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Abstract

Conventional facial recognition techniques are 
nonversatile to changes in pose expression because 
they utilize static algorithms. This paper proposed a 
dynamic wireless facial recognition system with data 
logging capabilities using CNN. Face recognition 
methodology was divided into two stages: face detection 
and face recognition. For face detection, a Histogram 
of Oriented Gradients (HOG)-based technique was 
used in conjunction with Face Alignment through 
Affine Transformation for input image pre-processing. 
The facial recognition stage utilized an OpenFace 
implementation for the neural network, modified 
clustering for grouping identities and Density-
Based Spatial Clustering of Applications with Noise 
(DBSCAN) for removing outliers. The accuracy was 
calculated at 87.03% with an average processing time 
of 13.7 ms at 10 fps frame rate. Images are sorted 
in archives of the data logger by time, date, camera 
number and picture of encounter for each distinct 
identity. 

In addition, face searching enables the user to 
upload and external photo and search the database for 
a matching identity. The system has been successfully 
implemented in a real world scenario.

Keywords–face recognition, deep learning, CNN, 
python

I. Introduction

For humans, face recognition is an unsophisticated task 
even in adverse situations like bad lighting or facial 

changes due to aging. This basic task for our brains has 
become a real challenge in advanced computer vision in 
recent years [1]. Face recognition is of practical importance 
because it is one of the easiest and most convenient 
biometrics that can be utilized in surveillance, identity 
authentication and access control. [2].

As a result, governments all over the world use FR 
systems to identify potential and current threats. It was 
used during Super Bowl XXXV in 2001 in which the faces 
of 100,000 people was digitally scanned, analyzed, and 
cross-referenced with a database of wanted and suspected 
criminals. Dubai installed facial recognition cameras in its 
international airport in 2008 to capture the facial images of 
passengers from the flights and complement the iris scan 
mechanism to nab illegal entrants and wanted criminals [3]. 
Today, they integrated the FR system to a tunnel aquarium 
to encourages travelers to look around, and increase the 
quality of their face scan [4].

FR systems was also effectively used in biometric 
authentication. In the 1970s, the UK government enquiry 
was chaired by Lord Devlin, summarizing several cases 
where sincere and credible witnesses proved badly wrong 
when picking out perpetrators from photographs or police 
line-ups. These findings sparked new psychological 
research into eyewitness testimony - in particular recall 
and recognition of faces [5]. To improve justice execution, 
the US Federal Bureau of Investigation created a database 
that contains over 30 million mugshots of criminals and 
ID card images from 16 states. The FBI used FR software 
to identify and gain leads to arrest a fugitive who was 
on the run for over 14 years. After getting tips that the 
fugitive was traveling internationally, an FBI agent 
contacted the US Diplomatic Security Service to gain 
access to a passport image database. He then uploaded a 
photo of the fugitive’s wanted posters to cross-reference 
him with the database. The software linked the fugitive’s 
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face to a similar headshot on a passport with a different 
name listed [6].

Security-conscious businesses have also utilized FR 
systems such as Retailers and businesses of all kinds 
can look for suspected shoplifters or track their workers’ 
chronograms [7]. There are a lot of social media applications 
which increase a user experience with FR technique like 
the Mastercard Identity Check which provides payment 
confirmation, and online retailer Alibaba takes online 
payments with its Smile to Pay [7]. Currently, FR systems 
are becoming so reliable. A research shows that there is a 1-in 
50,000 chance of a phone with touch ID being unlocked with 
the wrong fingerprint but with advanced 3d facial modeling, 
the probability drops to nearly 1-in-1,000,000 [7], [8].

Face recognition was first addressed in Computer 
Vision by Landmark-based method which are geometric 
representation of facial features [9]. However, it was 
limited by differences in pose and expression. EigenFaces 
attempted to defy this but noisy images resulted in inaccurate 
representations [10]. The Fisherfaces method surpassed 
Eigenfaces [11] and Local Binary Pattern ventured to 
address factors in the input images but LBP can’t extract 
the important structures from important area of face image 
completely [12]. Methods based on convolutional neural 
networks (CNNs) are not affected by this factors. This 
paper proposes a CNN-based facial recognition system with 
data logging capabilities. It will utilize three (3) cameras 
positioned in fixed locations with enough lighting and will 
enable frontal capturing of images. 

