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This paper describes two special types of di-
graphs which are r-regular, circulant and asym-

metric. These graphs are denoted by Cr and dC

Specifically, this paper shows which of these spe-
cial classes of r-regular, asymmetric and circulant
digraphs are singular and which are non-singular.

INTRODUCTION

A digraph D is an ordered pair D
(V(D), A(D)}, where V(D) is a nonempty set of
elements called vertices and A(D) is a subset of
V(D) x V(D). Thus, the elements of A(D) are
ordered pairs of elements of V{I}) and these are
called arcs. If z,y € V(D) and (z,y) € A(D),
then we say that x is adjacent te vy and y is adja-
cent from . We now define two sets associated
with a vertex of a digraph D.

Definition 1.1 Let D = (V(D), A(D)) be a di-
graph. The out-neighbors of = € V(D) de-
noted by N*(z) is defined as N*(z) = {y €
V(D)i(z,y) € A(D)}. The in-neighbors of z, de-
noted by N~ (z) = {y € V(D)|{y,z) € A(D)}.

Thus, NT(z) is the set of all vertices which are
adjacent from z and N~ (x) is the set of all ver-
tices which are adjacent to xz. The cardinal-
ity of N*¥(z) is called the in-degree of z, de-
noted by id(z) and the cardinality of N~ (z) is
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called the out-degree of z, denoted by od(x). If
| N¥(z) |=| N~ (z) |= r,¥(z) € V(D), we say
that the digraph D is r-regular. Moreover, if
z € V(D) with | N*{z) |> 0and | N~ (z) |= 0,
then z is called a source and if x € V(ID) w1th
| N (z) |> 0 and | N*(z) |= 0, then z is called
a sink.

Example 1.1 Let D ({V (D), A(D)),
where V(D) {z1,22,%3,%4,25,26} and
A(D) {(.‘]’,‘1,232),($2,$3),($2,$4),($3,$5),

(z4,71), (5, 23} }-

In this digraph, Nt(z2) {z3,z4} and
N7 (z2) = {z1}. Thus od(zz) = 2 and id(z;) =
1. The vertex xg is a source and vertex zj is a
sink. A pictorial representation of the digraph D
is shown in Figure 1.
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Figure 1. Pictorial representation of a digraph.

To each digraph D with vertices z1,2,...,Zn
there is an associated square matrix A(D) = [a;]
of order n called the adjacency matriz of D and
defined as

ai}-:{

If the adjacency matrix of the digraph I 18 sin-
gular, then we say that the digraph D is singu-
lar, otherwise the digraph D is nonsingular. The
adjacency matrix associated with the digraph in
Example 1.1 is

1 if (.”Ei,ﬂ’,‘j) S A(D),

{0 otherwise.

010000
001100
000001

ADY=11 9000 0
000000
00100 0]

Since det(A(D)) = 0, D is singular. Obvi-
ously, if a digraph has either a sink or a source,
then the digraph is singular.

Asymmetric, r-regular Circulant
Digraphs
A square matrix is circulant if its first row deter-
mines the entries of the remaining rows in such a
way that the entries in row ¢ + 1 are obtained by
cyclically shifting the entries of row i one place to
the right. A circulant digraph is a digraph whose
adjacency matrix is circulant.

An example of a circulant digraph D*, with
its corresponding circulant adjacency matrix 19s
shown in Figure 2.
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Figure 2. A circulant digraph D*.

A digraph D is asymmetric if {y,z) is not an
arc of D whenever (z,y) is an arc of D. The
digraph D* in the last example is asymmetric.
Note that a digraph is asymmetric if and only if
it does not contain any arc of the form (z,z) and
at most one arc connects two distinct vertices.

