Journal of Computational Innovations and Engineering Applications 3(1) 2018: 38—43

Real-Time Vehicle Classification
Using MobileNet

Reagan L. Galvez,'” Melvin K. Cabatuan,”and Argel A. Bandala?

Abstract—classification is an important part
of vision systems and has several applications like
autonomous cars and surveillance. This is a challenging
task because computers see images differently from
humans. This paper used the MobileNet model for
training the data and tested it on an Android device.
This model is lightweight and efficient compared with
previous developed models. This was inspired by the
sample code from Google Codelabs. Experiment results
show that the Android application can accurately
classify the type of vehicle in real time.

Keywords: convolutional neural network, deep
learning, MobileNet, vehicle classification

[. INTRODUCTION

Intelligent transport systems (ITSs) are developed to
provide safe travel and ensure effective transportation
[1]. To implement this, the ITS needs access to data like
the type of vehicle. This will help authorities to identify
criminals quickly. It can also be used to apprehend violators
like trucks [2], during certain periods of time (ex., rush
hour) when trucks are not allowed on the road. Vehicle
classification maybe a simple problem for a human, but
for a computer, it’s a complex problem. That’s why many
researchers are exploring image processing [3] to solve
this problem with high accuracy by creating different
architectures/models. There are many techniques that can
be used to classify images like artificial neural networks,
decision tree, support vector machine, and fuzzy measure
[4]. Currently, convolutional neural networks (CNNs)
are used in image classification because they provide
accurate performance in computer vision tasks. There are
many pre-trained CNN based models that can be used for
image classification like AlexNet [5], VGG16, VGG19
[6], ResNet50 [7], InceptionV2, InceptionV3 [8], Xception

Reagan L. Galvezla, Bulacan State University, Malolos City,
Philippines (e-mail: reagangalvez@gmail.com)

Melvin K. Cabatuan and Argel A. Bandala, De La Salle
University—Manila, Philippines

[9], and DenseNet [10]. On the other hand, models like
R-CNN [11], Fast R-CNN [12], YOLO [13], YOLO9000
[14], SSD [15], and MobileNet [16] are commonly used
object classification and detection models. The focus of
this paper is to utilize MobileNet for object classification
using android platform.

This paper is organized as follows: section 2 discusses
the concept about MobileNet and its architecture. Section
3 describes the experiment setup and the dataset used for
training. Section 4 shows the performance of the MobileNet
model in vehicle classification and its deployment in an
Android platform.

II. MoOBILENET

MobileNet is an efficient model designed for mobile
and embedded vision applications [16]. It uses depthwise
separable convolutions to build lightweight and efficient
deep neural networks. The depthwise convolution applies
a single filter to each input channel. To combine the output
of depthwise convolution, pointwise convolution applies
1 x 1 convolution. The combination of two convolutions
results to a depthwise separable convolution. Two layers
are formed by depthwise separable convolution. The first
layer is used for filtering, and the second layer is used for
combining. This is called factorization, and as a result, it
reduces the model size and computation.

Table 1 shows the MobileNet architecture. The model
consists of 28 layers. These layers are combinations of
alternating depthwise and pointwise convolutions. Every
layer is followed by batch normalization and rectified linear
unit (ReLu) [17] function except the fully connected layer
which is followed by a softmax classifier that gives actual
probabilities in each class. Batch normalization speeds up
the training [18], and the ReLu function is 0 for negative
values and grows linearly for positive values. The notations
sl and s2 are the number of strides. Stride controls how
the filter convolves around an input volume.