II. Face Detection
For the face detection, given an input camera frame, 

an algorithm was constructed to show the coordinates of a 
region of interest (ROI) where the face of person is present. 
Face alignment was then applied to these ROI’s for pre-
processing.

A. Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is a feature 
descriptor applied in diverse field to characterize objects 
based on their shapes. It is a method that analyses every 
patch in an image by dividing it into smaller blocks. The 
intensity on how much the colors change is then observed 
in each block [13]. This is performed on different directions 
and compiled on a histogram. A linear classifier is then 
implemented to identify the object being detected, which 
in this study is the face.

The researchers employed the default Dlib face detector 
class which is a HOG-based face detector, and the frontal 
face Haar cascade found in the OpenCV library.

B. Face Alignment with Affine Transformation

The detected faces come in different shapes and sizes. 
Also, people can face the camera at different angles and 
orientations which induces variability that will lessen the 
consistency of the facial recognition stage. To minimize this,  
a face alignment technique called Affine Transformation has 
been utilized. This face alignment normalizes the input data 
before being fed to the facial recognition stage [14].

Affine transformation in geometry is simply a linear 
mapping that preserves points, straight lines and planes 
[15]. All relationships between the points, lines and planes 
remains after transformation. This technique is usually 
executed with geometric deformations that occur in non-
ideal camera angles. For this study, Affine transformation 
was carried out to accomplish the following criteria:

1. The cropped region of interest must be centered 
on the face.

2. The eyes on the face must be rotated so that all 
the eyes from different images lies on the same 
horizontal line.

3. All the detected faces should be approximately 
identical in size after the transform.

The second criteria was done by determining two 
parameters-the angle and axis of rotation. First, the position 
of the eyes’ center must be localized using the Dlib library. 
The location of the center is given as an ordered pair of x 
and y coordinates. To calculate the angle of rotation, the 
following formula was applied:

 
        (1)

           (2)

        (3)

The axis of rotation was placed on the midpoint between 
the two eyes. Midpoint is mathematically defined as:

    
                  (4)

III. Embeddings Calculation

A. Neural Network Approach

A neural network based on the Facenet architecture via 
the OpenFace implementation was deployed to perform the 
facial recognition. This model is composed of 166 layers 
with an input layer of 96x96x3 [16]. Unlike other neural 
networks which directly outputs the classification given an 
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input, the neural network that DeepView utilized outputs 
a 128-dimension embedding that describes the input face. 
This multidimensional embedding was the accompanying 
variable for realizing the identity of a face.

B. Face Representation

Faces were represented with an encoding which is a 128 
dimension feature-vector. Faces have distinctive embeddings 
regardless of whether they are from the same individual 
or not. Factors like pose and emotion influences these 
embeddings. The neural network was trained to address 
these factors. It minimized the distance of faces from the 
same person, and maximized the distance of faces from 
different persons. The distance that is being described is the 
L2 Euclidean distance.

Humans see faces as shapes in three dimensional space. 
However, in neural network, it must describe the faces in 
a 128-dimensions space to achieve satisfactory results. 
This was the reason for embeddings existing in multiple 
dimensions. Even at higher dimensions, the mathematics 
concept performed in 3D space holds true. Hence, the 
distance between two 128-dimension encodings was 
calculated following the ’n’-dimensional Euclidean distance 
formula.

    
                  (5)

Equation 5 transformed the complex idea of facial 
recognition into an elementary concept of finding the 
distance between two points.

The issue that arouse was to identify the appropriate 
threshold in order to accurately classify faces. This standard 
number was a hyperparameter that must be obtained before 
enforcing the whole DeepView system. The Facenet paper 
explained that a euclidean separation of 1.1 is the limiting 
value. All distances less than 1.1 implies that the embeddings 
are from the same identity while a greater number is from 
different individual [16]. The researchers found out the 
suitable threshold value for this application by comparing 
the accuracy of different threshold values.

IV.  Face Recognition Using Clustering

A. Face Clusters

A cluster is a collection of closely-related points. Each 
of the points in the cluster represents a person’s face in a 
specific instance. A summary of a unique face identity was 
generated.

