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Abstract—Two classification metrics are proposed 
in this paper. The first one, called the mean relative 
difference confusion matrix, or MRDCM, is aimed 
at better quantifying the performance of a classifier 
that outputs a spectrum of real numbers. Usually, 
the tendency is to use threshold values to distinctly 
put classified values into rigid categories. While this 
approach has proven to be effective in many studies, 
sometimes it is best to leave the “classification” or the 
interpretation of actual output values of classifiers to a 
human expert. The MRDCM has been conceptualized 
with this idea in mind. The other classification metric 
that is proposed in this paper is aimed at improving 
the aggregation of values in a conventional confusion 
matrix to calculate the accuracy of classification. This 
other proposed novel metric, called the Classification 
Performance Index or CPI, includes in its calculation 
the consideration of both the correct and wrong 
classifications. These proposed metrics were applied 
to a classification of microscopic colonic images into 
three categories, namely: normal, adenomatous polyp, 
and cancerous.  The results show agreement with the 
conventional confusion matrix and accuracy metric 
plus more information.

Index Terms—Classifier metrics, colonic image 
classification, confusion matrix. 

I. INTRODUCTION

It has been reported in the Philippines that cancer ranks 
third among the leading causes of morbidity and mortality 
[1]. Worldwide, colorectal cancer is considered as the 
third most common neoplasm [2].  Similar to other types 
of cancers, early detection of cancer of the colon is the 
key to a successful treatment.  It is, therefore, crucial 
to be able to have a reliable system to measure the 
performances of various classification or diagnostic tools 
being proposed to make a good selection and comparison 
in the developmental stages of these classification systems. 
Research in the classification of microscopic images of 
colonic mucosa has shown that textural features derived 
from grey-level co-occurrence matrices (GLCMs) are very 
useful.   Similarly, with our previous work in [5] and [6], 
Esgiar et al. [7], Atlamazoglou et al. [8], Shuttleworth et al. 
[9], among others, GLCM were used as image property in 
classification. Several works have also been done to address 
the issue regarding the measurement of the performance of 
classifiers. In [9], for instance, Zachariah et al. compared 
23 classifier metrics and concluded that the lift metric 
had the highest coefficient of determination. Hernandez-
Orallo et al. [10] used a threshold choice method to link 
performance metrics and expected loss. Ferri et al. analyzed 
the performance of 18 different metrics [11] while Seliya et 
al. analyzed 22 metrics [12]. In 2009, Hand [13] proposed 
an alternative to area under the ROC curve. There are many 
more studies about classifier performance metrics that can 
be cited, but none have addressed the “right” compromise 
between simplicity and effectiveness.     

Two classification metrics are proposed in this 
paper. The first one, called the mean relative difference 
confusion matrix (MRDCM), is aimed at better 
quantifying the performance of a classifier that outputs 
a spectrum of real numbers. Usually, the tendency is to 
use threshold values to put classified values into rigid 
categories distinctly. While this approach has proven to 
be effective in many studies, sometimes it is best to leave 
the classification or the interpretation of actual output 
values of classifiers to a human expert. The MRDCM 
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has been conceptualized with this idea in mind. The other 
classification metric that is proposed in this paper is aimed 
at improving the aggregation of values in a conventional 
confusion matrix to calculate the accuracy of classification. 
This other proposed novel metric, called the Classification 
Performance Index (CPI), includes in its calculation the 
consideration of both the correct and wrong classifications. 
These proposed metrics were applied to a classification of 
microscopic colonic images into three categories, namely: 
normal, adenomatous polyp, and cancerous.  The classifier 
that was used in this study was adaptive network-based 
fuzzy inference system (ANFIS). Two textural properties, 
the sum average and difference entropy, derived from grey 
level co-occurrence matrix, were used. The results show 
agreement with the conventional confusion matrix and 
accuracy metric plus more information.