Copyright © 2018 by De La Salle University

REAL-TIME VEHICLE CLASSIFICATION USING MOBILENET

GALVEZ, ET AL. 39

TABLE 1 III. EXPERIMENT SETUP
MOBILENET ARCHITECTURE))))))
The effectiveness of MobileNet in vehicle classification
Layer Type/Stride Input Size was tested in an android application. It is a simple camera
1 Conv /2 224 x 224 x 3 application. that. runs a Tensor.Flow .ima.ge recognition
program to identify vehicles. This was inspired by the code
2 Conv dw /sl 12> 112 %32 from “TensorFlow for Poets 2 of Google Codelabs [19].
3 Conv /sl 112 x 112 x 32 TensorFlow mobile was used to run the MobileNet and
4 Conv dw /s2 112 x 112 x 64 integrated it t‘o 'l‘I.lOblle apphcatlf)n. The. Anaconda Prompt
was used to initiate command in training and testing the
5 Conv /sl 56 x 56 x 64 model'
6 Conv dw /s1 56 x 56 x 128 The first step in training the data is to install dependencies
like TensorFlow. This is an open-source library for high-
7 Conv /sl 56 x 56 x 128 . . .
performance calculation, which allows easy deployment in
8 Conv dw /s2 56 x 56 x 128 different platforms and supports deep learning applications
9 Conv /sl 28 x 28 x 128 [20]. Figure 1 shows the block diagram of the vehicle
classification structure. Next is to collect the data that will
10 Conv dw /sl 28 > 28 256 be used for training. The dataset is composed of five types of
11 Conv /sl 28 x 28 x 256 vehicles such as pickup, SUV, sedan, van, and truck. These
12 Conv dw /2 28 x 28 X 256 images came from Irr.lageNet, an image databasi:. Table 2
shows the number of images per category of vehicle.
13 Conv /sl 14 x 14 x 256
14-23 Conv dw/ sl 14 x 14 x 512 TABLE 2
Conv /sl 14 x 14 x 512 DAtaseT
24 Conv dw /s2 1414 x 312 Vehicle Type Number of Images
25 Conv /sl 7 x7x%x512 Pickup 400
26 Conv dw /s2 7 x7x1024 Suv 400
27 Conv /sl 77 x 1024 e 400
Van 400
Avg. Pool /s1 7 x7x1024
Truck 400
28 FC /sl 1 x1x1024 Total 2000
Softmax /s1 1 x1 %1000
Install . .
. ——» Data Gathering ——» Re-train — Test
Dependencies
A
Run the app |«— Andorid Set-up Compress] Optimize

Fig.1. Block diagram.

40 JoUrRNAL OF COMPUTATIONAL INNOVATIONS AND ENGINEERING APPLICATIONS

VoL. 3 No. 1 (2018)

Next is to re-train the data using the MobileNet model.
The output of this is a . pb file; this is a single model file
that contains graph variables frozen as constants. The input
images can be configured using 4 different input sizes such
as 128, 160, 192, and 224 pixels. The width multiplier (o)
of the model can also be set such as 1.0, 0.75, 0.5, and 0.25.
The width multiplier makes the model small and faster by
reducing computational cost and number of parameters.

Then, test the model by using random image and
compute its accuracy. After this, optimize the model by
removing some nodes that are not needed in a given set
of input and output. Next is to compress the model by
quantizing the network weights to make it ideal for mobile
applications. After compression, the model is ready to upload
in an Android platform.

IV. RESuLTs

A. Image Classification Performance

The performance of the MobileNet model was tested
by calculating its validation accuracy, cross entropy, and
evaluation time. Validation accuracy is the precision on
a randomly selected group of images from a different set.
Cross entropy is a loss function that shows how well the
learning process is progressing. The ideal value of cross
entropy is 0. Evaluation time is the time it takes to classify
the test image. The total number of steps used in training the
model was 2000 steps. This is enough to see if the model
is learning. Table 3 shows the accuracy and cross entropy
using different values of width multiplier (o) in MobileNet.
It shows that when the MobileNet’s width multiplier (o)
decreases, the validation accuracy also decreases and the
cross entropy increases.

TABLE 3
Accuracy aAND Cross ENTROPY

Input Size VYid.th Accuracy Cross
Multiplier (o) (%) Entropy
224 1.0 84.83 0.541196
224 0.75 84.36 0.554476
224 0.5 81.99 0.713274
224 0.25 72.04 2.38165

Figure 2 shows the training (orange) and validation
accuracy (blue) during the training. This graph was
from MobileNet using a = 1.0. As shown, the model
was not learning anymore. In this case, the training can
be stopped. The average validation accuracy is equal to
84.83%.