Each cluster will be represented by a centroid that is 
solved by:

    (6)

      (7)
      (8)

B. Identities

Existing clustering approaches are applied when a fixed 
amount of identities is already known from the start. Also, 
in other clustering algorithms, when introducing a new 
point to already established clusters, the whole algorithm 
should be performed again to all of the points which will 
add complexity to the system. To address this, a clustering 
algorithm based on k-nearest neighbor and k-means 
clustering was devised. Given a face encoding (point):

1. Compare the point with all the cluster centroids. 
Find the shortest point to centroid distance, take 
note of this cluster.

2. Compare the point with all the points of the closest 
cluster. Solve for the mean distance. If the average 
distance is less than the threshold, add this point 
to the cluster. If by adding this point, the cluster 
now has greater than 128 points, perform Density-
Based Spatial Clustering of Applications with Noise 
(DBSCAN) to reduce the cluster to its core points 
only. Recompute the new centroid.

3. If the mean distance is greater than the threshold, 
this point will be the starting point of a new cluster. 
This point will also be the centroid of this newly-
formed cluster.

Figure 1 summarizes the clustering method.
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C. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

As points are added to the cluster, outliers must be removed using Density-Based Spatial Clustering of Applications with 

Noise(DBSCAN) to further establish the relationship of the points that symbolize the identity. So, Density-Based Spatial 

Clustering of Applications with Noise(DBSCAN) was employed. 

Given a set of points in some space, DBSCAN groups together points that are closely packed. Marking as outliers points that 

lie alone in low-density regions [17]. 

The system executes a DBSCAN when points in a cluster exceedss 128 in number since the system uses 128-dimension 

embeddings. This algorithm will be used only when cleaning up existing clusters , this will not be used iand not for n establishing 

new clusters. 

V. THE FINAL SYSTEM 

Figure 2 shows the hardware setup of the system. All the functions and algorithms discussed in the previous sections were 

packaged inside a dedicated computer. 
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C. Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN)

As points are added to the cluster, outliers must be 
removed using Density-Based Spatial Clustering of 
Applications with Noise(DBSCAN) to further establish the 
relationship of the points that symbolize the identityGiven 
a set of points in some space, DBSCAN groups together 
points that are closely packed. Marking as outliers points 
that lie alone in low-density regions [17].

The system executes a DBSCAN when points in a cluster 
exceeds 128 in number since the system uses 128-dimension 
embeddings. This algorithm will be used only when cleaning 
up existing clusters and not for establishing new clusters.

V. The Final System
Figure 2 shows the hardware setup of the system. All the 

functions and algorithms were packaged inside a dedicated 
computer.

3) If the mean distance is greater than the threshold, this point will be the starting point of a new cluster. This point will also 

be the centroid of this newly-formed cluster. 

Figure 1 summarizes the clustering method. 
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V. THE FINAL SYSTEM 

Figure 2 shows the hardware setup of the system. All the functions and algorithms were packaged inside a dedicated computer. 
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A. Core Functions

The computer housed the following significant functions:

1. Connecting with the cameras and receiving image 
frame data from each of them.

2. Perform face detection and face alignment on the 
camera frames.

3. Calculate embeddings by neural network and 
recognize a face using face clustering.

4. Keep a database of the unique faces encountered 
as a unique identity. At the same time, keep a log 
of all the history of encounters with each identity.

5. Face Search functionality. The user can upload an 
external picture of a person and the system will 
perform a scan on its database if that particular 
person was encountered. Generate a logged data 
that is accessible in a spreadsheet file.

B. Multithreading

Executing all of the functions on a single thread was 
very inefficient and caused delays on the processing of 
the data. Therefore, various functions were performed on 
different threads. Multithreading was vital since the system 
also uses a queuing system which will be discussed on the 
next subsection.

The program has a separate thread for each of the 
following functions:

1. A thread for getting the frame data from the cameras.
2. Each camera has its allocated thread.
3. A thread for facial detection and alignment.
4. A thread for facial recognition and data logging.
5. A thread for maintaining a synchronized system 

clock.
6. A thread for graphical user interface (GUI) tools.
7. A thread for displaying video streams from the 

camera.