We now define a special type of an asymmet-
ric circulant digraph, which is r-regular and with
n vertices. This digraph has an adjacency matrix
whose first row has entries 0,1,1,...,1,0,...,0,
that is, its first entry is a zero followed by r 1’s
and then followed by zeroes. To make the digraph
asymmetric and r-regular, we have to make the
restriction that n > 2r and r > 1. The underly-
ing graph of this digraph is the rth power graph
of the cycle with n vertices, thus we will denote
this digraph by C_":;

Example 2.1 Consider the digraph 6_“62 The
first row of the adjacency matriz of this digraph
is 0,1,1,0,0,0. Its adjecency matriz is

01100 07
001100
- 000110
A(Cg) = 000011
100001
11000 0]
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A pictorial representation of ég is shown in

Figure 3.
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Figure 3. The digraph C_"g

Another special type of a circulant digraph
with n vertices, is a digraph with adjacency ma-
trix whose first row consists of a series of d ze-
roes, followed by a 1, then all other entries are
also zeroes except the last entry which is also a
1. If we add the restrictions that n > 2d 41
and d > 1 then this digraph will be 2-regular and
asymmetric. We will denote this digraph by iCh.
An example of this digraph is given below.

Example 2.2 Consider the digraph 355. The
first row entries of A(3Cg) are 0,0,0,1,0,1 and

000101
1 00010

» 010001
ABC=17 9 1 00 0
010100
(000101 0]

A pictorial representation of 5(3"3 is shown in Fig-
ure 4.

Figure 4. The digraph 6(73.
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MAIN RESULTS

Before we discuss which of CT and which of 4G,
are singular or nonsingular, we first introduce the
following results.

Lemma 3.1 [3] Let 0,a3,03,...,6n be the en-
tries of row 1 of a circulant asymmetric matriz.
Then the eigenvalues of the matriz are

n
)\S = Z ajw{j‘l)s,
i=2

where s = 0,1,2,...,n — 1 and w = COS%T-F-

. . 9r
$8in n

Lemma 3.2 [5] If A1, Ag,..., Ap are the distinct
eigenvalues of a circulant matriz A with multi-
plicities T1,79,...,Tn respeclively, then

P
det(4) = [ 5.
i=1

Using these results with the fact that a square
matrix is singular if and only if zero is an eigen-
value, we have the following main results of this

paper.

Theorem 3.1 (i’; is singulor if end only if
ged(n,r) > 1. Moreover, if this digraph is non-
singular, then det(A(CT) = (=1)*"1r.

Proof : Let us first note that if ged(n,r) > 1,
then there exists an integer s, 1 < s < n—1 such
that n |7‘3. Conversely, if n | rs for some integer s
with 1 < s < n — 1, then ged(n,r) > 1.

Let A = A(CT). From Lemmas 3.1 and 3.2,

we have

n—

1 n—1
det(4) = [T 2 =2 [ M-
i=1

=0
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But Ay = r from Lemma 3.1. Thus,

det(A):rH{w (1+w +. .+l )
1w
- Hw H o

However, r and [[[=, @ can never be equal

to zero and [[; ! IT‘“} = 0 if and only if there
exists a value f0r7 say i — s, wherel < s <n—1
such that n divides rs. Since if n divides rs, then
therc exists an integer k& such that rs = kn and
S0

lowt =l—w =1 () =1-1)"=

Thus, the digraph is singular.

Suppose there exists no 5, 1 < 8§ < n— 1,
such that n divides rs. Then, det(A) # 0
and the digraph is nonsingular. Also, the set
{0,7,2r,3r,....(n — 1)r} is a complete set of
residues modulo n, since no two elements of the
set. are congruent modulo n. This is easily seen
because if ir and jr in the set are congruent
modulo n, then n would divide r(i — j), where
1<|i—j| <n—1. Thus

n—
L

If » is odd, then

l*‘u)”.
— = 1.
1 —wt

H % n— 1)(71) —_ (wn)ﬂ_g_l = 1
thus, det(A) == r. If n is even, then

n—1

H wi — w%(n—l)(n) _ (wn)"—;—z(w%)

i=1

= (1%F)(-1) = -1,
since w? = COSE;E;l) + z'sin%%ﬂ = cos 7 +

isinm = —1. Therefore, det(4} = —r. O
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From the result of this theorem we can
conclude that the digraph CZ is singular since
ged(6,2) = 2 > 1. The digraph C§, is nonsingu-
lar since ged(23,6) = 1. Moreover, det(C%;) = 6
since n is odd. The digraph C%, is nonsingular
and det(C3,) = —3.

