(18 §1
N |G2 21) (7 é2 N -
24 e%
25 - 38 57 e s-D
27 (28 71
G2 31) (a0 T2)fra ) -
34 78
35 ” 49 GB o ) Tr
377 (40 80

Figure 5. D]o,lg X P4

If 2mg — 2 > my > may, let f label G where
((v1,uy)) = m,

(¥, 21)) = 2m — 1,
((vr,u2)) =m +my — 1,
((vm, uz}) = 2m+ my — 2,
((vr1,u3)) = m+2my — 1,
({(vm, u3)) = 2m +2my — 2,
((v1,v4)) = m + 3m; — 1,

S (U, uq)) = 2m + 3y — 2.

Label the remaining vertices accordingly as in
Figure 6.

In both cases, B(G) < m — 1.

e e e e
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4 a 49 ) 50

5 2 51
6 1 32) (53
7 22 43 55
58
8 A T o hes
- (s 14)] 7> @0 m o~
17 12 5%
18 a3 54 er
i
8 20 21 @ Ba\E3
]
ARt 26 29 Gﬂ Lt -
L (s 121 h
@u 45 6 79
o 35 TN S
32 34 79
o s Dl so)E1)f > -
11 36 34
42 5t 78 25
36
14 s (a8 -~

Figure 6. D12,10 X Py

Now we have to show that B(G) > m — 1.
From the given labeling above, we have

dm—1-4B(G) > 4m—-1-4m+4
> 0
and therefore,
4m — 1> 4B(G) (4)

From Proposition 1.9 and (4), we may as-
sume that f~!(1) € D,(,H,mz and f~'(4m) €
Df;ff my- Without loss of generality, we suppose
that (1) € K{!) . Letk=m— 1.

If S, C Dﬁ,ﬂ,mz then obviously, |8S,] =
m which is a contradiction to Proposition 1.7,
Hence, S, N Dgl},m2 £ 0.

If zrgl} € Sk and we want f to be optimal then
SN DSI}WM = (. This will give us |05, = m
which is also a contradiction to Proposition 1.7.

If a:gl} ¢ Sk, then it clearly follows that
[0Sk = k.

Therefore we conclude from Proposition 1.6
that wgl) # Sk. This gives us B(G) > m — 1.
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Combining the two inequalities, we have
B(G)=m - 1.

For cases other than the ones mentioned
above, for (v;,u;) € V(G), define f({v;,u;)) =
i+ (j—1)m where f: V(G) = {1,...,mn } as
in Figure 7 below. Then |f(u)—f(v)| < mV uv €
E(G) and hence, B(G) < m.

61

&

Figure 7. Dypg X P4

We now show that B(G} > m. Given the
labeling above, we have

4m-1-3B(G) > 4m-1-3m
> 0
and therefore,
4m -1 > 3B(G) (5)

From Proposition 1.9 and (5), we may as-
sume that f~1(1) € D,(,llz_mi and f~l(4m) €
D,(;:,} ,ma+ Without loss of generality, we suppose
that f~1(1) € K1), .

IS, C D,(rfl),mg then obviously, |8Sm| = m.

Now suppose S, N D3 £0. If ) ¢ 8,
then from a similar argument it follows that
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