
DeepView: A Wireless Dynamic Facial
Recognition System with Data Logging

Blaze R.Perater, Benjamin R. Sanglitan, and Cristina P. Dadula

EEE Department, Mindanao State University
- General Santos City, General Santos City, Philippines
blaze.perater@msugensan.edu.ph,
benjamin.sanglitan@msugensan.edu.ph,
cristina.dadula@msugensan.edu.ph

Abstract

Conventional facial recognition techniques are
nonversatile to changes in pose expression because
they utilize static algorithms. This paper proposed a
dynamic wireless facial recognition system with data
logging capabilities using CNN. Face recognition
methodology was divided into two stages: face detection
and face recognition. For face detection, a Histogram
of Oriented Gradients (HOG)-based technique was
used in conjunction with Face Alignment through
Affine Transformation for input image pre-processing.
The facial recognition stage utilized an OpenFace
implementation for the neural network, modified
clustering for grouping identities and Density-
Based Spatial Clustering of Applications with Noise
(DBSCAN) for removing outliers. The accuracy was
calculated at 87.03% with an average processing time
of 13.7 ms at 10 fps frame rate. Images are sorted
in archives of the data logger by time, date, camera
number and picture of encounter for each distinct
identity.

In addition, face searching enables the user to
upload and external photo and search the database for
a matching identity. The system has been successfully
implemented in a real world scenario.

Keywords–face recognition, deep learning, CNN,
python

I. Introduction

For humans, face recognition is an unsophisticated task
even in adverse situations like bad lighting or facial

changes due to aging. This basic task for our brains has
become a real challenge in advanced computer vision in
recent years [1]. Face recognition is of practical importance
because it is one of the easiest and most convenient
biometrics that can be utilized in surveillance, identity
authentication and access control. [2].

As a result, governments all over the world use FR
systems to identify potential and current threats. It was
used during Super Bowl XXXV in 2001 in which the faces
of 100,000 people was digitally scanned, analyzed, and
cross-referenced with a database of wanted and suspected
criminals. Dubai installed facial recognition cameras in its
international airport in 2008 to capture the facial images of
passengers from the flights and complement the iris scan
mechanism to nab illegal entrants and wanted criminals [3].
Today, they integrated the FR system to a tunnel aquarium
to encourages travelers to look around, and increase the
quality of their face scan [4].

FR systems was also effectively used in biometric
authentication. In the 1970s, the UK government enquiry
was chaired by Lord Devlin, summarizing several cases
where sincere and credible witnesses proved badly wrong
when picking out perpetrators from photographs or police
line-ups. These findings sparked new psychological
research into eyewitness testimony - in particular recall
and recognition of faces [5]. To improve justice execution,
the US Federal Bureau of Investigation created a database
that contains over 30 million mugshots of criminals and
ID card images from 16 states. The FBI used FR software
to identify and gain leads to arrest a fugitive who was
on the run for over 14 years. After getting tips that the
fugitive was traveling internationally, an FBI agent
contacted the US Diplomatic Security Service to gain
access to a passport image database. He then uploaded a
photo of the fugitive’s wanted posters to cross-reference
him with the database. The software linked the fugitive’s

Journal of Computational Innovations and Engineering Applications 6(1) 2021: 36-43

face to a similar headshot on a passport with a different
name listed [6].

Security-conscious businesses have also utilized FR
systems such as Retailers and businesses of all kinds
can look for suspected shoplifters or track their workers’
chronograms [7]. There are a lot of social media applications
which increase a user experience with FR technique like
the Mastercard Identity Check which provides payment
confirmation, and online retailer Alibaba takes online
payments with its Smile to Pay [7]. Currently, FR systems
are becoming so reliable. A research shows that there is a 1-in
50,000 chance of a phone with touch ID being unlocked with
the wrong fingerprint but with advanced 3d facial modeling,
the probability drops to nearly 1-in-1,000,000 [7], [8].

Face recognition was first addressed in Computer
Vision by Landmark-based method which are geometric
representation of facial features [9]. However, it was
limited by differences in pose and expression. EigenFaces
attempted to defy this but noisy images resulted in inaccurate
representations [10]. The Fisherfaces method surpassed
Eigenfaces [11] and Local Binary Pattern ventured to
address factors in the input images but LBP can’t extract
the important structures from important area of face image
completely [12]. Methods based on convolutional neural
networks (CNNs) are not affected by this factors. This
paper proposes a CNN-based facial recognition system with
data logging capabilities. It will utilize three (3) cameras
positioned in fixed locations with enough lighting and will
enable frontal capturing of images.