1.00
0.960
0.920
0.880

0.840

0000 4000 8000 1200k 1600k 2.000k
Fig. 2. Training steps vs. accuracy.
Figure 3 shows the training (orange) and validation cross
entropy (blue) during the training. The ideal value of cross

entropy is 0 because this is a loss function. The average cross
entropy is equal to 0.541196.

0.400
0.300
0.200 -

0.100 -

0.00

0.000 400.0 800.0 1.200k 1.600k 2.000k

Fig. 3. Training steps vs. cross entropy.

Table 4 shows the time comparisons using different
width multiplier () in the model. As the width multiplier
(o) decreases, the time of evaluation also decreases. This
is because the model became lightweight and has fewer
computations.

Table 5 shows the model size comparisons for each
different width multiplier (o) in the model. Using a = 1.0,
there was 32.50% size reduction from the optimized to
the compressed model. This compression can be useful in
deploying the model for mobile applications because it can
be downloaded easily.

Figure 4 shows the bubble chart of evaluation time versus
accuracy. The size of the bubble is proportional to the size
of the model. As we can see, there is a trade-off between
accuracy and speed. If we need a faster model, a = 0.25
can be used, but the accuracy will decrease. For real-time
application, o = 1.0 can still be used.

REAL-TIME VEHICLE CLASSIFICATION USING MOBILENET

GALVEZ, ET AL. 41

TABLE 4
EvaruatioN TIME COMPARISONS
Width Time Time Time
Input Size Multiplier (Re-Trained) (Optimized) (Compressed)
(0) O] () (s)
224 1.0 2.163 2.023 2.061
224 0.75 1.756 1.776 1.701
224 0.5 1.352 1.341 1.359
224 0.25 1.122 1.121 1.121
TABLE 5
MobEL Size COMPARISONS
Width Size Size Size
Input Size Multiplier (Re-Trained) (Optimized) (Compressed)
(0) (KB) (KB) (KB)
224 1.0 15,489 15,485 5,033
224 0.75 9,490 9,486 3,174
224 0.5 4,916 4,913 1,786
224 0.25 1,766 1,763 708
siok £ “,_ Lo MaobileMet_1.0_23

B4
-

Whl@j 24

1)
=]

accuracy (%)
=
=

&

L

Mabilenet 0.25 224

12 14 L6 2.0

time [seconds)

18

Fig. 4. Evaluation time vs. accuracy.

B. Deployment in Android Platform

The trained model was deployed in an Android
platform to test its performance in real-time application.
TensorFlow mobile was used to prepare the model for
mobile deployment. Figure 5 shows the screenshot from the
TensorFlow application using a Samsung Galaxy S7 Flat
phone. The testing images were randomly selected to test if
the application can detect unseen data. The actual images in
the figure were both sedan and correctly identified as sedan.

Fig. 5. Screenshot from TensorFlow application (sedan).

Another set of images was tested as shown in Figure 6.
These images were a truck and correctly identified as truck
by the TensorFlow application.

42 JoUrRNAL OF COMPUTATIONAL INNOVATIONS AND ENGINEERING APPLICATIONS

VoL. 3 No. 1 (2018)

Fig. 6. Screenshot from TensorFlow application (truck).

Figure 7 shows an image of an SUV. The TensorFlow
application failed to classify the first image as SUV; it was
predicted as sedan. This is due to the similar features of an

SUV and a sedan.
#

AT

v

Fig. 7. Screenshot from TensorFlow application (SUV).

V. CONCLUSION

The implementation of real-time vehicle classification
was successfully tested using the Android platform. The
experiment result shows that the MobileNet can classify
vehicle type up to 84.83% accuracy. TensorFlow mobile
is a good deep learning solution for a mobile platform
like Android. Although in testing an SUV image, the

model cannot consistently classify the image, other types
of vehicles were accurately identified. This is due to the
physical structure of the SUV that is not totally different
from the other types of vehicles because some SUVs are
similar to a sedan, van, and pickup. As a solution, it is
recommended to increase the dataset and remove some
images that are confusing.

