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Abstract—Initial projection of a continuously 
repositioning target is a setback in genetic algorithm; 
a GA program needs constant input sampling to 
predict and declare a targets status. Another difficulty 
is the incorporation of GA to hardware and software 
which considered as the most important tool in sensor 
integration. Familiarity in programming is essential in 
utilizing the NI LabVIEW and NI myDAQ environment. 
The aim of this research paper is to provide a solution 
for determining the locus (gene position) of a target 
through distinctly employed multiple sensors which 
employs low-frequency (LF) ground-wave oscillations 
as its signal sources. The targets’ position as well as 
the speed is continuously monitored through virtual 
instrument (VI) software; the user will be able to 
visually analyze the constant system mutation plots and 
the number of completed generations. Upon completion 
on the number of generations, the plot points can be 
imported to a spreadsheet for further analysis. The 
multiplatform software will be able to plot the response 
under real-time circumstances.

Keywords: LabVIEW, locus, mutation, low-
frequency, multiplatform

I. IntroductIon

Today, multiple programming methods are applied 
to perform different tasks; one of them is the genetic 
algorithm (GA). GA in artificial intelligence is a type 
of evolutionary computer algorithm in which symbols 
(often called “genes” or “chromosomes”) representing 
diverse solutions undergo a process called crossover or 
sometimes addressed as breeding. This process involves 
recombination of possible genes and multiple mutations 
at a specific rate. GA mimics the way evolution acts and 
allows us to improve the performance of controllers or 

adapt them to different systems [1]. GA is a probabilistic 
behavior, global searching, and optimization algorithm 
which is primarily intended to solve complex problems [2].

In comparison with common classical algorithms, GA 
has loads of advantages, such as a widely viable solution, 
searching in small and large groups, assistance without 
further information on the target, internal heuristic random 
search, parallel computing, etc. [3]. GA is a process for 
solving both forced and unrestrained optimization problems 
that is based on natural selection; the mutation process 
drives biological evolution [4]. It is mainly an overall 
arbitrary search and optimization method which aims to 
emulate the natural biological evolution [5].

In the livestock industry, one of the major causes of 
destructive loss is reptilian predators; these are hunters 
that feed on fowls and their by-product. This research 
aims to employ this method under a different target such 
as predators and take consideration of some parameters 
such as speed of movement and location status. Through 
LabVIEW, a programming platform which is widely 
utilized due to its simple graphical environment yet able to 
adopt to diverse interface on various hardware and software 
[6], the user is enabled to analyze the result through 
point-plotting approach. Unlike other object-oriented 
programming, LabVIEW allows wiring  graphical objects 
in  block  diagrams which function as various utilities and 
modules [7]. The NI DAQ (Data Acquisition) hardware is 
an external module interface of LabVIEW which consists 
of several modules that can imitate analog-to-digital 
converters (ADC), signal conditioners, isolators, filters, 
and interfacing circuits [8].

II. PrIor related Work

LabVIEW GA is a virtual instrument that integrates 
fitness evaluation, mutations, crossovers and selection [9] 
through prediction modelling, determination of different 
signals coming from multiple sources where attenuation 
and interferences can occur can be used [10]. 

Animal behavioral studies have been recently being 
studied especially on the use of sound pressure [11], [12] 
especially on common reptiles such as snakes through 



16 Journal of Computational innovations and EnginEEring appliCations  vol. 3 no. 1 (2018)

vibration stimulation [13]. At 150–450 Hz in the range 
of 65–75 dBre at 20 mPa, Young and Aguiar observed a 
substantial decrease in the rattlesnake’s C. atrox bodily 
movement and tongue flicking whilst showing a significant 
rise in numbers of head twitches and tail rattles [11]. Young 
and Morain added that olfactory-denervated and temporarily 
blinded Saharan sand vipers’ (Cerastes cerastes) striking 
distance, angle, and accuracy were significantly reduced in 
capturing a free-running prey while employing only target 
vibrations [13]. Using GA, animal modeling rationalizes 
non-random mating and complex data organizations which 
utilizes parental phenotypes and offspring [14].

 III. comPonents and system archItecture 
requIrements

The system composition is a LabVIEW Virtual 
Instrument (VI) that employs a block diagram, front panel, 
and a DAQmx assistant which serves as a medium for 
acquiring data. The intent of the experiment is to record and 
plot multiple generations of data coming from the motion 
sensors. The sets of data that are sent to the computer are the 
position as well as the speed of the target. The program will 
be able to predict the succeeding point location where the 
target would move through a series of consecutive mutations 
and generations. 