II. Preparation of Images

The images used in this study were derived from 
slides and cases randomly chosen from the 2007 and 
2008 surgical pathology files of Medical Center Manila 
Hospital, previously diagnosed as colonic adenocarcinoma, 
adenomatous polyps from the colon, as well as resection 
planes of the colonic resections without tumor to serve 
as controls.   These slides were routinely processed using 
a Sakura tissue processor and cut at 8 micra using a 
standard microtome.  All were stained with hematoxylin 
and eosin.  All images were taken at 400x magnification 
using an Olympus DP20 digital photomicrography 
apparatus mounted on an Olympus microscope (trinocular) 
at 1200x1800 dpi resolution. There were a total of 75 
1600x1200-pixel-images (25 for each diagnosed case) 
used in this study. Shown in Figs. 1, 2, and 3 are sample 
images representative of each classification. 

III. Textural Properties

A digital image can be represented as a matrix or set 
of matrices wherein each element contains numerical 
information about each pixel of the image. Texture can be 
defined as the mutual relationship among intensity values 
of neighboring pixels repeated over an area larger than the 
size of the relationship [3]. Haralick et al. [4] proposed 
textural features based on grey-level co-occurrence 
matrices or GLCMs. These features are effective in 
discriminating microscopic images of colon cancer tissues 
and cells. 

For an Nx x Ny image I with each pixel quantized to 
Ng levels, let Lx be the horizontal spatial domain, Ly the 
vertical spatial domain, and G the set of quantized grey 
levels, such that Lx = {1,2,…Nx}, Ly = {1,2,…Ny}, and 

G = {1,2,…Ng}. The elements of a GLCM are then the 
relative frequencies Pij with which two neighboring pixels 
separated by distance d and angle Ө occur on the image, 
one with grey level i and the other with grey level j. With 
angles quantized to intervals of 45o, the un-normalized 
frequencies were defined in [4] as:

P( i, j, d, 0o) = #{[ (k, l) , (m, n) | k – m = 0, | l-n | = 
d, I(k, l) = i, I(m, n) = j} (1a)

P( i, j, d, 45o) = #{[ (k, l) , (m, n) | (k – m =  
d, l-n  = - d), (k – m = - d,  l-n  = d),  

I(k, l) = i, I(m, n) = j}
(1b)

P( i, j, d, 90o) = #{[ (k, l) , (m, n) | |k – m|=  
d, l-n  = 0, I(k, l) = i, I(m, n) = j} (1c)

P( i, j, d, 135o) = #{[ (k, l) , (m, n) | (k – m = d,  
l-n  = d), (k – m = - d,  l - n  = - d), I(k, l) = i,  

I(m, n) = j}
(1d)

where # denotes the number of elements in the set. The co-
occurrence matrix can be normalized by dividing each entry 
by the total number of pairs. In [4], 14 textural properties 
were introduced that are derivable from the GLCM.  Below is 
a summary of the properties calculated from the normalized 
GCLM that were used in this study. 
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Notation:
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	 Ng	� Number of distinct gray levels in the quantized 
image.



3Novel Performance Metrics in the Classification of Microscopic Colonic Images  	G an Lim et al.

1 1
and and

g gN N

i j i j= =
∑ ∑ ∑ ∑ , respectively.

( ) ( )
1

,
gN

y
i

p j p i j
=

=∑ .

( ) ( )
1 1

,
g gN N

x y
i j

i j k

p k p i j+
= =
+ =

=∑ ∑

where k = 2, 3,…, 2Ng

( ) ( )
1 1

,
g gN N

x y
i j

i j k

p k p i j−
= =
− =

=∑ ∑

where k = 0, 1, ….., Ng-1.

