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Abstract—This paper presents the development 
of a multi-class vehicle and pedestrian detection and 
classification using convolutional neural network 
(CNN) for the analysis of traffic flow and congestion. 
The study focused on analyzing the traffic flow and 
volume at different time intervals in a microscopic scale 
traffic network by decomposing it into eight separate 
classes of vehicles and pedestrians. Traffic videos in low 
altitude view T-type intersection (with pedestrian lane 
and yellow box area), medium altitude view bus stop 
area, and high altitude view wide intersection are used 
in the analysis of different traffic flow and congestion 
scenarios. The CNN model used have a 78.41% training 
accuracy with 0.6570 loss, and 73.83% validation 
accuracy with 0.7083 loss for the eight output multi-
object classification. The results also showed how each 
component (class) contributes to the overall road traffic.  
Private cars constitute about 55-70% of the total traffic 
volume at any given time, while public utility vehicles 
(PUVs, jeepneys, buses) only takes approximately 
15%. The showed that the implementation of CNN for 
classification is effective.
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I. Introduction

Traffic flow can be analyzed in a macroscopic and 
microscopic scale. In macroscopic scale, traffic flow 

can be viewed as a compressible and continuous fluid 
movement with static behavior as it flows through the 

medium [1] [2] [3]. In microscopic scale, road traffic 
elementary particles can be observed in analyzing traffic 
flow and congestion. It takes into consideration individual 
behavior and interactions of traffic participants, vehicles 
and pedestrians, in traffic networks [4] [5]. These behaviors 
and interactions can be analyzed using computer vision 
[6] [7] [8] [9], and machine learning techniques [10]. 
The rich information from traffic videos can be used to 
observe vehicle flow [11], speed, and density. It can also 
provide information on pedestrian movements, and how 
it affects the over-all traffic situation. This study focused 
on vehicle and pedestrian composition in different traffic 
scenarios to analyze traffic flow and congestion. Traffic 
video data sets for low altitude view T-type intersection 
(with pedestrian lane, and yellow box area), medium 
altitude view bus stop area, and high altitude view wide 
intersection are used for analysis. Using a Haar cascade 
classifier, vehicles and pedestrians can be detected in 
traffic videos. The convolutional neural network (CNN) 
is used to further classify these vehicles and pedestrians 
into different sub-classes. Usingia this method, vehicle and 
pedestrian composition in traffic flow and congestion can 
be observed and analyzed.

II. Haar Cascade Classifier
A Haar feature sets up a detection window where it 

calculates the sum of pixel intensities in each group of 
neighboring pixel regions. A category is assigned to the 
difference between those sums to label the sub-sections 
of an image [12]. The cascade classifier uses a detection 
window and slides it over the image to detect features. Each 
stage in the cascade contains the list of weak learners. The 
integral image concept of Viola and Jones [13] are used in 
Haar features computation [14] [15] [16], see eq.1. 
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Where i(x,y) represents the cumulative sum of the original 
image. 

III. Convolutional Neural Network
CNN is a multi-layer neural network architecture that 

takes advantage of spatial relationships found in images 
and videos. Information propagates through network of 
layers are digitally filtered, at each layer, to obtain relevant 
features. This technique allows a neuron to access basic 
features, such as corners and edges, and have invariance to 
scale, shift, and rotation [17] [18] [19] [20]. The three key 
layers of a CNN are the convolutional layer (CONV), the 
pooling layer (POOL), and the fully-connected layer (FC). 
The CONV layer is connected spatially (width and height) 
to a small portion of the input layer, but to full depth, and 
computes for each dot products, see Fig. 1. 
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Fig. 1. An example of CNN convolutional layer [21] 
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overfitting. The POOL layer receives an input of size 
W1×H1×D1 and produces an output of W2×H2×D2 by using 
spatial extent (F), and stride (S) parameters, see eq. 4-6. 
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H2=(H1-F)/S+1 (5) 
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Each neuron in the FC layer is connected to all the 
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is done in this layer [21]. 

