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 Abstract

Bridge structural health monitoring system (BSHMS) 
is an aid for systematized decision-making and 
planning for bridge infrastructure assessment and 
recondition. One of the critical efforts is to have 
some criteria to show the current health condition 
of the bridge based on the inspection results. The 
conventional way of classification is morphologically 
and linguistically rated which  shows impreciseness 
and uncertainties in evaluations. The paper proposed 
a new fuzzy system based on the hybrid (subjective and 
objective) inspection data results. The optimum value 
of parameters based on reconstructed data is selected 
as ambiguous inputs with membership functions 
using the concept of the statistical distributions 
and cognitive limitations. The fuzziness of health 
classification rating is calculated by the fuzzy 
arithmetic rules inherent in the fuzzy expert 
system. The proposed Health Classification System, 
based on hybrid data, yielded a 90 % accuracy in 
comparison with the conventional inspection method. 
Thus, the proposed study proved that it can be used for 
structural health monitoring.

Index Terms — Structural Health Monitoring 
(SHM), Bridge fuzzy logic, membership functions, the 
optimal parameter

I. Introduction

The Department of Public Works and Highways 
(DPWH) in the Philippines developed a manuscript 

called DPWH Atlas containing tables and graphs of recent 
statistics and conditions of roads and bridges nationwide. 
It provides data for Bridge Management System (BMS), 
which is a conventional tool for standardized decision 
making and planning/scheduling for bridge infrastructure 
inspection, maintenance, and repair or retrofit [1]the design 
of system development of Sihui BMS(SH-BMS.  

Combining the statistics of all regions in the country, 
32.67% are Excellent, 43.93% is good, 15.48% is fair, 
7.42% are low and 1.51% need further assessment. 

Visual methods are the fundamental approach 
to classify and evaluate the condition of a structural 
bridge.  Considering as subjective analysis, it has a great 
estimation that may have to be a significant influence 
on the health classification of bridges proven through 
the eventualities and developments  [4]. The main 
advantage of this method is it can be done in non destructive 
manner [5]. However, the trade-off is the uncertainties and 
vagueness of the data. Dissimilarity and disparity of reports 
between the authorized inspector can cause great adversity.

 To overcome this ambiguity, the objective approach is 
defined using appropriate nondestructive testing (NDT) 
methods. Despite the possibility that these methods 
are more accurate comparing to the subjective process, 
there are still drawbacks to them [6]. Clarification and 
interpretation of the NDT results need compliance in 
material and bridge elements. In essence, the uncertainty 
of the products and data might cause faulty preference 
and conclusion.

Table 1 illustrates a representative case of health 
classification data from Laguna 1st Bridges [7]. The 
extent between the minimum and maximum substantially 
shows the illogical approach of the rating.
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Table 1
Case Sample of Statistical Bridge Classification 

Information per District Engineering Office 
(Laguna 1st)

ID Name Average Standard 
Deviation Mode Rating

B02464LZ San Antonio 5.8 0.81 6 5

B02465LZ Pila 4.9 0.94 5 4

B02466LZ Labuin 5.2 0.92 6 4

B02467LZ Pagsawitan 4.8 0.94 5 5

B02468LZ Salasad 4.5 0.74 5 4

      
Given those sets of circumstances, the fuzzy set theory 

can be an inspiration to overcome the shortcomings and 
uncertainties ([8] - [10]. This paper proposed an expert 
structural health fuzzy classification of bridges that will 
classify them into excellent, good, fair, bad, and failed. 
It is achievable by the hybrid application of subjective 
and objective measurements.

II. Bridge structural Health Monitoring

A.Conventional parameters and their relations 

1. Spalling and Delamination

Visual inspection of the bridge utilized the spalling 
and delamination method [12]. The Field-cast of a 
structured bridge showed some evidence of deterioration 
through spalling and delamination. Spalling is a visual 
failure of a concrete structure showing fractures formed 
in running surfaces as a result of surface or sub-surface 
fatigue [13]. Delamination in correlation to spalling is also 
a visible or perceptible fracture seen in layers rather than 
cracks. It is a more defined break of the entire structure 
composition compared to spalling [14]. Although both 
are visual in prospect, modern days use nondestructive 
techniques to classify these failure properties by allowing 
a frequent and extensive inspection of the slabs without 
damaging structures [15].

