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Abstract—Precise estrus detection is a factor for 
the reproductive performance of cows. The primary 
sign of estrus is the standing heat wherein a cow 
stands still for a few seconds while mating with other 
cows. Visual monitoring is the most common method 
used for detection of estrus that requires farmers’ 
time and attention for high yield. In this study, an 
estrus detection using image recognition is used to 
detect the standing heat. The system is comprised of 
detection, identification, and notification system. Scale 
Invariant Feature Transform (SIFT) is responsible 
for the detection and identification of in-heat cows. 
Using SIFT, the images of cows were registered in the 
database, these images were used for detection and 
identification of cows and an algorithm for feature 
overlapping were created to detect the standing heat. 
When a standing heat is detected, it is recorded into 
the computer and simultaneously the Global System 
for Mobile Communications (GSM) module will send 
an alert message.

Keywords: estrus, in-heat cows, standing heat, image 
recognition, artificial insemination

I. Introduction

The Philippine cattle industry is one of the least 
developed commodities in the past years [1]. The 

high slaughter rate causes the declining population of the 
cattle. The average growth rate of cattle population in the 
Asian region is at 2.7%.  In Indo-China and Cambodia, 

specifically, the growth rate is 8.6 %. Meanwhile, Laos, and 
Vietnam both have a 7.5 % growth rate. This is followed by 
Indonesia with a growth rate of 3.5% and then, Myanmar 
at 0.4%. The Philippines, however has a negative growth 
rate. The slaughter rate of the cattle was 4.88 % which is 
relatively higher than the previous years [1]. In 2010, the 
government imported cattle for breeding, which caused 
an increase in the growth of the population of the cattle 
from 2010 to 2015 [2]. The efficiency and determination 
the optimum time for insemination of cattle is beneficial 
to increase the pregnancy rate and consequently lead to 
economic growth resulting to less importation of cattle.  
The failure to detect estrus (heat) is considered as one of 
the major factors for low fertility of cattle [3].  Hence, 
for the dairy farmers, it is important to detect estrus in 
cattle. 	

Due to the insufficient detection of estrus, the 
reproduction growth in cattle decreases which subsequently 
leads to the increase cost due to the artificial insemination. 
A cow in heat usually stands still to be mounted 20 to 
55 times and each mount lasts 3 to 7 seconds. In using 
artificial insemination, the optimal time is 8 to 12 hours 
after the first standing heat. Therefore, an effective estrus 
detection is very important to predict their heat condition 
[3]. The average number of standing events ranges between 
6 to 9 per estrus to be consider in heat [4]. There are new 
technologies developed to detect estrus better than visual 
observation. There are past studies that have shown a 
concrete result of the efficiency and effectiveness of 
estrus detection. Using only visual monitoring is time-
consuming and requires repetitive actions that need to be 
done frequently [5]. 

Using an estrus detection for monitoring is not new for 
the dairy farmers, but the dairy producers is interested to 
a modern, low cost, user-friendly and advance monitoring 
systems, hence this study. The main objective of this study 
is to develop an estrus detection system  for Philippine 
cows.
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II. Technologies for Estrus Detection

A. Related Works	

Chen and Lin used a Wireless Sensor Network (WSN) 
to develop a system that recognizes standing-heat signal [6]. 
The system used a 3-axial accelerometer that recognizes 
the movements of the cows. The accelerometer is placed 
on the cow’s forefeet. The authors utilized ZigBee and 
received signal strength indicator (RSSI) in achieving estrus 
detection.

Floresca et al. [7] presented a monitoring system called 
DISCOW to detect and observe mounting activities of cows. 
The system uses QR codes patches, high definition cameras, 
and a personal computer. When the QR code is blocked 
by the cow from mounting, the computer will analyze the 
detection and signals the camera to capture image, giving 
all the necessary information about in-heat cows.

By utilizing infrared cameras, Yuang, Lin, and Peng [8] 
developed a system that aims to recognize estrus detection 
at night using a non-contact video monitoring system. 
Image processing will be used to identify estrus-specific 
behaviors of dairy cows. The authors developed a video 
imaging technology that uses the length of the cows to 
detect estrus.  A length of 2 cows shows specific mounting 
behavior and then a length of 1.5 cows will be the basis of 
the detected estrus.