IV. The Mean Relative Difference  
Confusion Matrix 

A commonly used tool to examine the performance of 
a classifier is the confusion matrix, which is a table of 
numbers of correct classifications and misclassifications.  If 
one wants to produce a single number out of the confusion 
matrix as a measure of classification performance, the 
sum of the diagonals of the matrix is usually chosen and 
normalized to produce what is called the percent accuracy. 
The problem with this performance parameter is that 
it does not show the gravity of mistakes committed by 
the classifier in problems with more than two classes. 
For example, in this study where there are three classes 
of images—normal, adenomatous polyp, and cancerous 
cases—the percent accuracy will not yield information as 
to whether a cancerous case was misclassified as normal 
or as an adenomatous polyp. In “human” logic, it is less 
of a mistake to classify a cancerous case as adenomatous 
polyp than to classify it as normal. Erroneous downgrading 
from cancerous to normal can lead to a serious case not 
given enough scrutiny and is, therefore, the worst mistake 
that can be made by a classifier. As for the confusion 
matrix, although it is in itself an excellent tool to analyze 
the performance of a classifier, it is not directly compatible 
with the output of a classifier, such as ANFIS, that outputs 
a real number. The confusion matrix tabulates the counts 
(whole numbers) of classifications and misclassifications 
while ANFIS, since it is a Sugeno-type fuzzy inference 
system or FIS, generally gives out real numbers. Two 
alternatives can be adopted to fix this. One is to introduce 
threshold values for the output of ANFIS, and the other is 
to devise another classification performance matrix which 
can “handle” the ANFIS output values. The latter choice is 

more preferred in this study because it has the advantage 
of maintaining the spectral nature of histopathologic 
image classification and characterization. It is believed 
in this study that this approach is closer to how human 
pathologists view this kind of problem. Therefore, in this 
research, a new classification performance matrix, called 
the MRDCM, is proposed. The MRDCM tabulates the 
average differences of classification output values of the 
images and three constants defined by the following:

0.0 – for normal case
0.5 – for adenomatous polyp case, and
1.0 – for cancerous case.

Table I shows the general format of an MRDCM. Unlike 
the usual confusion matrix, the main diagonal elements 
of an MRDCM are ideally zero or close to zero since it 
is desired that the classification of the images should be 
correct and, therefore, have very small, if not zero, average 
differences with the ideal ANFIS output value for each 
case. For the off-diagonal elements, it is desirable to have 
non-zero values close to 0.5 or 1.0.

TABLE I
General Format of an MRDCM. The elements a, e, 

and i are the main diagonal elements. The rest of the 
elements are the off-diagonal elements.

Expected
Normal

Expected 
Aden. 
Polyp

Expected 
Cancerous

Predicted 
Normal a b c

Predicted 
Aden. Polyp d e f

Predicted 
Cancerous g h i

Each element in the matrix can be expressed as:
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where
xij = element in the matrix at row i and column j
oj(k)= ANFIS output value for image k at class j
nj = total number of images in class j

ci(k) = 
0.0 if i = 1
0.5 if i  = 2
1.0 if i  = 3
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V. The Classification Performance Index 
In optimizing classifiers, it would be very advantageous 

to be able to express the performance of a classifier into 
a single number or scalar just like the percent accuracy 
of a confusion matrix. As pointed out earlier, the percent 
accuracy parameter does not take into account the gravity 
of the misclassifications of a classifier for problems with 
more than two cases. The new idea that is being proposed 
in this study is to introduce a parameter called the CPI 
that precisely brings with it the information conveyed by 
percent accuracy plus additional measures of classification 
failures.  The CPI metric is arrived at by first calculating 
the corresponding confusion matrix using threshold values 
for the adenomatous polyp and cancerous cases and 
normalizing the elements by using the sum of elements per 
column or class as a divisor. Next, the confusion matrix 
with normalized elements is then multiplied element-
wise by a new matrix referred to here as factor matrix, 
which is essentially a weight matrix. The product, which 
is sometimes referred to as Hadamard or Schur product 
in matrix multiplication, is another matrix similar in size 
to the confusion matrix and the factor matrix. The factor 
matrix contains elements that act as multipliers similar 
to connection weights in a feed-forward neural network. 
Finally, the CPI parameter is calculated as the sum of all 
the elements of the element-wise product of the normalized 
confusion matrix and the factor matrix. The idea behind the 
factor matrix is to select specific real numbers as elements 
that will seek proportional contributions of the specific 
elements of the confusion matrix to the CPI parameter. 
To make the CPI reflect the failure-to-success spectrum 
of a classifier, the entries in the factor matrix must be 
selected to get more contribution from the successes and 
less from the failures in the numbers tabulated in the 
confusion matrix. This was accomplished in this study 
by suggesting a ranking of the elements of the confusion 
matrix according to the degree of success and gravity of 
failure of the classifier expressed as a set of multiplying 
factors. Tables 2, 3, and 4 show the format of the confusion 
matrix used in this study, the format of the factor matrix, 
and the suggested ranking of the corresponding elements 
according to a set of multiplying factors, respectively.