IV. METHODOLOGY 
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TABLE 1. TRAFFIC VIDEO DATA SETS: CAMERA POSITIONING (ALTITUDE), 
PURPOSE (CALIBRATION/TESTING), AND DESCRIPTION 

Dataset Altitude Purpose Description 
DS0-LS1 Low Calibration Pedestrian lane 
DS0-LS2 Low Calibration T-intersection 

DS0-LS3 Low Calibration T-intersection 
DS0-TA1 Low Calibration Normal road 
DS0-TA2 Low Calibration Yellow box area 
DS0-TA3 Low Calibration Normal road 

DS3-1 High Calibration Wide intersection 
DS4-1 Medium Calibration Bus stop area (day-time) 
DS4-3 Medium Calibration Bus stop area (night-time) 

TABLE 2. TRAFFIC VIDEO DATA SETS: DURATION, RESOLUTION, AND FPS 

Dataset Video Duration Resolution FPS 
DS0-LS1 CA1_R_LS1 00:12:06 2560x1440 25 
DS0-LS2 CA1_R_LS2 00:12:05 2048x1536 25 
DS0-LS3 CA1_R_LS3 00:12:02 2304x1296 25 
DS0-TA1 CA1_R_TA1 00:12:02 1920x1080 25 
DS0-TA2 CA1_R_TA2 00:12:06 1280x720 25 
DS0-TA3 CA1_R_TA3 00:12:06 2560x1440 25 

DS3-1 MMDA_A_NO1 03:59:49 800x452 25 
DS4-1 MMDA_A_SH1 06:00:00 1280x720 12 
DS4-3 MMDA_A_SH3 06:00:00 1280x720 12 

 

 
Fig. 2. Camera setup [22] 

4.2. Haar Cascade Parameters 
In this study, values for Haar cascade parameters for 

vehicle and people detection were chosen for optimal 
detection, as shown in Table 3 and 4 respectively. The scale 
factor determines the reduction of image size at specific image 
scale, i.e., value of 1.1 reduces image size by 10%. Minimum 
neighbors determine the number of neighbors for each 
candidate to retain the detection. The minimum and maximum 
size detection window determine the possible object size that 
can be detected. Objects smaller or larger than these 
parameters are ignored, respectively. 
TABLE 3. HAAR CASCADE CLASSIFIER FOR VEHICLE DETECTION (DS0, DS3-1, 

DS4-1, AND DS4-3) 

Dataset scaleFactor minNeighbors minSize maxSize 
DS0-LS1 1.1 1 150 250 
DS0-LS2 1.1 1 150 250 
DS0-LS3 1.1 1 100 250 
DS0-TA1 1.1 1 100 250 
DS0-TA2 1.1 1 50 200 
DS0-TA3 1.1 1 150 250 

DS3-1 1.1 1 30 60 
DS4-1 1.1 1 50 100 

Fig. 1. An example of CNN convolutional layer [21]

The POOL layer is usually inserted between consecutive 
CONV layers and perform spatial down-sampling to 
reduce the number of representations. It is also used to 
avoid overfitting. The POOL layer receives an input of size 
W1×H1×D1 and produces an output of W2×H2×D2 by using 
spatial extent (F), and stride (S) parameters, see eq. 4-6.

W2=(W1-F)/S+1				    (4)
H2=(H1-F)/S+1				    (5)
D2=D1		  			   (6)

Each neuron in the FC layer is connected to all the 
neurons in the previous layer. The computation of class 
scores is done in this layer [21].

IV. Methodology

A. Traffic Video Data Sets

Traffic video data sets for low altitude view T-type 
intersection (with pedestrian lane, and yellow box area), 
medium altitude view bus stop area, and high altitude view 
wide intersection are used in this study, see Table 1. The 
altitude (H) of camera views are categorized into low (3m 
to 5m), medium (5m to 10m), and high (10m and above) 
altitudes. Fig. 2 shows the typical road camera setup. Table 
2 lists the details regarding the traffic video data sets such as 
duration, resolution, and frames per second (FPS).