2. Structure Temperature and Ultrasonic Velocity

Ambient parameters are significantly considered in 
classifying the health of a structure. Ultrasonic velocity 
also referred to as structure vibration, which is technically 
termed as seismic noise, represents continuous relative 
vibration on the surface of the Earth. The tiny figures 
of this vibration determine the modal properties of 
structures. Moreover, this can be used to evaluate the 

linear behavior of the degree of damage incurred in the 
structure. Transient and forced load conditions contribute 
to vibration characteristics [12].

Structure temperature is also a modal parameter. 
Several papers proved that both vibration and temperature 
rea crucial in classifying the condition of a structure [13-
16]. Distinctively speaking, these two parameters drew an 
analogy in between. 

In civil infrastructures, the temperature usually affects 
bridge decks in gradient. Temperature loading affects 
bridges causing expansion and contraction throughout 
the deck [17]. In worst cases, the temperature gradient 
over the surface causes depth to distort. It adds strain to 
the structure. This strain variation changes the vibration 
pattern of the structure. As a basis for understanding the 
relationship of thermal stress and temperature gradient, 
here is a mathematical representation: 

                          σ = EαΔT                         	 (1)

The thermal stress (σ) is the product of modulus 
of elasticity (E), coefficient of thermal expansion (α), 
and temperature gradient (ΔT) or temperature change. 
Considerably, the thermal strain is directly proportional 
to the temperature gradient. The thermal strain (f) is 
the product of the coefficient of thermal expansion (α), 
temperature gradient (ΔT), and span of the beam (L) or 
material being tested as shown in the equation below. 
Both thermal stress and strain have a linear effect with 
temperature gradient considering any material being used.

                     
   		   f = αΔTL                          		 (2)

Young’s modulus, otherwise known as elastic 
modulus, is a mechanical property of solid materials that 
are linear elastic, such as steel. It is technically defined 
as the ratio of stress, force per unit area, and strain, the 
ratio of deformation per initial length, along an axis. It is 
a measure of how stiff the solid material is. 

Thus, there is an infinite Young’s modulus in a 
perfectly rigid material because it requires endless force to 
deform it. With increasing temperature, Young’s modulus 
of concrete decreases, giving the material vulnerability 
to damage [18]. In conclusion, an increase in structural 
temperature results in the reduction of ultrasonic velocity. 
The change of modulus of the material is the cause of 
varying natural frequency [19]. Thus, they suggested that 
structural bridge and ultrasonic velocity measurement is 
necessary and must be well understood to provide correct 
subjective structural condition identification [20].



3Structural Health Fuzzy Classification of Laguna Bridge 		    Jonnel D. Alejandrino, et. al.

B. Fuzzy Inference System

Fuzzy logic is an easy-to-use method for practical 
inference problems in engineering because it relates 
significance and precision very well [21]. To outline the 
mathematical background of the proposed method in this 
paper, the following general definitions and theory of fuzzy 
sets are used: Let X be the universe of discourse, and its 
elements are denoted as x. In the fuzzy theory, fuzzy set 
A of universe X is defined by function mAðxÞ called the 
membership function of set [22].

mAðxÞ : X 2 ½0; 1] where lA ðxÞ ¼ 1 if  x is totally in A;
lA ðxÞ ¼ 0 if  x is not in A;
0 < lA ðxÞ < 1 if  x is partly in A:

This mathematical representation of sets allows a 
sequence of possible sets. For any element x of universal 
X, membership function mA x equals the degree to which x 
is an element of set A. From that derived degree, represents 
the degree of membership and also called membership value, 
of element x in set A. 

It has a strict value between 0 and 1. Any universal set 
of discourse consists of some sets describing some attributes 
to the output. 

The gist and essence of the utilized fuzzy set theory 
depicted and defined from the mathematical representation 
stated above are dealing with the linguistic or subjective 
parameters acquired from the data results of roads and 
bridges conventional inspections of in the Philippines. To 
make the case in point, the statement “a is b” implies that 
the linguistic parameter takes the linguistic value of b and 
it is utilized as the fuzzy rules. 

The range of possible values of linguistic parameters 
represents the universal set of that parameter. In the 
process, the emergence of the fuzzy rule can be defined as 
a conditional statement in the form:

“IF ðx is aÞ THEN ðy is bÞ where x and y are linguistic 
variables; and a and b are linguistic values determined by 
fuzzy sets on the universal set of X and Y, respectively.”

The essential characteristic of fuzzy systems is that fuzzy 
rules relate fuzzy sets to each other. Fuzzy sets provide the 
basis for the output estimation model. The model is based 
on relationships among some fuzzy input parameters [22].

In this paper, fuzzy logic-based inference systems are 
utilized to decode and translate the subjective linguistic 
level of bridge data from the National Roads and Bridges 
Inventory 2019 [11]. 