TABLE II
Format of the Confusion Matrix Used in this Study

Expected
Normal

Expected 
Aden. Polyp

Expected 
Cancerous

Predicted 
Normal A B C

Predicted 
Aden. Polyp D E F

Predicted 
Cancerous G H I

TABLE III
Format of the Factor Matrix 

a b c

d e f

g h i

The letters assigned to each element of the matrix correspond 
to the left column of Table IV and the entries in Table II as 
multipliers.

TABLE IV
The Suggested Ranking of the Elements of the Factor 

Matrix with the Multiplying Factors

Location in the 
factor matrix

Multiplying 
factor

i +1/3

e +1/3

a +1/3

d -0.05

h -0.1

g -0.2

b -0.3

f -0.4

c -0.5

Match the letters on the left column to the entries in Table III.

It can be observed that the multiplying factors in Table 
III together produce an effect on the CPI wherein the positive 
and negative factors counteract each other when multiplied 
by the confusion matrix. The entries i, e, and a get +1/3 each 
since the numbers in these locations in the confusion matrix 
represent the correct classifications. Their factors have been 
purposely chosen to sum-up to 1.0 or 100% because they 
represent the perfect score. The rest of the entries are all 
assigned negative factors, representing a penalty against 
the CPI because they are the multipliers of the off-diagonal 
elements of the confusion matrix. It can be observed that 
the factors in entries c, g, and b, all sum-up to -1.0 or -100% 
which is considered to be the exact opposite of a perfect 
score in classification in this study. Entry c is assigned the 
greatest penalty effect because it corresponds to the worst 
possible mistake that can be committed by a classifier, which 
is a misclassification of cancer into normal. Since entry f is 
considered as between entries c and b, therefore, c = –0.5, 
b =  –0.3, g = –0.2 and f = –0.4. Entry d is considered here 
as the element in the factor matrix that corresponds to the 
least serious misclassification wherein a truly normal case 
is classified as adenomatous polyp by mistake while entry 
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h had to be just worse than entry d. With g = -0.2 and a = 
1/3, entries h and d had to assume -0.1 and -0.05 values, 
respectively. Therefore, Table 4 suggests that the factor 
matrix should be expressed as in equation 4.

1
3

1
3

1
3

0.3 0.5
0.05 0.4
0.2 0.1

FM
+ − 
 = − + −
 − − + 

(4)

where: FM = factor matrix.

Putting it all together now, the CPI can be calculated by 
first getting the entry-wise product of the confusion matrix 
and the factor matrix, and then obtaining the sum of all the 
elements of the resulting matrix.  Mathematically, for three 
classes can be expressed as:

3 3

1 1
i j ij

i j
j

CM FM
CPI

N= =
=∑ ∑ (5)

where: 
CPI =	 classification performance index
CMij =	�entry in the confusion matrix at row i and  

column j
FMij =	�entry in the factor matrix at row i and  

column j
Nj =	 total number of elements in class or column j.