II. Face Detection
For the face detection, given an input camera frame,

an algorithm was constructed to show the coordinates of a
region of interest (ROI) where the face of person is present.
Face alignment was then applied to these ROI’s for pre-
processing.

A. Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is a feature
descriptor applied in diverse field to characterize objects
based on their shapes. It is a method that analyses every
patch in an image by dividing it into smaller blocks. The
intensity on how much the colors change is then observed
in each block [13]. This is performed on different directions
and compiled on a histogram. A linear classifier is then
implemented to identify the object being detected, which
in this study is the face.

The researchers employed the default Dlib face detector
class which is a HOG-based face detector, and the frontal
face Haar cascade found in the OpenCV library.

B. Face Alignment with Affine Transformation

The detected faces come in different shapes and sizes.
Also, people can face the camera at different angles and
orientations which induces variability that will lessen the
consistency of the facial recognition stage. To minimize this,
a face alignment technique called Affine Transformation has
been utilized. This face alignment normalizes the input data
before being fed to the facial recognition stage [14].

Affine transformation in geometry is simply a linear
mapping that preserves points, straight lines and planes
[15]. All relationships between the points, lines and planes
remains after transformation. This technique is usually
executed with geometric deformations that occur in non-
ideal camera angles. For this study, Affine transformation
was carried out to accomplish the following criteria:

1. The cropped region of interest must be centered
on the face.

2. The eyes on the face must be rotated so that all
the eyes from different images lies on the same
horizontal line.

3. All the detected faces should be approximately
identical in size after the transform.

The second criteria was done by determining two
parameters-the angle and axis of rotation. First, the position
of the eyes’ center must be localized using the Dlib library.
The location of the center is given as an ordered pair of x
and y coordinates. To calculate the angle of rotation, the
following formula was applied:

 (1)

 (2)

 (3)

The axis of rotation was placed on the midpoint between
the two eyes. Midpoint is mathematically defined as:

 (4)

III. Embeddings Calculation

A. Neural Network Approach

A neural network based on the Facenet architecture via
the OpenFace implementation was deployed to perform the
facial recognition. This model is composed of 166 layers
with an input layer of 96x96x3 [16]. Unlike other neural
networks which directly outputs the classification given an

37 DeepView: A Wireless Dynamic Facial Recognition System with Data Logging Blaze R.Perater, et. al.

38 Journal of Computational Innovations and Engineering Applications Vol. 6 No. 1 (2021)

input, the neural network that DeepView utilized outputs
a 128-dimension embedding that describes the input face.
This multidimensional embedding was the accompanying
variable for realizing the identity of a face.

B. Face Representation

Faces were represented with an encoding which is a 128
dimension feature-vector. Faces have distinctive embeddings
regardless of whether they are from the same individual
or not. Factors like pose and emotion influences these
embeddings. The neural network was trained to address
these factors. It minimized the distance of faces from the
same person, and maximized the distance of faces from
different persons. The distance that is being described is the
L2 Euclidean distance.

Humans see faces as shapes in three dimensional space.
However, in neural network, it must describe the faces in
a 128-dimensions space to achieve satisfactory results.
This was the reason for embeddings existing in multiple
dimensions. Even at higher dimensions, the mathematics
concept performed in 3D space holds true. Hence, the
distance between two 128-dimension encodings was
calculated following the ’n’-dimensional Euclidean distance
formula.

 (5)

Equation 5 transformed the complex idea of facial
recognition into an elementary concept of finding the
distance between two points.

The issue that arouse was to identify the appropriate
threshold in order to accurately classify faces. This standard
number was a hyperparameter that must be obtained before
enforcing the whole DeepView system. The Facenet paper
explained that a euclidean separation of 1.1 is the limiting
value. All distances less than 1.1 implies that the embeddings
are from the same identity while a greater number is from
different individual [16]. The researchers found out the
suitable threshold value for this application by comparing
the accuracy of different threshold values.

IV. Face Recognition Using Clustering

A. Face Clusters

A cluster is a collection of closely-related points. Each
of the points in the cluster represents a person’s face in a
specific instance. A summary of a unique face identity was
generated.

