
Real-Time Vehicle Classification  
Using MobileNet

Reagan L. Galvez,1,* Melvin K. Cabatuan,2 and Argel A. Bandala2

Reagan L. Galvezla, Bulacan State University, Malolos City, 
Philippines (e-mail: reagangalvez@gmail.com)

Melvin K. Cabatuan and Argel A. Bandala, De La Salle 
University–Manila, Philippines

 

Journal of Computational Innovations and Engineering Applications 3(1) 2018: 38–43

Copyright © 2018 by De La Salle University

Abstract—classification is an important part 
of vision systems and has several applications like 
autonomous cars and surveillance. This is a challenging 
task because computers see images differently from 
humans. This paper used the MobileNet model for 
training the data and tested it on an Android device. 
This model is lightweight and efficient compared with 
previous developed models. This was inspired by the 
sample code from Google Codelabs. Experiment results 
show that the Android application can accurately 
classify the type of vehicle in real time.  

Keywords: convolutional neural network, deep 
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I. Introduction

Intelligent transport systems (ITSs) are developed to 
provide safe travel and ensure effective transportation 

[1]. To implement this, the ITS needs access to data like 
the type of vehicle. This will help authorities to identify 
criminals quickly. It can also be used to apprehend violators 
like trucks [2], during certain periods of time (ex., rush 
hour) when trucks are not allowed on the road. Vehicle 
classification maybe a simple problem for a human, but 
for a computer, it’s a complex problem. That’s why many 
researchers are exploring image processing [3] to solve 
this problem with high accuracy by creating different 
architectures/models. There are many techniques that can 
be used to classify images like artificial neural networks, 
decision tree, support vector machine, and fuzzy measure 
[4]. Currently, convolutional neural networks (CNNs) 
are used in image classification because they provide 
accurate performance in computer vision tasks. There are 
many pre-trained CNN based models that can be used for 
image classification like AlexNet [5], VGG16, VGG19 
[6], ResNet50 [7], InceptionV2, InceptionV3 [8], Xception 

[9], and DenseNet [10]. On the other hand, models like 
R-CNN [11], Fast R-CNN [12], YOLO [13], YOLO9000 
[14], SSD [15], and MobileNet [16] are commonly used 
object classification and detection models. The focus of 
this paper is to utilize MobileNet for object classification 
using android platform.

This paper is organized as follows: section 2 discusses 
the concept about MobileNet and its architecture. Section 
3 describes the experiment setup and the dataset used for 
training. Section 4 shows the performance of the MobileNet 
model in vehicle classification and its deployment in an 
Android platform.

II. MobileNet

MobileNet is an efficient model designed for mobile 
and embedded vision applications [16]. It uses depthwise 
separable convolutions to build lightweight and efficient 
deep neural networks. The depthwise convolution applies 
a single filter to each input channel. To combine the output 
of depthwise convolution, pointwise convolution applies 
1 × 1 convolution. The combination of two convolutions 
results to a depthwise separable convolution. Two layers 
are formed by depthwise separable convolution. The first 
layer is used for filtering, and the second layer is used for 
combining. This is called factorization, and as a result, it 
reduces the model size and computation.

Table 1 shows the MobileNet architecture. The model 
consists of 28 layers. These layers are combinations of 
alternating depthwise and pointwise convolutions. Every 
layer is followed by batch normalization and rectified linear 
unit (ReLu) [17] function except the fully connected layer 
which is followed by a softmax classifier that gives actual 
probabilities in each class. Batch normalization speeds up 
the training [18], and the ReLu function is 0 for negative 
values and grows linearly for positive values. The notations 
s1 and s2 are the number of strides. Stride controls how 
the filter convolves around an input volume.
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TABLE 1 
MobileNet Architecture