To enhance the capabilities of the health classification 
system, objective inspection data results are correlated. 
These data results are derived out of advanced nondestructive 
testing performed by DPWH Bridge Health Assessment 
Team.  

III. Methodology
      This paper used the Mamdani method for describing 

the bridge health classification in a more intuitive, more 
humanlike manner by establishing necessary hybrid 
conditions of subjective and objective inspections. The 
Mamdani-style fuzzy inference process is performed in four 
steps shown in Fig. 1 [24].
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While objective data results were derived out of 

advanced nondestructive testing (NDT) from DPWH Bridge 
Health Assessment Team, Raw Data, and Corrosion Rate of 
Nondestructive inspection is shown in Table 4.  

TABLE 4 – RAW DATA AND CORROSION RATE OF NDT INSPECTION 
RESULTS 

USPV COV>MET ½ CELL HVT 
Corrosion 

Rate 
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-0.0084 -0.00977 0.882935 27.50846 3 
-0.00822 -0.01003 0.882883 27.50846 2 
-0.00857 -0.00983 0.882827 27.50846 3 
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It was believed that hybrid encoding of observed 

symptoms into bridge health classification rating through 
inaccurate subjective data with an objective evaluation of the 
NDT results was an excellent tool to guess the condition rating 
practically. Figure 2 shows the segmentation of the data inputs 
into subjective and objective. 
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Table 3
Case Sample of Subjective Inspection Data 

of Bridges in Quezon 1st District 
(Velocity and Corrosion Rating)

ID Name Velocity Corrosion Rating
B01193LZ Pakil 4.8 4.4
B01580LZ Lumban 4.0 4.1
B01589LZ Abuyon 4.6 4.7
B01774LZ Pacabit 4.2 4.3
B01775LZ Tagbacan 5.3 5.4

While objective data results were derived out of 
advanced nondestructive testing (NDT) from DPWH Bridge 
Health Assessment Team, Raw Data, and Corrosion Rate of 
Nondestructive inspection is shown in Table 4. 

Table 4
Raw Data and Corrosion Rate of NDT inspection 

results

USPV COV>MET ½ CELL HVT Corrosion
Rate

-0.00838 -0.01027 0.883178 27.50846 3
-0.0084 -0.00977 0.882935 27.50846 3
-0.00822 -0.01003 0.882883 27.50846 2
-0.00857 -0.00983 0.882827 27.50846 3
-0.00852 -0.00966 0.882872 27.50846 2
0.014481 -0.01194 0.87572 27.39735 0

It was believed that hybrid encoding of observed 
symptoms into bridge health classification rating through 
inaccurate subjective data with an objective evaluation of 
the NDT results was an excellent tool to guess the condition 
rating practically. Figure 2 shows the segmentation of the 
data inputs into subjective and objective.
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In this paper, 162 different rules were used in the 
knowledge-based from the subjective and objective approach 
of inspections. 
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classification system. These figures exhibit that the rules 
show proximate real situations in practical issues of bridge 
subjective and objective inspections. Experts in this field can 
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defined by Eq. 4, wherein X is the activation function. The 
centroid method is otherwise known as the center of the area 
or center of gravity method.

                 
                x ∗ =  x.µC(x)dx / (µC(x)dx)                    (4)

IV. Results and Discussions
The advancement and privileges of the fuzzy expert 

system can be thought-out as an innovative approach for 
Bridge Structural Health Monitoring System (BSHMS). 
Figures 10 to 14 illustrate some of the relationships 
formed from the different parameters and fuzzy structural 
health classification system. These figures exhibit that the 
rules show proximate real situations in practical issues of 
bridge subjective and objective inspections. Experts in 
this field can verify these relationships in this fuzzy model 
by his apprehension and experience. Significant points 
depict a great nonlinear relationship between parameters. 
Smoothness in the surfaces also indicates the noise tolerance 
of the system. It also shows contempt on the uncertainty, 
faulty, and unprecise input data. Lastly, just like what is 
mentioned in the above concept, the classification output 
can be considered valuable for decision-makers.
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health of a typical bridge close to the real condition and without 
a major difference from a functional point of view. 

The proposed method carefully considers several facts or 
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the outputs. This means that it might have some 
unsatisfactory results yet in proximity to the real condition. 

Lastly, the proposed system is in close functions to the 
real and practical readings, considering the proposed method 
is an expert system and is not constructed by data. It means 
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method is also anticipatable to improve the proposed fuzzy 
system into a more objective technique. 
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