Each cluster will be represented by a centroid that is
solved by:

 (6)

 (7)
 (8)

B. Identities

Existing clustering approaches are applied when a fixed
amount of identities is already known from the start. Also,
in other clustering algorithms, when introducing a new
point to already established clusters, the whole algorithm
should be performed again to all of the points which will
add complexity to the system. To address this, a clustering
algorithm based on k-nearest neighbor and k-means
clustering was devised. Given a face encoding (point):

1. Compare the point with all the cluster centroids.
Find the shortest point to centroid distance, take
note of this cluster.

2. Compare the point with all the points of the closest
cluster. Solve for the mean distance. If the average
distance is less than the threshold, add this point
to the cluster. If by adding this point, the cluster
now has greater than 128 points, perform Density-
Based Spatial Clustering of Applications with Noise
(DBSCAN) to reduce the cluster to its core points
only. Recompute the new centroid.

3. If the mean distance is greater than the threshold,
this point will be the starting point of a new cluster.
This point will also be the centroid of this newly-
formed cluster.

Figure 1 summarizes the clustering method.

Fig. 1. Clustering Implementation Flowchart

researchers. This clustering method was based on k-nearest neighbor and k-means clustering was devised. Given a face encoding

(point):

1) Compare the point with all the cluster centroids. Find the shortest point to centroid distance, take note of this cluster.

2) Compare the point with all the points of the closest cluster. Solve for the mean distance. If the average distance is less than

the threshold, add this point to the cluster. If by adding this point, the cluster now has greater than 128 points, perform

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to reduce the cluster to its core points only.

Recompute the new centroid.

3) IElse, if the mean distance is greater than the threshold, this point will be the starting point of a new cluster. This point will

also be the centroid of this newly-formed cluster.

Figure 1 summarizes the clustering method.

Fig. 1. Clustering Implementation Flowchart

C. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

As points are added to the cluster, outliers must be removed using Density-Based Spatial Clustering of Applications with

Noise(DBSCAN) to further establish the relationship of the points that symbolize the identity. So, Density-Based Spatial

Clustering of Applications with Noise(DBSCAN) was employed.

Given a set of points in some space, DBSCAN groups together points that are closely packed. Marking as outliers points that

lie alone in low-density regions [17].

The system executes a DBSCAN when points in a cluster exceedss 128 in number since the system uses 128-dimension

embeddings. This algorithm will be used only when cleaning up existing clusters , this will not be used iand not for n establishing

new clusters.

V. THE FINAL SYSTEM

Figure 2 shows the hardware setup of the system. All the functions and algorithms discussed in the previous sections were

packaged inside a dedicated computer.

Commented [A5]: What do you mean by “else”?

39 DeepView: A Wireless Dynamic Facial Recognition System with Data Logging Blaze R.Perater, et. al.

C. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

As points are added to the cluster, outliers must be
removed using Density-Based Spatial Clustering of
Applications with Noise(DBSCAN) to further establish the
relationship of the points that symbolize the identityGiven
a set of points in some space, DBSCAN groups together
points that are closely packed. Marking as outliers points
that lie alone in low-density regions [17].

The system executes a DBSCAN when points in a cluster
exceeds 128 in number since the system uses 128-dimension
embeddings. This algorithm will be used only when cleaning
up existing clusters and not for establishing new clusters.

V. The Final System
Figure 2 shows the hardware setup of the system. All the

functions and algorithms were packaged inside a dedicated
computer.

3) If the mean distance is greater than the threshold, this point will be the starting point of a new cluster. This point will also

be the centroid of this newly-formed cluster.

Figure 1 summarizes the clustering method.

Fig. 1. Clustering Implementation Flowchart

C. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

As points are added to the cluster, outliers must be removed using Density-Based Spatial Clustering of Applications with

Noise(DBSCAN) to further establish the relationship of the points that symbolize the identity

Given a set of points in some space, DBSCAN groups together points that are closely packed. Marking as outliers points that

lie alone in low-density regions [17].

The system executes a DBSCAN when points in a cluster exceeds 128 in number since the system uses 128-dimension

embeddings. This algorithm will be used only when cleaning up existing clusters and not for establishing new clusters.