TABLE 1 
Traffic Video Data Sets: Camera Positioning 

(Altitude), Purpose (Calibration/Testing), and 
Description

Dataset Altitude Purpose Description

DS0-LS1 Low Calibration Pedestrian lane

DS0-LS2 Low Calibration T-intersection

DS0-LS3 Low Calibration T-intersection

DS0-TA1 Low Calibration Normal road

DS0-TA2 Low Calibration Yellow box area

DS0-TA3 Low Calibration Normal road

DS3-1 High Calibration Wide intersection

DS4-1 Medium Calibration Bus stop area (day-time)

DS4-3 Medium Calibration Bus stop area (night-time)

TABLE 2
Traffic Video Data Sets: Duration, Resolution, 

and FPS

Dataset Video Duration Resolution FPS

DS0-LS1 CA1_R_LS1 00:12:06 2560x1440 25

DS0-LS2 CA1_R_LS2 00:12:05 2048x1536 25

DS0-LS3 CA1_R_LS3 00:12:02 2304x1296 25

DS0-TA1 CA1_R_TA1 00:12:02 1920x1080 25

DS0-TA2 CA1_R_TA2 00:12:06 1280x720 25

DS0-TA3 CA1_R_TA3 00:12:06 2560x1440 25

DS3-1 MMDA_A_NO1 03:59:49 800x452 25

DS4-1 MMDA_A_SH1 06:00:00 1280x720 12

DS4-3 MMDA_A_SH3 06:00:00 1280x720 12
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B. Haar Cascade Parameters

In this study, values for Haar cascade parameters for 
vehicle and people detection were chosen for optimal 
detection, as shown in Table 3 and 4 respectively. The scale 
factor determines the reduction of image size at specific 
image scale, i.e., value of 1.1 reduces image size by 10%. 
Minimum neighbors determine the number of neighbors for 
each candidate to retain the detection. The minimum and 
maximum size detection window determine the possible 
object size that can be detected. Objects smaller or larger 
than these parameters are ignored, respectively.

TABLE 3
Haar Cascade Classifier for Vehicle Detection 

(DS0, DS3-1, DS4-1, and DS4-3)

Dataset scaleFactor minNeighbors minSize maxSize

DS0-LS1 1.1 1 150 250

DS0-LS2 1.1 1 150 250

DS0-LS3 1.1 1 100 250

DS0-TA1 1.1 1 100 250

DS0-TA2 1.1 1 50 200

DS0-TA3 1.1 1 150 250

DS3-1 1.1 1 30 60

DS4-1 1.1 1 50 100

DS4-3 1.1 1 50 200

TABLE 4
Haar Cascade Classifier for People Detection 

(DS0, DS3-1, DS4-1, and DS4-3)

Dataset scaleFactor minNeigbors minSize maxSize

DS0-LS1 1.1 2 50 150

DS0-LS2 1.1 2 50 150

DS0-LS3 1.1 2 50 200

DS0-TA1 1.1 1 50 100

DS0-TA2 1.1 1 50 150

DS0-TA3 1.1 1 50 150

DS3-1 1.1 1 10 20

DS4-1 1.1 1 10 30

DS4-3 1.1 1 50 150

Haar cascade classifier (vehicle and people) detection 
accuracy used in this study can be computed using the eq. 
7 [23]:
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accuracy used in this study can be computed using the eq. 7 
[23]: 
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Where TP = true positive, TN = true negative, and N = total 

number of detected objects. 

4.3. CNN Model, Training, and Validation 
The CNN architecture model used in this study is a Keras 

sequential model [24]. It uses four layers of 2D convolutional 
layer which creates a convolutional kernel that is convolved 
with the input layer to produce a tensor of outputs. The first 
three CONV layers have 32 filters, and 3x3 kernel size. The 
last CONV layer has 64 filters, and 3x3 kernel size. Each of 
these layers used a rectified linear unit (relu) activation, and 2D 
max pooling layer with 2x2 pool size. The pool size down 
scale it by a factor of 2 in the vertical and horizontal spatial 
dimension. After the 2D CONV layers, the core layer used a 
dropout of 0.5, sigmoid activation function, and a densely 
connected neural network layer of eight (8) output classes. The 
CNN architecture used a categorical cross entropy loss 
function, RMSprop optimizer, and accuracy for metrics. 