C. Queuing System

The face recognition aspect of the system is the most 
processing-intensive part. With the limited hardware the 
researchers have, it was necessary to devise a plan that 
provides an efficient way of handling processes without 
compromising the precision. Therefore, the DeepView 
system utilized a first in-first out (FIFO) queuing system 
during the facial recognition stage.

For each of the input camera, frames are placed inside a 
queue. The frames while in the queue are saved to the cache 
and accessed later during its turn on the queue. After face 
recognition, the particular face is deleted from the cache and 
the queue proceeds. Also, when this faces were detected, 
timestamps were also saved to preserve the accuracy during 
the data logging stage. Figure 3 shows the scheme used in 
queuing.

5) A thread for graphical user interface (GUI) tools. 

6) A thread for displaying video streams from the camera. 

C. Queuing System 

The face recognition aspect of the system is the most processing- intensive part. With the limited hardware the researchers have, 

it was necessary to devise a plan that provides an efficient way of handling processes, without compromising the precision. 

Therefore, the DeepView system utilized a first in-first out (FIFO) queuing system during the facial recognition stage. 

For each of the input camera, frames are placed inside a queue. The frames while in the queue, are saved to the cache and 

accessed later during its turn on the queue. After face recognition, the hat particular face is deleted from the cache and the queue 

proceeds. Also, timestamps at when this faces were detected, timestamps  were also saved to preserve the accuracy during the 

data logging stage. Figure 3 shows the scheme used in queuing. 
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Data logging was accomplished for each of the unique identities encountered by the system. This data was saved to serialized 

object which can be then accessed and updated in the future when the system encounters the same identity. 

Each identity has an archive of the following data: 

1) Time 

2) Date 

3) Camera encountered 

These data are being updated as the system encounters an identity over and over again. There is no upper limit to the number 

of entries that the system will store for each identity. Therefore, all the history with an identity will be saved in the database. 
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D.  Data Logging

Data logging was accomplished for each of the unique 
identities encountered by the system. This data was saved 
to serialized object which can be then accessed and updated 
in the future when the system encounters the same identity.

Each identity has an archive of the following data:

1. Time
2. Date
3. Camera encountered

These data are being updated as the system encounters 
an identity over and over again. There is no upper limit to 
the number of entries that the system will store for each 
identity. Therefore, all the history with an identity will be 
saved in the database.

E.  Exporting the Logged Data

The contents of the archive can be accessed as a 
spreadsheet file by running an external batch file inside 
the DeepView directory. The spreadsheet is formatted as 
follows:

• Each worksheet contains the history of a distinct 
individual. 

• The first three columns are occupied by the 
following data: Date, time and camera.

F.  Face Search

The system can receive an external photo to be cross 
referenced on DeepView’s database. If the system finds a 
matching identity, the program displays a corresponding 
prompt whether a match is found or not.

G.  Graphical User Interface (GUI)

The GUI has two screens: the primary window and the 
opening screen that must contain a trigger to launch the 
primary window as shown in Figure 4.

 

G. Graphical User Interface (GUI) 

The GUI has two screens: the primary window and the opening screen that must contain a trigger to launch the primary window 

as shown in Figure 4. 

  

Fig. 4. Final Version of GUI Starting Screen 

 

 

Fig. 5. Final Version of GUI Main Console 

Figure 5 shows the final version of the GUI of the system. As in Figure 5, the GUI was successfully integrated to proposed 
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1) System time-displays the synced system date and time. 

2) Face Search Button-from external image source, search the database for matched identity in the system. 
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Fig. 5. Final Version of GUI Main Console

Figure 5 shows the final version of the GUI of the 
system. As in Figure 5, the GUI was successfully integrated 
to proposed components functionalities:

1. System time-displays the synced system date and 
time.

2. Face Search Button-from external image source, 
search the database for matched identity in the 
system.

3. Information Button-show the logo, authors and 
purpose of DeepView.

4. Logout Button-dropdowns logout button for exiting 
the main interface.

5. Faces Detected Panel-displays the history of 
recognized faces from the cameras. The faces is 
updated left to right and top to bottom.

6. Face Search Panel-displays the face search results. 
The left image shows the image uploaded externally 
while the right image shows the matched image in 
the database if there is any.