V. THE FINAL SYSTEM

Figure 2 shows the hardware setup of the system. All the functions and algorithms were packaged inside a dedicated computer.

Fig. 2. Hardware Setup Diagram Fig. 2. Hardware Setup Diagram

A. Core Functions

The computer housed the following significant functions:

1. Connecting with the cameras and receiving image
frame data from each of them.

2. Perform face detection and face alignment on the
camera frames.

3. Calculate embeddings by neural network and
recognize a face using face clustering.

4. Keep a database of the unique faces encountered
as a unique identity. At the same time, keep a log
of all the history of encounters with each identity.

5. Face Search functionality. The user can upload an
external picture of a person and the system will
perform a scan on its database if that particular
person was encountered. Generate a logged data
that is accessible in a spreadsheet file.

B. Multithreading

Executing all of the functions on a single thread was
very inefficient and caused delays on the processing of
the data. Therefore, various functions were performed on
different threads. Multithreading was vital since the system
also uses a queuing system which will be discussed on the
next subsection.

The program has a separate thread for each of the
following functions:

1. A thread for getting the frame data from the cameras.
2. Each camera has its allocated thread.
3. A thread for facial detection and alignment.
4. A thread for facial recognition and data logging.
5. A thread for maintaining a synchronized system

clock.
6. A thread for graphical user interface (GUI) tools.
7. A thread for displaying video streams from the

camera.

C. Queuing System

The face recognition aspect of the system is the most
processing-intensive part. With the limited hardware the
researchers have, it was necessary to devise a plan that
provides an efficient way of handling processes without
compromising the precision. Therefore, the DeepView
system utilized a first in-first out (FIFO) queuing system
during the facial recognition stage.

For each of the input camera, frames are placed inside a
queue. The frames while in the queue are saved to the cache
and accessed later during its turn on the queue. After face
recognition, the particular face is deleted from the cache and
the queue proceeds. Also, when this faces were detected,
timestamps were also saved to preserve the accuracy during
the data logging stage. Figure 3 shows the scheme used in
queuing.

5) A thread for graphical user interface (GUI) tools.

6) A thread for displaying video streams from the camera.

C. Queuing System

The face recognition aspect of the system is the most processing- intensive part. With the limited hardware the researchers have,

it was necessary to devise a plan that provides an efficient way of handling processes, without compromising the precision.

Therefore, the DeepView system utilized a first in-first out (FIFO) queuing system during the facial recognition stage.

For each of the input camera, frames are placed inside a queue. The frames while in the queue, are saved to the cache and

accessed later during its turn on the queue. After face recognition, the hat particular face is deleted from the cache and the queue

proceeds. Also, timestamps at when this faces were detected, timestamps were also saved to preserve the accuracy during the

data logging stage. Figure 3 shows the scheme used in queuing.

Fig.3. First in-First out Scheme

D. Data Logging

Data logging was accomplished for each of the unique identities encountered by the system. This data was saved to serialized

object which can be then accessed and updated in the future when the system encounters the same identity.

Each identity has an archive of the following data:

1) Time

2) Date

3) Camera encountered

These data are being updated as the system encounters an identity over and over again. There is no upper limit to the number

of entries that the system will store for each identity. Therefore, all the history with an identity will be saved in the database.

Commented [A6]: Very confusing. Rephrase

Commented [A7]: Replace with “the”

Fig.3. First in-First out Scheme

40 Journal of Computational Innovations and Engineering Applications Vol. 6 No. 1 (2021)

D. Data Logging

Data logging was accomplished for each of the unique
identities encountered by the system. This data was saved
to serialized object which can be then accessed and updated
in the future when the system encounters the same identity.

Each identity has an archive of the following data:

1. Time
2. Date
3. Camera encountered

These data are being updated as the system encounters
an identity over and over again. There is no upper limit to
the number of entries that the system will store for each
identity. Therefore, all the history with an identity will be
saved in the database.

E. Exporting the Logged Data

The contents of the archive can be accessed as a
spreadsheet file by running an external batch file inside
the DeepView directory. The spreadsheet is formatted as
follows:

• Each worksheet contains the history of a distinct
individual.

• The first three columns are occupied by the
following data: Date, time and camera.

F. Face Search

The system can receive an external photo to be cross
referenced on DeepView’s database. If the system finds a
matching identity, the program displays a corresponding
prompt whether a match is found or not.