In 2014, Tsai and Huang [9] introduced a motion and 
image analysis method for automatic detection of estrus 
and for monitoring mating behavior of a cattle. A region 
of interest for each video frame is analyzed where high 
levels of motion that has occurred. After analyzing video 
frames, foreground segmentation then follows. It separates 
the moving cow from the region of interest in each frame. 
By determining the changes of lengths between the moving 
objects, the following of cows and mounting behaviors are 
identified.

B. Feature Recognition using Scale-Invariant Feature 
Transform (SIFT) Algorithm

In computer vision, feature recognition refers to its 
ability to distinguish geometric features from images and 
classify them. These include distinct features such as eyes, 
mouth, chin, and other facial structures, which sets them 
apart from other objects. Face recognition algorithms and 
biometrics are one of the applications of feature recognition 
[10].

In 2004, Lowe developed Scale-invariant feature 
transform (SIFT) [11], an algorithm that extracts a set of 
unique points from gray-level images. From a gray-level 
image, a list of 2D points will be extracted. Each point is 
accompanied with a vector of low-level descriptors and thus, 

define a feature. These features are invariant in rotation, 
scaling, and in changes of illumination. 

Detection of space-scale extrema, localization of key 
points, orientation assignment for each key points, and 
creating descriptors are the major steps in implementing 
SIFT. Fig. 1.shows an overview of the SIFT algorithm.

Fig. 1. Overview of SIFT Algorithm
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[6]. The system used a 3-axial accelerometer that 
recognizes the movements of the cows. The accelerometer 
is placed on the cow’s forefeet. The authors utilized ZigBee 
and received signal strength indicator (RSSI) in achieving 
estrus detection. 

 Floresca et al. [7] presented a monitoring system called 
DISCOW to detect and observe mounting activities of 
cows. The system uses QR codes patches, high definition 
cameras, and a personal computer. When the QR code is 
blocked by the cow from mounting, the computer will 
analyze the detection and signals the camera to capture 
image, giving all the necessary information about in-heat 
cows. 

 By utilizing infrared cameras, Yuang, Lin, and Peng 
[8] developed a system that aims to recognize estrus 
detection at night using a non-contact video monitoring 
system. Image processing will be used to identify estrus-
specific behaviors of dairy cows. The authors developed a 
video imaging technology that uses the length of the cows 
to detect estrus. A length of 2 cows shows specific 
mounting behavior and then a length of 1.5 cows will be the 
basis of the detected estrus.  

 In 2014, Tsai and Huang [9] introduced a motion and 
image analysis method for automatic detection of estrus and 
for monitoring mating behavior of a cattle. A region of 
interest for each video frame is analyzed where high levels 
of motion that has occurred. After analyzing video frames, 
foreground segmentation then follows. It separates the 
moving cow from the region of interest in each frame. By 
determining the changes of lengths between the moving 
objects, the following of cows and mounting behaviors are 
identified. 

 

B. Feature Recognition using Scale-Invariant Feature 
Transform (SIFT) Algorithm 
In computer vision, feature recognition refers to its 

ability to distinguish geometric features from images and 
classify them. These include distinct features such as eyes, 
mouth, chin, and other facial structures, which sets them 
apart from other objects. Face recognition algorithms and 
biometrics are one of the applications of feature recognition 
[10]. 

 
In 2004, Lowe developed Scale-invariant feature 

transform (SIFT) [11], an algorithm that extracts a set of 
unique points from gray-level images. From a gray-level 
image, a list of 2D points will be extracted. Each point is 
accompanied with a vector of low-level descriptors and 
thus, define a feature. These features are invariant in 
rotation, scaling, and in changes of illumination.  

 
Detection of space-scale extrema, localization of key 

points, orientation assignment for each key points, and 
creating descriptors are the major steps in implementing 
SIFT. Fig. 1.shows an overview of the SIFT algorithm. 
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D. METHODOLOGY 

A. Data Gathering 

 A total of 23 Holstein cows were registered and 
monitored in the system starting November 2017. The 
system was deployed, tested and evaluated in Dairy 
Training and Research Institute of University of the 
Philippines – Los Baños. 