Image data set derived from Haar cascade classifier are 
used for training, validation, and testing. The CNN have eight 
(8) output classes which are: private cars, motorcycles, PUVs, 
jeepneys, buses, trucks, people, and indistinguishable images. 
Each class have 1000 training, and 200 validation, except for 
class 4 (jeepneys). This class (jeepneys) have 370 training, and 
100 validation images. A total of 7370 training, and 1500 
validation images are used to train and validate the CNN 

model. After training and validation, h5 files for the model and 
weights were generated. 

5. EXPERIMENT AND RESULTS 

5.1. Generating Vehicle Classification Image Data Set 
using Haar Cascades 
A pre-trained Haar cascade classifier for vehicle detection 

was used to generate an image training data set for localized 
vehicle classification. After Haar cascade detection, the 
detected objects were sorted manually into different classes, as 
show in Table 5 and 6. Fig. 3 and 4 show the sample generated 
vehicle images for DS0, DS3-1, DS4-1, and DS4-3. The valid 
classes of vehicles were private cars, motorcycles, public utility 
vehicles (PUVs), jeepneys, buses, and trucks. Bicycles and 
tricycles were included in the motorcycle class. Taxis and 
public utility vans were included in the PUV class. Coaster bus 
and school bus are considered in the bus class. Lastly, trailer 
trucks, service trucks, delivery trucks, and armored trucks were 
considered in the truck class. Detected objects other than 
vehicles were considered invalid classes of vehicles. This may 
include people and indistinguishable objects. As shown in Fig. 
5, images with high occlusion, non-vehicle, non-people, and 
multiple objects were categorized into the indistinguishable 
class. Valid vehicle classes are considered true positives, while 
invalid classes are false positives. True negatives were set to 
zero in the performance computation. The performance of 
vehicle detection using Haar cascade classifier for DS0, DS3-1, 
DS4-1, and DS4-3 are shown in Table 7. Vehicle detection 
accuracy are low for DS0 and DS4-1, while DS3-1 and DS4-3 
have an acceptable detection accuracy. 

TABLE 5. GENERATED VEHICLE CLASSIFICATION IMAGE DATA SET (DS0) 

Object Class DS0-
LS1 

DS0-
LS2 

DS0-
LS3 

DS0-
TA1 

DS0-
TA2 

DS0-
TA3 

Private cars 38 626 120 51 20 34 
Motorcycles 1 129 3 16 5 9 
Public utility 

vehicles 20 85 18 21 9 54 

Jeepneys 2 1 8 6 0 25 
Buses 1 8 2 0 0 0 
Trucks 0 2 0 0 0 0 
People 1 0 0 0 0 0 

Indistinguishable 59 421 128 22 13 16 
Total No. of 

Detected Objects 122 1272 279 116 47 138 

TABLE 6. GENERATED VEHICLE CLASSIFICATION IMAGE DATA SET (DS3-1, 
DS4-1, AND DS4-3) 

Object Class DS3-1 DS4-1 DS4-3 

Private cars 12160 1156 111 

Motorcycles 1676 3 0 

Public utility vehicles 1903 81 9 

Jeepneys 432 0 0 

Buses 92 4217 1200 

Trucks 1801 36 4 

			  (7)

Where TP = true positive, TN = true negative, and N = total 
number of detected objects.

C. CNN Model, Training, and Validation

The CNN architecture model used in this study is a Keras 
sequential model [24]. It uses four layers of 2D convolutional 
layer which creates a convolutional kernel that is convolved 
with the input layer to produce a tensor of outputs. The first 
three CONV layers have 32 filters, and 3x3 kernel size. The 
last CONV layer has 64 filters, and 3x3 kernel size. Each of 
these layers used a rectified linear unit (relu) activation, and 
2D max pooling layer with 2x2 pool size. The pool size down 
scale it by a factor of 2 in the vertical and horizontal spatial 
dimension. After the 2D CONV layers, the core layer used 
a dropout of 0.5, sigmoid activation function, and a densely 
connected neural network layer of eight (8) output classes. 
The CNN architecture used a categorical cross entropy loss 
function, RMSprop optimizer, and accuracy for metrics.