Theorem 3.2 ;Cj is singular if and only if n is
even and ged{d + 1,n) 1 3

Proof : Using Lemma 3.1, we have

(n—1)s 1 (1+w(d+1)3).

w

A = w® 4w

We see that A, = 0 if and only if (@1 = —1.

Hence, cos(g—”%tm) = —1. Thus,
2 1 2d+1
M:(l_,_gk)ﬂ@ 2(d+1)s _ 1+ 2k

T
@(d+1)s:g+nk

Thus, n is necessarily even. Furthermore, the last
equality is equivalent to

(d+1)s = g (mod n)

This linear congruence has a solution if and only
if ged(d + 1,n}| 3. O

From the result of this theorem we can see
that »Cg is singular, since 31% = 3 and 3520 is
nonsingular since 4*%_9 = 10. Furthermore, from
the proof of Theorem 3.2, we can deduce that if

n is odd then 4C, is nonsingular.

Theorem 3.3 The graph dén is nonsingular if
and only if n is odd or n is even but p =
ged(d + 1,n) does not divide 5. Moreover,

det(A(aCr)) = (1) 122,
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Proof : The first statement in the theorem fol-
lows from Theorem 3.2. It remains to find
det{A(4Cr)).  Since 4Cp is nonsingular, then
ged(d + 1,n) |% whether n is even or odd. Let
r=d+1,5=1{0,1,2,...n—-1},T={s € 5|
Tszﬂmodn}andU—S T. Let A(4Cr) = A,
then

=2

-1 n-
d = —
et(A Hu, (14w
5=0 s=0
n—1 1
= ———H (I+w™ H(l-l—w”)
ws
5=0 cT sely

However, [[,-r(1+w™) = 27, where p =
ged(t,n). This is true because p|D and thus the
linear congruence, rs = 0 (mod n) has exactly
p = ged(n, r) incongruent solutions s modulo 7.

Moreover, [[.c; (1 +w™) is equal to

1 — 2rs
I

1
wWrs
SEAp-1

1_w2?"$ l_wQ'rs
H ] - w7 H l_wrs"'

SEA[] 5 A,

whereAiZ{s€U|%’“+1§s§£%m—l}.
However, HseA1 11%”;;; =1, foralli 1l <1<
p — 1. This follows from the fact that for ev-
ery s € A;, there exists a unique t € A; such
that 2rt = rs mod n. To prove this, let us
divide both members of the congruence by r
and divide the modulus by p = ged(n,r) to get
2t = mod Z. This has a unique solution ¢{ mod %
since ged(2, %) = 1. If ¢ty is the unique solu-
tion satisfying 1 < tp < % — 1, then tg + %—,
i=0,1,2,...,p— 1 are all the solutions to the
original congruence, mod n. This proves our
claim that for each s € A;, there is a unique
t € A; such that 2rt = rs mod n. Thus,
2rs
1=
sEA

and consequently,

[Jo+w™ =1

sel
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Furthermore, similar to the argument pre-
sented in the proof of Theorem 3.1, [T5 01 wl—s =1
if 7 15 odd and ]_[s —0 ws = —1 if n 1s even. Thus,
the theorem follows. O

Corollary 3.3.1 If n = (d + 1)k, where d and
k are positive integers with k odd, then 4Cy is
nonsingular and det(A(3Cp)) = (—~1)n712¢+L,

Proof : We have p =ged(d+ 1,n) =d+ 1. If n
is odd, then dén is nonsingular by Theorem 3.2.
If n is even, then (d + 1) is even and we see that
p = d + 1 does not divide 7, and hence dén is
ponsingular. That det{A(yC,)) = (1) 129+
follows from the theorem. O

From the results of the previous theorem and
its corollary, we can see that det(A(2Cy1)) = 2
and det(A(3C%)) = —16.
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