Layer Type/Stride Input Size

1 Conv /s2 224 × 224 × 3

2 Conv dw /s1 112 × 112 × 32

3 Conv /s1 112 × 112 × 32

4 Conv dw /s2 112 × 112 × 64

5 Conv /s1 56 × 56 × 64

6 Conv dw /s1 56 × 56 × 128

7 Conv /s1 56 × 56 × 128

8 Conv dw /s2 56 × 56 × 128

9 Conv /s1 28 × 28 × 128

10 Conv dw /s1 28 × 28 × 256

11 Conv /s1 28 × 28 × 256

12 Conv dw /s2 28 × 28 × 256

13 Conv /s1 14 × 14 × 256

14–23 Conv dw/ s1
Conv /s1

14 × 14 × 512
14 × 14 × 512

24 Conv dw /s2 14 × 14 × 512

25 Conv /s1 7 × 7 × 512

26 Conv dw /s2 7 × 7 × 1024

27 Conv /s1 7 × 7 × 1024

Avg. Pool /s1 7 × 7 × 1024

28 FC /s1 1 × 1 × 1024

Softmax /s1 1 × 1 × 1000

III. Experiment Setup

The effectiveness of MobileNet in vehicle classification 
was tested in an android application. It is a simple camera 
application that runs a TensorFlow image recognition 
program to identify vehicles. This was inspired by the code 
from “TensorFlow for Poets 2” of Google Codelabs [19]. 
TensorFlow mobile was used to run the MobileNet and 
integrated it to mobile application. The Anaconda Prompt 
was used to initiate command in training and testing the 
model. 

The first step in training the data is to install dependencies 
like TensorFlow. This is an open-source library for high-
performance calculation, which allows easy deployment in 
different platforms and supports deep learning applications 
[20]. Figure 1 shows the block diagram of the vehicle 
classification structure. Next is to collect the data that will 
be used for training. The dataset is composed of five types of 
vehicles such as pickup, SUV, sedan, van, and truck. These 
images came from ImageNet, an image database. Table 2 
shows the number of images per category of vehicle.

TABLE 2 
Dataset

Vehicle Type Number of Images
Pickup 400
SUV 400
Sedan 400
Van 400

Truck 400
Total 2000
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Fig.1.Block diagram. 

 
 
Next is to re-train the data using the MobileNet 

model.The output of this is a .pbfile; this is a single 
model file that contains graph variables frozen as 
constants. The input images can be configured using 4 
different input sizes such as 128, 160, 192, and 224 
pixels. The width multiplier (α) of the model can also 
be set such as 1.0, 0.75, 0.5, and 0.25. The width 
multiplier makes the model small and faster by 
reducing computational cost and number of 
parameters. 

Then, test the model by using random image and 
compute its accuracy. After this, optimize the model 
by removing some nodes that are not needed in a given 
set of input and output. Next is to compress the model 
by quantizing the network weights to make it ideal for 
mobile applications. After compression, the model is 
ready to upload in an Android platform. 

4.Results 

4.1. Image Classification Performance 
The performance of the MobileNet model was 

tested by calculating its validation accuracy, 
crossentropy, and evaluation time. Validation 
accuracy is the precision on a randomly selected group 
of images from a different set. Crossentropy is a loss 
function that shows how well the learning process is 
progressing. The ideal value of cross entropy is 0. 
Evaluation time is the time it takes to classify the test 
image. The total number of steps used in training the 
model was 2000 steps. This is enough to see if the 
model is learning. Table 3 shows the accuracy and 
cross entropy using different values of width 
multiplier (α) in MobileNet. It shows that when the 
MobileNet’s width multiplier (α) decreases, the 

Fig.1. Block diagram.
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Next is to re-train the data using the MobileNet model. 
The output of this is a .pb file; this is a single model file 
that contains graph variables frozen as constants. The input 
images can be configured using 4 different input sizes such 
as 128, 160, 192, and 224 pixels. The width multiplier (α) 
of the model can also be set such as 1.0, 0.75, 0.5, and 0.25. 
The width multiplier makes the model small and faster by 
reducing computational cost and number of parameters.

Then, test the model by using random image and 
compute its accuracy. After this, optimize the model by 
removing some nodes that are not needed in a given set 
of input and output. Next is to compress the model by 
quantizing the network weights to make it ideal for mobile 
applications. After compression, the model is ready to upload 
in an Android platform.

IV. Results

A.	 Image Classification Performance

The performance of the MobileNet model was tested 
by calculating its validation accuracy, cross entropy, and 
evaluation time. Validation accuracy is the precision on 
a randomly selected group of images from a different set. 
Cross entropy is a loss function that shows how well the 
learning process is progressing. The ideal value of cross 
entropy is 0. Evaluation time is the time it takes to classify 
the test image. The total number of steps used in training the 
model was 2000 steps. This is enough to see if the model 
is learning. Table 3 shows the accuracy and cross entropy 
using different values of width multiplier (α) in MobileNet. 
It shows that when the MobileNet’s width multiplier (α) 
decreases, the validation accuracy also decreases and the 
cross entropy increases.