7. Camera Panel-shows the feed from the cameras. The 
primary camera is the feed with the largest video 
size located at the top while the secondary cameras 
are shown in the bottom.

VI. Results
A set of 126 pictures containing 126 unique identities 

were gathered for testing. The images are gathered from the 
3 cameras at different angles. 

A. HOG

For the HOG-based face detection, the average execution 
time was 7.30547 ms. It has an accuracy of 79.37%, 
successfully detecting 100 faces out of the 126 images as 
shown in Figure 6.
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Fig. 6. HOG Accuracy Results for 126 images 

B. Face Alignment using Affine Transformation 

Using the same dataeset of 126 images, benchmarking tests were conducted on the face alignment algorithm. Figure 7 shows 

the affine transformation rate. 

 

Fig. 7. Affine Transformation Rate for each trials 

Figures 8 and 9 shows the before and after output of face alignment.shows the image captured using the three (3) cameras. The 

face are not aligned. However, using Affine alignment, the image are properly aligned as shown in Figure 9. 
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B. Face Alignment using Affine Transformation

Using the same dataset of 126 images, benchmarking 
tests were conducted on the face alignment algorithm. Figure 
7 shows the affine transformation rate.

The average execution time applying transformation to 
each face was 1.94026 ms.
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Figures 8 shows the image captured using the three (3) 
cameras. The face are not aligned. However, using Affine 
alignment, the image are properly aligned as shown in 
Figure 9.
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C. Encoding Calculation Speed

When implemented, the neural network demonstrated a 
remarkable speed regardless of the slow construction time. 
The average time it took the network to assign an embedding 
to face was found to be 3.92 ms. Figure 10 summarizes the 
rate of the neural network performance on different images.
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From a dataset of varied images, the accuracy of the system was examined. The dataset was labeled and the relationship between 

the pictures was already predefined and the accuracy was examined. The test involved solving the Eeuclidean distance between 

two points. The distance was then  and this was compared with a varying threshold value. The results were used to determine the 

threshold value that the system utilize on its varied set of functionalities such as point comparisons and clustering. 
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D. Face Recognition Accuracy

The dataset was labeled and the relationship between 
the pictures was already predefined and the accuracy was 
examined. The test involved solving the Euclidean distance 
between two points and this was compared with a varying 
threshold value. The results were used to determine the 
threshold value that the system utilize on its varied set of 
functionalities such as point comparisons and clustering.

The previous sections demonstrated opposite patterns 
when comparing identities with a different or same 
individual. The challenge for the system was to find an ideal 
threshold value that would precisely balance the decision 
making in identity similarity. The suggested threshold value 
was 0.6 [18] as shown in Figure 11.
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Based on this findings, the researchers decided to settle 
with the recommended value of 0.6 with an average accuracy 
of 87.03%. This number will be used in distance and centroid 
comparisons and also in clustering computations.

However, the OpenFace implementation promised 
accuracy of 92.10% [18]. The underperformance can be 
attributed to the quality of the camera that was used for 
data gathering and variance in lighting was a great factor. 

E. Camera Frame Rate

The frame rate of the camera must coincide with the 
average process time that the system will take on a single 
face. The average queue time for the system is equal to 13.7 
ms. Using the formula of the frame rate, each camera can be 
set to approximately 24 frames per second. But to increase 
the stability of the system, the researchers decided to settle 
with a 10 fps frame rate.

VII. Conclusion
The researchers successfully developed a fully-

functioning facial recognition system with data logging 
capabilities using well-established algorithms. The system 
employs a deep learning based facial recognition model. 
Instead of learning the faces, the model was trained in such 
a way that it minimizes distances for similar faces and 
maximizes distance for different faces. This model converts 
a face-picture to a feature vector that can be represented as 
a point in a multidimensional space. Before conversion, a 
HOG-based face detection and Affine transformation were 
utilized to preprocess a photo. Standard Euclidean geometry 
was used to determine relationship between points. Because 
of this paradigm an identity of a person can be represented 
as a cluster of closely related points. These clusters enables 
DeepView to re-identify the people it encounters. The 
proposed method yielded an 87.03% accuracy. This is 
significantly lower than its expected accuracy of 92.10%. 
DeepView has performed based on the resulted accuracy 
and can be deployed in real world scenario. 
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