G. Graphical User Interface (GUI)

The GUI has two screens: the primary window and the
opening screen that must contain a trigger to launch the
primary window as shown in Figure 4.

G. Graphical User Interface (GUI)

The GUI has two screens: the primary window and the opening screen that must contain a trigger to launch the primary window

as shown in Figure 4.

Fig. 4. Final Version of GUI Starting Screen

Fig. 5. Final Version of GUI Main Console

Figure 5 shows the final version of the GUI of the system. As in Figure 5, the GUI was successfully integrated to proposed

components functionalities:

1) System time-displays the synced system date and time.

2) Face Search Button-from external image source, search the database for matched identity in the system.

Fig. 4. Final Version of GUI Starting Screen

G. Graphical User Interface (GUI)

The GUI has two screens: the primary window and the opening screen that must contain a trigger to launch the primary window

as shown in Figure 4.

Fig. 4. Final Version of GUI Starting Screen

Fig. 5. Final Version of GUI Main Console

Figure 5 shows the final version of the GUI of the system. As in Figure 5, the GUI was successfully integrated to proposed

components functionalities:

1) System time-displays the synced system date and time.

2) Face Search Button-from external image source, search the database for matched identity in the system.

Fig. 5. Final Version of GUI Main Console

Figure 5 shows the final version of the GUI of the
system. As in Figure 5, the GUI was successfully integrated
to proposed components functionalities:

1. System time-displays the synced system date and
time.

2. Face Search Button-from external image source,
search the database for matched identity in the
system.

3. Information Button-show the logo, authors and
purpose of DeepView.

4. Logout Button-dropdowns logout button for exiting
the main interface.

5. Faces Detected Panel-displays the history of
recognized faces from the cameras. The faces is
updated left to right and top to bottom.

6. Face Search Panel-displays the face search results.
The left image shows the image uploaded externally
while the right image shows the matched image in
the database if there is any.

7. Camera Panel-shows the feed from the cameras. The
primary camera is the feed with the largest video
size located at the top while the secondary cameras
are shown in the bottom.

VI. Results
A set of 126 pictures containing 126 unique identities

were gathered for testing. The images are gathered from the
3 cameras at different angles.

A. HOG

For the HOG-based face detection, the average execution
time was 7.30547 ms. It has an accuracy of 79.37%,
successfully detecting 100 faces out of the 126 images as
shown in Figure 6.

41 DeepView: A Wireless Dynamic Facial Recognition System with Data Logging Blaze R.Perater, et. al.

Fig. 6. HOG Accuracy Results for 126 images

B. Face Alignment using Affine Transformation

Using the same dataeset of 126 images, benchmarking tests were conducted on the face alignment algorithm. Figure 7 shows

the affine transformation rate.

Fig. 7. Affine Transformation Rate for each trials

Figures 8 and 9 shows the before and after output of face alignment.shows the image captured using the three (3) cameras. The

face are not aligned. However, using Affine alignment, the image are properly aligned as shown in Figure 9.

Fig. 8. Images before Face Alignment as captured by the three (3) cameras

Fig. 6. HOG Accuracy Results for 126 images

B. Face Alignment using Affine Transformation

Using the same dataset of 126 images, benchmarking
tests were conducted on the face alignment algorithm. Figure
7 shows the affine transformation rate.

The average execution time applying transformation to
each face was 1.94026 ms.

Fig. 6. HOG Accuracy Results for 126 images

B. Face Alignment using Affine Transformation

Using the same dataeset of 126 images, benchmarking tests were conducted on the face alignment algorithm. Figure 7 shows

the affine transformation rate.

Fig. 7. Affine Transformation Rate for each trials

Figures 8 and 9 shows the before and after output of face alignment.shows the image captured using the three (3) cameras. The

face are not aligned. However, using Affine alignment, the image are properly aligned as shown in Figure 9.

Fig. 8. Images before Face Alignment as captured by the three (3) cameras

Fig. 7. Affine Transformation Rate for each trials

Figures 8 shows the image captured using the three (3)
cameras. The face are not aligned. However, using Affine
alignment, the image are properly aligned as shown in
Figure 9.

Fig. 6. HOG Accuracy Results for 126 images

B. Face Alignment using Affine Transformation

Using the same dataeset of 126 images, benchmarking tests were conducted on the face alignment algorithm. Figure 7 shows

the affine transformation rate.