Image data set derived from Haar cascade classifier are 
used for training, validation, and testing. The CNN have 
eight (8) output classes which are: private cars, motorcycles, 
PUVs, jeepneys, buses, trucks, people, and indistinguishable 
images. Each class have 1000 training, and 200 validation, 
except for class 4 (jeepneys). This class (jeepneys) have 370 
training, and 100 validation images. A total of 7370 training, 
and 1500 validation images are used to train and validate 
the CNN model. After training and validation, h5 files for 
the model and weights were generated.
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V. Experiment And Results

A. Generating Vehicle Classification Image Data Set 
using Haar Cascades

A pre-trained Haar cascade classifier for vehicle 
detection was used to generate an image training data set 
for localized vehicle classification. After Haar cascade 
detection, the detected objects were sorted manually into 
different classes, as show in Table 5 and 6. Fig. 3 and 4 
show the sample generated vehicle images for DS0, DS3-1, 
DS4-1, and DS4-3. The valid classes of vehicles were private 
cars, motorcycles, public utility vehicles (PUVs), jeepneys, 
buses, and trucks. Bicycles and tricycles were included in 
the motorcycle class. Taxis and public utility vans were 
included in the PUV class. Coaster bus and school bus are 
considered in the bus class. Lastly, trailer trucks, service 
trucks, delivery trucks, and armored trucks were considered 
in the truck class. Detected objects other than vehicles were 
considered invalid classes of vehicles. This may include 
people and indistinguishable objects. As shown in Fig. 5, 
images with high occlusion, non-vehicle, non-people, and 
multiple objects were categorized into the indistinguishable 
class. Valid vehicle classes are considered true positives, 
while invalid classes are false positives. True negatives were 
set to zero in the performance computation. The performance 
of vehicle detection using Haar cascade classifier for DS0, 
DS3-1, DS4-1, and DS4-3 are shown in Table 7. Vehicle 
detection accuracy are low for DS0 and DS4-1, while DS3-1 
and DS4-3 have an acceptable detection accuracy.

TABLE 5 
Generated Vehicle Classification Image Data Set 

(DS0)

Object Class DS0-
LS1

DS0-
LS2

DS0-
LS3

DS0-
TA1

DS0-
TA2

DS0-
TA3

Private cars 38 626 120 51 20 34

Motorcycles 1 129 3 16 5 9

Public utility 
vehicles 20 85 18 21 9 54

Jeepneys 2 1 8 6 0 25

Buses 1 8 2 0 0 0

Trucks 0 2 0 0 0 0

People 1 0 0 0 0 0

Indistinguishable 59 421 128 22 13 16

Total No. of 
Detected Objects 122 1272 279 116 47 138

TABLE 6
Generated Vehicle Classification Image Data Set 

(DS3-1, DS4-1, and DS4-3)

Object Class DS3-1 DS4-1 DS4-3

Private cars 12160 1156 111

Motorcycles 1676 3 0

Public utility vehicles 1903 81 9

Jeepneys 432 0 0

Buses 92 4217 1200

Trucks 1801 36 4

People 89 22 0

Indistinguishable 4473 4686 301

Total No. of Detected Objects 22626 10201 1625

TABLE 7
Performance of Vehicle Detection using Haar 

Cascade Classifier

Performance Metrics DS0 DS3-1 DS4-1 DS4-3

True Positive (TP) 1314 18064 5493 1324

False Positive (FP) 660 4562 4708 301

Total No. of Detected 
Objects (N) 1974 22626 10201 1625

Accuracy (%) 66.57 79.84 53.85 81.48
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5.2. Generating People Image Data Set using Haar 
Cascades 
A pre-trained Haar cascade classifier for people detection 

was used to generate an image training data set for localized 
people classification. After Haar cascade detection, the 