TABLE 3 
Accuracy and Cross Entropy

Input Size Width 
Multiplier (α)

Accuracy
(%)

Cross 
Entropy

224 1.0 84.83 0.541196

224 0.75 84.36 0.554476

224 0.5 81.99 0.713274

224 0.25 72.04 2.38165

Figure 2 shows the training (orange) and validation 
accuracy (blue) during the training. This graph was 
from MobileNet using α = 1.0. As shown, the model 
was not learning anymore. In this case, the training can 
be stopped. The average validation accuracy is equal to 
84.83%.
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Fig. 2. Training steps vs. accuracy.

Figure 3 shows the training (orange) and validation cross 
entropy (blue) during the training. The ideal value of cross 
entropy is 0 because this is a loss function. The average cross 
entropy is equal to 0.541196.
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Fig. 3. Training steps vs. cross entropy.

Table 4 shows the time comparisons using different 
width multiplier (α) in the model. As the width multiplier 
(α) decreases, the time of evaluation also decreases. This 
is because the model became lightweight and has fewer 
computations.

Table 5 shows the model size comparisons for each 
different width multiplier (α) in the model. Using α = 1.0, 
there was 32.50% size reduction from the optimized to 
the compressed model. This compression can be useful in 
deploying the model for mobile applications because it can 
be downloaded easily.

Figure 4 shows the bubble chart of evaluation time versus 
accuracy. The size of the bubble is proportional to the size 
of the model. As we can see, there is a trade-off between 
accuracy and speed. If we need a faster model, α = 0.25 
can be used, but the accuracy will decrease. For real-time 
application, α = 1.0 can still be used.
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Fig. 4. Evaluation time vs. accuracy.

B.	 Deployment in Android Platform

The trained model was deployed in an Android 
platform to test its performance in real-time application. 
TensorFlow mobile was used to prepare the model for 
mobile deployment. Figure 5 shows the screenshot from the 
TensorFlow application using a Samsung Galaxy S7 Flat 
phone. The testing images were randomly selected to test if 
the application can detect unseen data. The actual images in 
the figure were both sedan and correctly identified as sedan.
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Fig. 5. Screenshot from TensorFlow application (sedan).

Another set of images was tested as shown in Figure 6. 
These images were a truck and correctly identified as truck 
by the TensorFlow application.

TABLE 4 
Evaluation Time Comparisons

Input Size
Width 

Multiplier
(α)

Time 
(Re-Trained)

(s)

Time 
(Optimized)

(s)

Time
(Compressed)

(s)

224 1.0 2.163 2.023 2.061

224 0.75 1.756 1.776 1.701

224 0.5 1.352 1.341 1.359

224 0.25 1.122 1.121 1.121

TABLE 5 
Model Size Comparisons

Input Size
Width 

Multiplier
(α)

Size
(Re-Trained)

(KB)

Size
(Optimized)

(KB)

Size
(Compressed)

(KB)

224 1.0 15,489 15,485 5,033

224 0.75 9,490 9,486 3,174

224 0.5 4,916 4,913 1,786

224 0.25 1,766 1,763 708
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Fig. 6. Screenshot from TensorFlow application (truck).

Figure 7 shows an image of an SUV. The TensorFlow 
application failed to classify the first image as SUV; it was 
predicted as sedan. This is due to the similar features of an 
SUV and a sedan. 
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Fig. 7. Screenshot from TensorFlow application (SUV).

V.  Conclusion

The implementation of real-time vehicle classification 
was successfully tested using the Android platform. The 
experiment result shows that the MobileNet can classify 
vehicle type up to 84.83% accuracy. TensorFlow mobile 
is a good deep learning solution for a mobile platform 
like Android. Although in testing an SUV image, the 

model cannot consistently classify the image, other types 
of vehicles were accurately identified. This is due to the 
physical structure of the SUV that is not totally different 
from the other types of vehicles because some SUVs are 
similar to a sedan, van, and pickup. As a solution, it is 
recommended to increase the dataset and remove some 
images that are confusing.

For future work, the application of MobileNet can be 
upgraded to track and identify vehicle type using CCTV 
videos in real-time.
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