Fig. 7. Affine Transformation Rate for each trials

Figures 8 and 9 shows the before and after output of face alignment.shows the image captured using the three (3) cameras. The

face are not aligned. However, using Affine alignment, the image are properly aligned as shown in Figure 9.

Fig. 8. Images before Face Alignment as captured by the three (3) cameras

Fig. 8. Images before Face Alignment as captured by the three
(3) cameras

Fig. 6. HOG Accuracy Results for 126 images

B. Face Alignment using Affine Transformation

Using the same dataeset of 126 images, benchmarking tests were conducted on the face alignment algorithm. Figure 7 shows

the affine transformation rate.

Fig. 7. Affine Transformation Rate for each trials

Figures 8 and 9 shows the before and after output of face alignment.shows the image captured using the three (3) cameras. The

face are not aligned. However, using Affine alignment, the image are properly aligned as shown in Figure 9.

Fig. 8. Images before Face Alignment as captured by the three (3) cameras

Fig. 9. Images after Face Alignment

C. Encoding Calculation Speed

When implemented, the neural network demonstrated a
remarkable speed regardless of the slow construction time.
The average time it took the network to assign an embedding
to face was found to be 3.92 ms. Figure 10 summarizes the
rate of the neural network performance on different images.

Fig. 9. Images after Face Alignment

C. Encoding Calculation Speed

When implemented, the neural network demonstrated a remarkable speed regardless of the slow construction time. The average

time it took the network to assign an embedding to face was found to be 3.92 ms. FigureTable 10 summarizes the rate of the

neural network performance on different images.

Fig. 10. Embeddings Computation Rate

D. Face Recognition Accuracy

From a dataset of varied images, the accuracy of the system was examined. The dataset was labeled and the relationship between

the pictures was already predefined and the accuracy was examined. The test involved solving the Eeuclidean distance between

two points. The distance was then and this was compared with a varying threshold value. The results were used to determine the

threshold value that the system utilize on its varied set of functionalities such as point comparisons and clustering.

Fig. 11. Average Face Recognition Accuracy

Fig. 10. Embeddings Computation Rate

D. Face Recognition Accuracy

The dataset was labeled and the relationship between
the pictures was already predefined and the accuracy was
examined. The test involved solving the Euclidean distance
between two points and this was compared with a varying
threshold value. The results were used to determine the
threshold value that the system utilize on its varied set of
functionalities such as point comparisons and clustering.

The previous sections demonstrated opposite patterns
when comparing identities with a different or same
individual. The challenge for the system was to find an ideal
threshold value that would precisely balance the decision
making in identity similarity. The suggested threshold value
was 0.6 [18] as shown in Figure 11.

42 Journal of Computational Innovations and Engineering Applications Vol. 6 No. 1 (2021)

Fig. 9. Images after Face Alignment

C. Encoding Calculation Speed

When implemented, the neural network demonstrated a remarkable speed regardless of the slow construction time. The average

time it took the network to assign an embedding to face was found to be 3.92 ms. FigureTable 10 summarizes the rate of the

neural network performance on different images.

Fig. 10. Embeddings Computation Rate

D. Face Recognition Accuracy

From a dataset of varied images, the accuracy of the system was examined. The dataset was labeled and the relationship between

the pictures was already predefined and the accuracy was examined. The test involved solving the Eeuclidean distance between

two points. The distance was then and this was compared with a varying threshold value. The results were used to determine the

threshold value that the system utilize on its varied set of functionalities such as point comparisons and clustering.

Fig. 11. Average Face Recognition Accuracy

Fig. 11. Average Face Recognition Accuracy

Based on this findings, the researchers decided to settle
with the recommended value of 0.6 with an average accuracy
of 87.03%. This number will be used in distance and centroid
comparisons and also in clustering computations.

However, the OpenFace implementation promised
accuracy of 92.10% [18]. The underperformance can be
attributed to the quality of the camera that was used for
data gathering and variance in lighting was a great factor.

E. Camera Frame Rate

The frame rate of the camera must coincide with the
average process time that the system will take on a single
face. The average queue time for the system is equal to 13.7
ms. Using the formula of the frame rate, each camera can be
set to approximately 24 frames per second. But to increase
the stability of the system, the researchers decided to settle
with a 10 fps frame rate.