detected objects were sorted manually into different classes, as 
show in Tables 8 and 9. The sample generated people images 
for DS0, DS3-1, DS4-1, and DS4-3 is shown in Fig. 6. The 
valid classes of people are people riding 
motorcycles/bicycles/tricycles and pedestrians. Detected 
objects other than people were considered invalid classes of 
people, such as vehicles and indistinguishable objects. True 
negatives were also set to zero in the performance computation. 
The performance of people detection using Haar cascade 
classifier for DS0, DS3-1, DS4-1, and DS4-3 are presented in 
Table 10. People detection accuracy were low for all data sets 
because of high number of indistinguishable objects detected 
by the classifier. 
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Object Class DS0-
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TA1 

DS0-
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TA3 

Motorcycles 1 206 1 5 5 34 
People 16 151 6 10 66 248 
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Total No. of 
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C. Multi-Class Object Classification using Convolutional 
Neural Network 

The CNN model earlier have 78.41% training accuracy 
with 0.6570 loss, and 73.83% validation accuracy 
with 0.7083 loss for the eight output multi-class object 
classification. The training and validation simulation time 
is 56 minutes and 36 seconds with 13 epochs, see Table 11.

TABLE 11
CNN Training and Validation Results

Epoch
Training Validation

Accuracy Loss Accuracy Loss

0 0.00% 0.0000 0.00% 0.0000

1 35.35% 1.5897 62.35% 1.1172

2 55.68% 1.1700 67.91% 0.9225

3 65.56% 0.9688 68.22% 0.8080

4 68.29% 0.8676 68.22% 0.8288

5 71.97% 0.7996 73.52% 0.7467

6 72.42% 0.7643 73.83% 0.6983

7 75.06% 0.7147 71.03% 0.7258

8 76.24% 0.6934 73.60% 0.7915

9 76.24% 0.6993 72.27% 0.8377

10 78.24% 0.6707 75.00% 0.7503

11 77.95% 0.6642 71.88% 0.7835

12 78.33% 0.6589 70.56% 0.7719

13 78.41% 0.6570 73.83% 0.7083

D. Multi-Class Vehicle Traffic Flow Composition Analysis

The vehicle traffic composition analysis used the 
generated DS3-1 data, see Table 12. This data set was 
chosen because it had the highest total number of detected 
objects (N=22626) with 79.84% accuracy and have enough 
data points (4-hr video length). Only true positive objects 
(TP=18064) was considered for analysis. Traffic congestion 
build-up is usually attributed to high volume of vehicles in a 
road network that exceeds its road capacity. Other road traffic 
parameters, such as vehicle speed and traffic signalization 
can also affect traffic congestion. In this study, the effects 
of vehicle composition in traffic congestion build-up was 
analyzed. Table 13 shows vehicle composition in percentage 
while Fig. 7 shows the visual representation of the traffic 
composition in 10-min time frame. This data shows how 
each component (class) contributes to the over-all road 
traffic. Private cars constitute about 55%-70% of the total 
traffic volume at any given time, while public utility vehicles 
(PUVs, jeepneys, buses) only takes approximately 15%. 
Motorcycles usually have 6% up to 20% (peak), and trucks 
have 2% up to 25% (peak).

TABLE 12
Multi-Class Vehicle Traffic Composition Data 

in 10-Min Time Frame

Time 
frame 

(10-min)

Total 
TP 

objects

Private 
Car

Motor
cycle PUV Jeep Bus Truck

1 748 487 47 70 29 4 111

2 571 360 73 77 9 0 52

3 691 479 72 76 8 3 53

4 746 515 58 80 35 2 56

5 607 333 42 57 21 1 153

6 576 343 45 121 14 4 49

7 758 558 56 96 13 6 29

8 572 388 51 59 8 7 59

9 658 398 106 103 9 0 42

10 778 519 154 72 12 2 19

11 666 434 100 67 13 21 31

12 529 371 74 43 4 3 34

13 572 351 94 68 6 1 52

14 700 463 68 59 42 2 66

15 557 376 73 52 8 2 46

16 671 462 70 56 9 0 74

17 862 575 63 93 57 10 64

18 835 602 65 92 35 2 39

19 935 659 57 84 5 2 128

20 881 632 54 89 8 0 98

21 928 611 99 85 13 1 119

22 997 666 63 100 43 0 125

23 1079 738 50 102 7 18 164

24 1147 840 42 102 24 1 138

 TOTAL 18064 12160 1676 1903 432 92 1801
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TABLE 13
Percentage of Vehicle Class Composition 

in 10-Min Time Frame

Time 
frame 

(10-min)