For future work, the application of MobileNet can be
upgraded to track and identify vehicle type using CCTV
videos in real-time.

ACKNOWLEDGMENTS

The author would like to thank the Department of Science
and Technology—Engineering Research and Development
for Technology (DOST-ERDT) and De La Salle University
for the financial support while doing this research.

REFERENCES

[1] A. Ferdowsi, U. Challita and W. Saad, “Deep Learning for
Reliable Mobile Edge Analytics in Intelligent Transportation
Systems,” arXiv:1712.04135v1, December 2017.

[2] R.K.C.Billones, A. A. Bandala, E. Sybingco, L. A. G. Lim
and E. P. Dadios, “Intelligent system architecture for a vision-
based contactless apprehension of traffic violations,” 2016
IEEE Region 10 Conference (TENCON), pp. 1871 - 1874,
2016.

[3] R.K.C.Billones,A. A. Bandala, E. Sybingco, L. A. G. Lim, A.
D. Fillone and E. P. Dadios, “Vehicle Detection and Tracking
using Corner Feature Points and Artificial Neural Networks for
a Visionbased Contactless Apprehension Syste,” Computing
Conference 2017, pp. 688-691, 2017.

[4] P. Kamavisdar, S. Saluja and S. Agrawal, “A Survey
on Image Classification Approaches and Techniques,”
International Journal of Advanced Research in Computer and
Communication Engineering, vol. 11, no. 1, pp. 1005-1009,
January 2013.

[5] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,”
in Advances in neural information processing systems,2012.

[6] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks For Large-Scale Image Recognition,” in /CLR,
2015.

[7] K.He,X.Zhang, S. Ren and J. Sun, “Deep Residual Learning
for Image Recognition,” IEEE Conference Publication, pp.
1-12, 2015.

[8] C.Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke and A. Rabinovich, “Going Deeper
with Convolutions,” arXiv:1409.4842v1, pp. 1-12, September
2014.

[9] F. Chollet, “Xception: Deep Learning with Depthwise
Separable Convolutions,” IEEE Conference Publication, pp.
1-8,2017.

REAL-TIME VEHICLE CLASSIFICATION USING MOBILENET

GALVEZ, ET AL. 43

[10] G. Huang, Z. Liu, L. Van der Maaten and K. Q. Weinberger,
“Densely Connected Convolutional Networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[11] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” arXiv.1311.2524v5 [cs.CV], pp. 1-21, 2014.

[12] R. Girshick, “Fast R-CNN,” arXiv:1504.08083v2 [cs.CV],
2015.

[13] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You
Only Look Once:Unified, Real-Time Object Detection,”
arXiv:1506.02640v5 [cs.CV], pp. 1-10, 2016.

[14] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster,
Stronger,” arXiv:1612.08242v1 [cs.CV], pp. 1-9, 2016.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu and A. C. Berg, “SSD: Single Shot MultiBox Detector,”
arXiv:1512.02325v5, pp. 1-17, 2016.

[16] A. G. Howard, M. Zhu, B. Chen and D. Kalenichenko,
“MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision,” 2017.

[17] V. Nair and G. E. Hinton, “Rectified Linear Units Improve
Restricted Boltzmann Machines,” in Proceedings of the 27th
international conference on machine learning (ICML-10),
2010.

[18] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate
Shift,” arXiv:1502.03167v3, pp. 1-11, March 2015.

[19] Codelabs, Google, “Tensorflow for Poets 2,” December 2017.
[Online]. Available: https://github.com/googlecodelabs/
tensorflow-for-poets-2.

[20] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J.
Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and
X. Zheng, “TensorFlow: A system for large-scale machine

learning,” arXiv:1605.08695v2, pp. 1-18, May 2016.