VII. Conclusion
The researchers successfully developed a fully-

functioning facial recognition system with data logging
capabilities using well-established algorithms. The system
employs a deep learning based facial recognition model.
Instead of learning the faces, the model was trained in such
a way that it minimizes distances for similar faces and
maximizes distance for different faces. This model converts
a face-picture to a feature vector that can be represented as
a point in a multidimensional space. Before conversion, a
HOG-based face detection and Affine transformation were
utilized to preprocess a photo. Standard Euclidean geometry
was used to determine relationship between points. Because
of this paradigm an identity of a person can be represented
as a cluster of closely related points. These clusters enables
DeepView to re-identify the people it encounters. The
proposed method yielded an 87.03% accuracy. This is
significantly lower than its expected accuracy of 92.10%.
DeepView has performed based on the resulted accuracy
and can be deployed in real world scenario.

Acknowledgments
The authors would like to acknowledge the financial

support of the Philippine Council for Industry, Energy
and Emerging Technology Research and Development
(PCIEERD) of the Department of Science and Technology
(DOST) and Mindanao State University – General Santos
City (MSU-GSC) for the establishment of our research
laboratory.

References
[1] K. Sato, S. Shah, and J. K. Aggarwal, “Partial face recognition

using radial basis function networks,” 1998.
[2] K. Assaleh, T. Shanableh, and K. Abuqaaud, “Face recognition

using different surveillance cameras,” IEEE, 2013.
[3] V. Sathish. (2008) Dubai airport to get face recognition

units. [Online]. Available: https://www.emirates247.com/
eb247/news/national/dubaiairport-to-get-face-recognition-
units-2008-10-28-1.57945

[4] T. Ong. (2017) Dubai airport is going to use facescanning
virtual aquariums as security checkpoints. [Online].
Available: https://www.theverge.com/2017/10/10/16451842/
dubaiairport-face-recognition-virtual-aquarium

[5] (2015) Face recognition. [Online]. Available: https://esrc.
ukri.org/aboutus/50-years-of-esrc/50-achievements/face-
recognition/

[6] P. Bump. (2018) Facial recognition in law enforcement – 6
current applications. [Online]. Available: https://emerj.com/
ai-sectoroverviews/facial-recognition-in-law-enforcement/

[7] J. Carpenter. (2017) 5 benefits of biometric face recognition
technology. [Online]. Available: https://blog.crossmatch.
com/authentication/benefitsbiometric-face-recognition-
technology/

[8] Apple. (2018) About face id advanced technology. [Online].
Available: https://support.apple.com/en-us/HT208108

[9] T. Kanade, “Picture processing system by computer complex
and recognition of human faces,” 1974.

[10] D. Pissarenko, “Eigenface-based facial recognition,”
December 1st, 2002.

[11] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman,
“Eigenfaces vs. fisherfaces: Recognition using class specific
linear projection,” Yale University New Haven United States,
Tech. Rep., 1997.

[12] J. Meng, Y. Gao, X. Wang, T. Lin, and J. Zhang, “Face
recognition based on local binary patterns with threshold,”
in Granular Computing (GrC), 2010 IEEE International
Conference on. IEEE, 2010, pp. 352–356.

[13] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” vol. 1, 07 2005, pp. 886–893.

43 DeepView: A Wireless Dynamic Facial Recognition System with Data Logging Blaze R.Perater, et. al.

[14] X. Chai, S. Shan, and W. Gao, “Pose normalization for robust
face recognition based on statistical affine transformation,”
in Fourth International Conference on Information,
Communications and Signal Processing, 2003 and the Fourth
Pacific Rim Conference on Multimedia. Proceedings of the
2003 Joint, vol. 3. IEEE, 2003, pp. 1413–1417.

[15] M. Berger, M. Cole, and S. Levy, Geometry I, ser. Universitext.
Springer Berlin Heidelberg, 2009. [Online]. Available: https://
books.google.com.ph/books?id=5W6cnfQegYcC

[16] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 815– 823.

[17] H.-P. Kriegel and M. Pfeifle, “Density-based clustering of
uncertain data,” in Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data
mining. ACM, 2005, pp. 672–677.

[18] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “Openface:
A generalpurpose face recognition library with mobile
applications,” CMU-CS-16118, CMU School of Computer
Science, Tech. Rep., 2016.