B. Hardware Development 
 The barn has the dimensions of 15.2 meters in length, 
5.8 meters in width, 3.80 meters in height and 88.16 square 
meters in area. Four high definition cameras were placed on 
top of the barn and are 3.85 meters apart. In Fig. 2, an 
equation was derived in determining the camera focal 
length. 
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TABLE 1 STANDARD SENSOR SIZE

 

Based on the computation, the focal length to be used 
should be less than 3.14 mm and 3.55 mm. The smaller 
focal length that is available is 2.8 mm. 

 The system was composed of IP cameras, laptop, and 
the GSM module. The Starvis Vesper IP camera serves as 

the input device of the system. It detects the cows and 
standing heat. 

The laptop used in this study ran on is 64-bit Windows 
8.1 operating system with an Intel Core i5 series 3rd 
generation (2.80Ghz) processor for the Central Processing 
Unit (CPU) along with a 4 GB RAM. 

The GSM module used is the A6 mini with a working 
frequency between 850-1900 MHz and an Arduino UNO. 
The Arduino UNO was connected to it as the controller of 
the notification system.   

C. Software Development 

   

 

 
Fig. 7. System Program Flow Process 

The camera of the system was used to capture live 
video feed of cows in the barn. It was used to detect and 
identify the cows inside the barn. The XAMPP application 
was first opened to give the access to the main GUI where 
the user must log in. Upon logging in, the cows top view 
image and its data information (like; date and time of 
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III. Methodology

A. Data Gathering

A total of 23 Holstein cows were registered and 
monitored in the system starting November 2017. The 
system was deployed, tested and evaluated in Dairy Training 
and Research Institute of University of the Philippines – Los 
Baños.

B. Hardware Development

The barn has the dimensions of 15.2 meters in length, 
5.8 meters in width, 3.80 meters in height and 88.16 square 
meters in area. Four high definition cameras were placed 
on top of the barn and are 3.85 meters apart. In Fig. 2, an 
equation was derived in determining the camera focal length.
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8.1 operating system with an Intel Core i5 series 3rd 
generation (2.80Ghz) processor for the Central Processing 
Unit (CPU) along with a 4 GB RAM. 

The GSM module used is the A6 mini with a working 
frequency between 850-1900 MHz and an Arduino UNO. 
The Arduino UNO was connected to it as the controller of 
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Fig. 7. System Program Flow Process 

The camera of the system was used to capture live 
video feed of cows in the barn. It was used to detect and 
identify the cows inside the barn. The XAMPP application 
was first opened to give the access to the main GUI where 
the user must log in. Upon logging in, the cows top view 
image and its data information (like; date and time of 
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A. Data Gathering 
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Training and Research Institute of University of the 
Philippines – Los Baños. 

B. Hardware Development 
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5.8 meters in width, 3.80 meters in height and 88.16 square 
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top of the barn and are 3.85 meters apart. In Fig. 2, an 
equation was derived in determining the camera focal 
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The GSM module used is the A6 mini with a working 
frequency between 850-1900 MHz and an Arduino UNO. 
The Arduino UNO was connected to it as the controller of 
the notification system.   

C. Software Development 

   

 

 
Fig. 7. System Program Flow Process 

The camera of the system was used to capture live 
video feed of cows in the barn. It was used to detect and 
identify the cows inside the barn. The XAMPP application 
was first opened to give the access to the main GUI where 
the user must log in. Upon logging in, the cows top view 
image and its data information (like; date and time of 

 

Fig. 7. System Program Flow Process

The camera of the system was used to capture live video 
feed of cows in the barn. It was used to detect and identify 
the cows inside the barn. The XAMPP application was first 
opened to give the access to the main GUI where the user 
must log in. Upon logging in, the cows top view image and 
its data information (like; date and time of registry, and 
ID) will be inputted by the user in the Register New Cow 
Menu. Such image is also known as a Model that will be 
used for identifying, tracking and detecting the cows that 
has been registered in the system.  Each Cow that has 
been registered inside the barn will have its own identity 
in the system and will be named by the number imprinted 
on their back.