I.	 ANFIS Classification and Results

The classification of images using ANFIS was evaluated 
using three tools: the conventional confusion matrix, the 
MRDCM, and the CPI. More discussion about the ANFIS 

implementation can be found in our earlier paper in [5]. 
Table 6 shows that the classifier was quite successful. 
There were no misclassifications in the normal-cancerous 
conditions. However, there were some mistakes in the 
middle region—the adenomatous polyp cases. This was 
to be expected since the middle region is the most difficult 
part of the classification task. This is also reflected in the 
MRDCM in Table 5. Ideally, the number in the main diagonal 
of an MRDCM should all be zero. The numbers in the main 
diagonal of Table 5, therefore, means that the classification 
performance was very good because the numbers are close to 
0.0. At first glance, one would be more comfortable using the 
conventional confusion matrix like the one shown in Table 6. 
However, the convenience that comes with analyzing Table 
6 comes at the price of choosing threshold values 0.25 and 
0.75. Adjusting these values would surely affect the numbers 
in the matrix of Table 6. The selection of the threshold values, 
therefore, puts a limitation or uncertainty in the interpretation 
of the confusion matrix. This is the price to pay for forcing 
to choose threshold values. The MRDCM does not share this 
problem and is, therefore, less biased. The numbers in the 
MRDCM can easily be mapped into a grey color spectrum 
to make it easier to be interpreted by a human pathologist or 
oncologist.  In contrast to a conventional confusion matrix, 
the values of the off-diagonal elements in Table 5 are “far” 
from 0.0, indicating that misclassifications were minimal. 
Ideally, the elements closest to the main diagonal should 
be 0.5 while the elements farthest should be close to 1.0.

The CPI data in Table 6 shows that the calculated 
accuracy values overestimate the performance of the 
classifier. When the CPI values are converted into 
percentages, it is clear that these values are lower than their 
corresponding accuracy values. This is obviously a result 
of the conventional accuracy formula only considering the 
main diagonal elements.

TABLE V
MRDCM for Training and Testing Data Sets Using Features Sum Average and Difference Entropy

Training Data Set Testing Data Set

Expected
Normal

Expected 
Aden. Polyp

Expected 
Cancerous

Expected
Normal

Expected 
Aden. Polyp

Expected 
Cancerous

Predicted 
Normal 0.0728 0.5434 0.894 0.0641 0.4829 0.882

Predicted Aden. 
Polyp 0.4374 0.1688 0.394 0.4471 0.1824 0.382

Predicted 
Cancerous 0.9374 0.4566 0.1136 0.9471 0.5171 0.1245
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VII. Conclusion

The purpose of MRDCM is to allow clinicians or 
pathologists to make use of the real number output of the 
ANFIS classifier and thereby avoid the use of threshold 
values to characterize an image. The CPI, on the other 
hand, is considered here as a better alternative to the percent 
accuracy parameter when expressing the classification 
quality reflected by a confusion matrix. The CPI utilizes 
a set of numbers called factor matrix that collectively 
imposes a kind of penalty to elements in the confusion 
matrix that represent bad classification performance. It 
was pointed out that one of the disadvantages of using the 
percent accuracy is that it does not distinguish between 
bad and worse misclassifications. An example of this is 
misclassification of cancerous into adenomatous polyp 
compared to misclassification of cancerous into normal. 
Unlike the percent accuracy parameter, the CPI puts more 
“penalty” on the latter case of misclassification.  

MRDCM was a natural extension of the ANFIS 
classifier since the conventional confusion matrix could not 
be used with the ANFIS output without resorting to selecting 
threshold values for the three classes. This novel confusion 
matrix supported the idea of providing the human pathologist 
or the user with more information by pointing out the state of 
the image in question relative to extreme cases in the normal-
to-cancerous spectrum. Thinking in terms of numbers in 
the classification spectrum might promote more objectivity 
on the part of the pathologist. The classifier algorithm/s 
developed in this study was never meant to replace human 
experts but rather be used as effective supporting tools.  

Sometimes it is necessary to express the performance 
of a classifier through a single number such as the percent 
accuracy computed from the conventional confusion matrix. 
CPI was devised in this study as a better parameter than 
percent accuracy and is simple to use. The advantage of using 

CPI is in its ability to account for the successes and severity 
of failures of a classifier. The CPI parameter achieved this 
through the use of a novel matrix known as the factor matrix, 
also devised in this study.
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