Private 
Car

Motor
cycle PUV Jeep Bus Truck

1 65.11% 6.28% 9.36% 3.88% 0.53% 14.84%

2 63.05% 12.78% 13.49% 1.58% 0.00% 9.11%

3 69.32% 10.42% 11.00% 1.16% 0.43% 7.67%

4 69.03% 7.77% 10.72% 4.69% 0.27% 7.51%

5 54.86% 6.92% 9.39% 3.46% 0.16% 25.21%

6 59.55% 7.81% 21.01% 2.43% 0.69% 8.51%

7 73.61% 7.39% 12.66% 1.72% 0.79% 3.83%

8 67.83% 8.92% 10.31% 1.40% 1.22% 10.31%

9 60.49% 16.11% 15.65% 1.37% 0.00% 6.38%

10 66.71% 19.79% 9.25% 1.54% 0.26% 2.44%

11 65.17% 15.02% 10.06% 1.95% 3.15% 4.65%

12 70.13% 13.99% 8.13% 0.76% 0.57% 6.43%

13 61.36% 16.43% 11.89% 1.05% 0.17% 9.09%

14 66.14% 9.71% 8.43% 6.00% 0.29% 9.43%

15 67.50% 13.11% 9.34% 1.44% 0.36% 8.26%

16 68.85% 10.43% 8.35% 1.34% 0.00% 11.03%

17 66.71% 7.31% 10.79% 6.61% 1.16% 7.42%

18 72.10% 7.78% 11.02% 4.19% 0.24% 4.67%

19 70.48% 6.10% 8.98% 0.53% 0.21% 13.69%

20 71.74% 6.13% 10.10% 0.91% 0.00% 11.12%

21 65.84% 10.67% 9.16% 1.40% 0.11% 12.82%

22 66.80% 6.32% 10.03% 4.31% 0.00% 12.54%

23 68.40% 4.63% 9.45% 0.65% 1.67% 15.20%

24 73.23% 3.66% 8.89% 2.09% 0.09% 12.03%

 

19 70.48% 6.10% 8.98% 0.53% 0.21% 13.69% 

20 71.74% 6.13% 10.10% 0.91% 0.00% 11.12% 

21 65.84% 10.67% 9.16% 1.40% 0.11% 12.82% 

22 66.80% 6.32% 10.03% 4.31% 0.00% 12.54% 

23 68.40% 4.63% 9.45% 0.65% 1.67% 15.20% 

24 73.23% 3.66% 8.89% 2.09% 0.09% 12.03% 
 

 
 
Fig. 7. Visual representation of multi-class vehicle traffic composition using 
DS3-1 data set 