Using SIFT feature extraction, the cows will be 
detected by their different assigned pattern on the system. 
The number of Models in the registry will determine the 
accuracy of the detection. Afterward, the system will 
initialize the FLANN matcher that performs a K-Nearest 
Neighbor search. Consequently, the system will evaluate 
the features if it is a good match or not. The standing-heat 
will be detected by the overlapping of two cows’ detection. 
If the threshold reaches three to seven seconds, the system 
will record the threshold and simultaneously alert the 
caretaker of the barn using the GSM module that a cow is 
set to be inseminated.

The GSM module will send a text message that a certain 
cow had a standing heat. The data of the standing-heat will 
then be stored in the database. A PDF file of the gathered 
data containing information of the said standing-heat that 
is stored on the database is ready to be printed out for 
the user’s copy. A log file of all the standing heat image 
captured is also generated as well as a tabulated data under 
the Cows Detected Menu. A Print All option is also provided 
to allow the user to print out the said data in PDF file.

IV. Result and Discussion
The traditional way of monitoring estrus or standing heat 

in cows gives relatively high probability of not getting the 
optimum time for artificial insemination. The use of Cow 
In-heat Monitoring System has been implemented to be an 
an alternative way in monitoring standing heat that is both 
easy and precise. 

A. Actual Testing Result for November 2017

The summary of the standing heat of test cows for the 
month of November was shown in Figure 8.
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standing heatshence considered as considered “in heat.”  
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where 2128 mounted 2124. The box indicates the 
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Fig. 11 shows an example of detected standing heat where 
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C. Actual Data – January 11 & 19, 2018

A graphical representation for the summary of standing 
heat from the month of January was shown in Fig. 12.
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Fig. 12. Graphical Representation of Database Result for the month of 

January 

 , Subjects 2116 and 2135 have showed more than six 
(6) number of mountings, therefore considered in heat. The 
subjects 2062, 2097, 2010, 2106, 2116, 2118, 2157, 2149 
and 2163 were not considered in heat due to lack of number 
of mountings. 
 

 
Fig. 13. Example of detected standing heat 

Fig. 13 shows an example of detected standing heat 
where 2163 mounted 2135. The box indicates the 
overlapping of one subject to other. 
 

D. Summary of Detected Mountings  
 The summary of detected standing heat starting from 

the month of November 2017 up to the month of February 
2018 was shown in Fig. 14.  

 

  

 Fig. 14 shows all the cows that showed standing heat 
during the actual testing happened on November 29, 2017, 
December 7, 2017, January 11 and January 19, 2018. 
According to the table, subjects 2124, 2128, 2149, 2174, 
2116 and 2135 were considered in-heat because these have 
more than six (6) mountings. Subjects that have showed 
less than six (6) standing heat were not considered in heat. 

VI.   CONCLUSIONS 
 The Automated Cows In-Heat Detection and 
Monitoring System Using Image Recognition with GSM 
Based Notification System whose core system is image 
recognition for estrus detection, focused on identification, 
tracking, and detection of in-heat cows that is important for 
breeding purposes. 
 
 Through this project, the end-users were able to: (1) 
utilize the software XAMPP for the web-based graphical 
user interface, MySQL, and Python that uses the OpenCV 
module for the image recognition to detect the in-heat 
cows; (2) utilize IP cameras to monitor the movements of 
the cows;  (3) receive notifications through GSM module 
where it sends an alert message that an in-heat cow has 
been detected; and (4) verify the actual tests of the 
automated system with 100% detection success rate. 
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tracking, and detection of in-heat cows that is important for 
breeding purposes. 
 
 Through this project, the end-users were able to: (1) 
utilize the software XAMPP for the web-based graphical 
user interface, MySQL, and Python that uses the OpenCV 
module for the image recognition to detect the in-heat 
cows; (2) utilize IP cameras to monitor the movements of 
the cows;  (3) receive notifications through GSM module 
where it sends an alert message that an in-heat cow has 
been detected; and (4) verify the actual tests of the 
automated system with 100% detection success rate. 
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Fig. 14. Summary of Detected Standing Heat.