6. CONCLUSION 
The study aims to demonstrate a traffic monitoring and 

analysis method by treating vehicular and pedestrian 
movements as elementary particles that can be observed and 
analyzed individually, rather than viewing traffic flow and 
volume with the same behavior for all traffic participants. 
Using a traffic video data sets with different traffic scenarios, 
vehicle and people were first detected using Haar cascade 
classifier. Vehicle detection accuracy for DS0 is 66.57%, DS3-
1 is 79.84%, DS4-1 is 53.85, and DS4-3 is 81.48%. The low 
accuracy for DS0 (T-type intersection, low altitude view), and 
DS4-1 (bus stop area, day time, medium altitude view) suggest 
the high concentration of activity with high number of 
occlusion and false positive detections for low-to-medium 
altitude camera views. DS3-1 (wide intersection, high altitude 
view) have good accuracy even with high concentration of 
activity because of small number of occlusion. DS4-3 (bus stop 
area, night time, medium altitude view) have good accuracy 
because of low concentration of activity during this time of 
day, and less number of occlusion and false positive detections. 
People detection accuracy for DS0 is 62.84%, DS3-1 is 
29.40%, DS4-1 is 55.24%, and DS4-3 is 60.92%. These results 
suggest that for low-to-medium altitude camera view (DS0, 
DS4-1, and DS4-3), there are still high numbers of false 
positive detections. The poor performance for DS3-1 suggest 
that in high altitude camera views the people detection 
algorithm cannot discriminate enough between small vehicular 
movements and people. After detection, CNN is used to 
classify these detected objects into one of eight output classes 
(private cars, motorcycles, PUVS, jeepneys, buses, trucks, 

people, and indistinguishable images). CNN classification 
accuracy is 78.41% during training, and 73.83% during 
validation. Traffic flow and congestion can be separated into 
elementary particles (or individual classes) and analyzed these 
classes individually. Vehicle traffic composition for DS3-1 
shows that at every 10-min window time frame, private cars 
constitute about 55% to 70% of the total traffic volume, while 
public utility vehicles (PUVs, jeepneys, buses) only takes 
approximately 15%. A continuous surge in volume of private 
cars caused a developing traffic congestion, as observed in the 
traffic volume the occlusion problem for low-to-medium 
altitude camera views should be addressed. High number of 
occlusions, as well as false positive detections, should be 
reduced in the detection stage. The classification algorithm 
should likewise be improved. Using the vehicle composition 
analysis presented in this study, a traffic congestion prediction 
or forecast algorithm can be developed as well. 
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volume with the same behavior for all traffic participants. 
Using a traffic video data sets with different traffic scenarios, 
vehicle and people were first detected using Haar cascade 
classifier. Vehicle detection accuracy for DS0 is 66.57%, 
DS3-1 is 79.84%, DS4-1 is 53.85, and DS4-3 is 81.48%. 
The low accuracy for DS0 (T-type intersection, low altitude 
view), and DS4-1 (bus stop area, day time, medium altitude 
view) suggest the high concentration of activity with high 
number of occlusion and false positive detections for low-
to-medium altitude camera views. DS3-1 (wide intersection, 
high altitude view) have good accuracy even with high 
concentration of activity because of small number of 
occlusion. DS4-3 (bus stop area, night time, medium altitude 
view) have good accuracy because of low concentration of 
activity during this time of day, and less number of occlusion 
and false positive detections. People detection accuracy for 
DS0 is 62.84%, DS3-1 is 29.40%, DS4-1 is 55.24%, and 
DS4-3 is 60.92%. These results suggest that for low-to-
medium altitude camera view (DS0, DS4-1, and DS4-3), 
there are still high numbers of false positive detections. 
The poor performance for DS3-1 suggest that in high 
altitude camera views the people detection algorithm cannot 
discriminate enough between small vehicular movements 
and people. After detection, CNN is used to classify these 
detected objects into one of eight output classes (private 
cars, motorcycles, PUVS, jeepneys, buses, trucks, people, 
and indistinguishable images). CNN classification accuracy 
is 78.41% during training, and 73.83% during validation. 
Traffic flow and congestion can be separated into elementary 
particles (or individual classes) and analyzed these classes 
individually. Vehicle traffic composition for DS3-1 shows 
that at every 10-min window time frame, private cars 
constitute about 55% to 70% of the total traffic volume, 
while public utility vehicles (PUVs, jeepneys, buses) only 
takes approximately 15%. A continuous surge in volume 
of private cars caused a developing traffic congestion, as 
observed in the traffic volume the occlusion problem for 
low-to-medium altitude camera views should be addressed. 
High number of occlusions, as well as false positive 
detections, should be reduced in the detection stage. The 
classification algorithm should likewise be improved. Using 
the vehicle composition analysis presented in this study, a 
traffic congestion prediction or forecast algorithm can be 
developed as well.
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