Fig. 14 shows all the cows that showed standing heat 
during the actual testing happened on November 29, 2017, 
December 7, 2017, January 11 and January 19, 2018. 
According to the table, subjects 2124, 2128, 2149, 2174, 
2116 and 2135 were considered in-heat because these have 
more than six (6) mountings. Subjects that have showed 
less than six (6) standing heat were not considered in heat.

V. Conclusions
The Automated Cows In-Heat Detection and Monitoring 

System Using Image Recognition with GSM Based 
Notification System whose core system is image recognition 
for estrus detection, focused on identification, tracking, and 
detection of in-heat cows that is important for breeding 
purposes.

Through this project, the end-users were able to: (1) 
utilize the software XAMPP for the web-based graphical 
user interface, MySQL, and Python that uses the OpenCV 
module for the image recognition to detect the in-heat cows; 
(2) utilize IP cameras to monitor the movements of the cows;  
(3) receive notifications through GSM module where it sends 
an alert message that an in-heat cow has been detected; and 
(4) verify the actual tests of the automated system with 100% 
detection success rate.

Acknowledgment
The proponents would like to thank different individuals 

that made this study successful. To the Electronics 
Engineering Department that serves as their pillar of hope 
because of their encouragements, and for their guidance that 
helped the proponents to cope up with time management 
throughout the study. The personnel of Dairy Training 
and Research Institute (DTRI) of the University of the 
Philippines Los Baños.

References
1.	 Department of Science and Technology. (n.d.). 

Beef Cattle. Retrieved from Ruminants Information 
Network: http://www.pcaarrd.dost.gov.ph/home/
momentum/ruminants/index.php?option=com_co
ntent&task=view&id=173&Itemid=216

2.	 Bureau of Agricultural Statistics. (2010-2015). 
Cattle Industry Performance Report. Quezon 
City: Philippine Statistics Authority. Retrieved 
from http://psa.gov.ph/content/cattle-industry-
performance-report-1?page=1

3.	 O’Connor, M. L. (2016). Heat Detection and TIming 
of Insemination for Cattle. Retrieved from PennState 
Extension: http://extension.psu.edu/animals/dairy/
health/repoduction/insemination/ec402

4.	 Dalton, J. C. (2012, September 24). Strategies 
for Success in Heat Detection and Artificial 
Insemination. Retrieved from eXtension.org:http://
articles.extension.org/pages/65460/strategies-
for-success-in-heat-detection-and-artificial-
insemination 

5.	 Neves, R. (2011). Investigation of Automated 
Activity Monitoring Systems for Reproduction 
in Dairy Cattle. Journal of Dairy Science, 10-
15. Retrieved from http://www.hachaklait.org.il/
files/351204.pdf

6.	 Chen, C.-H., & Lin, H.-R. (2015). Estrus Detection 
for Dairy Cow Using ZigBee-Based Sensor 
Networks. 



15Development of an Automated Cows In-Heat Detection and Monitoring System                  Arago et al.

7.	 Anda, K. M., Delos Reyes, J., Dinglasan, R. M., 
Floresca, F.M., Mendooza, V. R., Pacundan, J. 
M., Ramirez,  G. M., & Torres, A. K. (2014). 
Development of a Computer-Based Monitoring 
System for Detection and Identification of In-Heat 
Cows Using High-Definition Cameras

8.	 Yuang, C. J., Lin, Y., & Peng, S. (2017). Develop a 
video monitoring system for dairy estrus detection 
at night. IEEE-International Conference on Applied 
System Innovation, 1900-1903.

9.	 Tsai, D. M., & Huang, C. Y. (2014). A motion and 
image analysis method for automatic detection of 
estrus and mating behavior in cattle. Computers 
and Electronics in Agriculture, 25-31.

10.	 Face First (2018). What is Feature Recognition? 
Retrieved from https://www.facefirst.com/face-
recognition-glossary/what-is-feature-recognition/

11.	 Lowe, D. G. (2004). Distinctive Image Features 
from Scale-Invariant Keypoints. Int. Journals in 
Computer Vision.

12.	 Ray, S. (2015). Essentials of Machine Learning 
Algorithms (with Python and R Codes). Retrieved 
f rom h t tps : / /www.ana ly t icsv idhya .com/
blog/2017/09/common-machine-learning-algorithm