A.  The following are the hardware components of the GA 
system:
1. Motion sensors/transducers
2. Signal transceivers/tranducers
3. NI myDAQ
4. Personal computer/laptop
5. NI LabVIEW
6. Dual polarity power supply

B.  The following are the computer hardware specifications 
necessary to operate the GA structure:
1. Pentium 4M processor or higher
2. 1 GB of RAM or higher
3. 32- or 64-bit Windows 7/8/8.1/10 
4. Free 20-GB hard drive storage for system  software 

requirements
5. Screen resolution of at least 1024 × 768 pixels
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Figure 1. System block diagram. 
 

The system as shown in Error! Not a valid bookmark 
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transducers, a motion sensor for detecting the rate of the 
specimen movement, and an RF signal transducer 
comprised of a ground-wave oscillator for quantifying the 
position of the target. 
 
The transducers continuously monitor the movement of the 
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data acquisition hardware. The GA virtual instrument takes 
the samples (parents) and generates consecutive mutations 
within the userassigned number of iterations. The VI will 
display the optimum value of mutation and plots the 
activity. The accumulated results can be analyzed through 
an integrated spreadsheet.    
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rate of the specimen movement, and an RF signal transducer 
comprised of a ground-wave oscillator for quantifying the 
position of the target. 

The transducers continuously monitor the movement of 
the target such as change in speed and position and send it 
to the data acquisition hardware. The GA virtual instrument 
takes the samples (parents) and generates consecutive 
mutations within the user assigned number of iterations. The 
VI will display the optimum value of mutation and plots the 
activity. The accumulated results can be analyzed through 
an integrated spreadsheet.   

The LabVIEW VI is composed of the following:

1. Waveform chart for signal analysis
2. Generation progress monitor
3. Value indicator
4. Generation control
5. Mutation probability control
6. Interrupter button
7. Time estimator
8. Time generation monitor
9. “Save on spreadsheet” button

The hardware and software system requirements 
stated are based upon the minimum requirements needed 
to run LabVIEW 2012 to 2015 and NI myDAQ. Higher 
specification computers can increase the boot speed of the 
program as well as the necessary modules; this will also 
affect the effectiveness of system simulation.
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IV. hardWare and softWare IntegratIon

The hardware and software integration is implemented 
through the following procedures:

•  A motion sensor is installed in a defined location with 
minimal irregular geographic terrain.

•  An RF signal transducer is utilized to monitor the 
location of the specimen.

•  The transducers are connected to an NI MyDAQ signal 
acquisition hardware to integrate LabVIEW.

•  The LabVIEW program acquires the samples and applies 
genetic algorithm to perform mutations.

•  The user defines the number of generations that will be 
iterated by the program.

•  LabVIEW GA plots each performed mutation and restarts 
after completing the defined generations.

The circuit in Figure 2 is the RF oscillator that serves as 
an input to the signal transmitter. It is comprised of multiple 
square wave generators and sinusoid converters. The 
waveforms produced are generally combined by a masking 
stage and are used to generate ground wave oscillations. 

Using roulette selection [15], let the population size be 
p, the population members be ci for ≤ i ≤ p, and the fitness 
of chromosome be written f (c) and the wheel size W by 
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V. system functIonalIty 
demonstratIon

The block diagram, as shown in Figure 3, illustrates the 
main VI program of the GA system. It is also composed 
of multiple sub-VIs which perform the mutation of each 
input sample.  The DAQ Assistant serves as the interface 
between the external experiment proper and the software. 
The speed of iterations varies depending upon the capacity 
of the simulating CPU.
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Figure 34. Specimen andtarget setup. 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 45.First-generation plot. 
 
 
 
 

 
 

Figure 4 
Figure 5 shows the plot of the first generation. First 
mutations are low, yet the best fit value generated by the VI 
reaches an almost constant score.  
 

 
 

Figure 56.Second-generation plot. 
 
Error! Reference source not found.Figure 6 shows the 
plot of the secondgeneration. First mutations are relatively 
lower than the first, yet the optimally fit value generated 
still reaches an almost constant score.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 67.Third-generation plot. 
 
In  
 
 
Figure 6Figure 7, the first mutations are low, but while 
finding the best fitness, the program still arrived at the 
optimum score which is nearly constant. 
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Fig. 5. First-generation plot.

Figure 5 shows the plot of the first generation. First 
mutations are low, yet the best fit value generated by the VI 
reaches an almost constant score. 
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Fig. 6. Second-generation plot.

Figure 6 shows the plot of the second generation. First 
mutations are relatively lower than the first, yet the optimally 
fit value generated still reaches an almost constant score. 
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Fig. 7. Third-generation plot.

In Figure 7, the first mutations are low, but while finding 
the best fitness, the program still arrived at the optimum 
score which is nearly constant.
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Figure 78.Fourth-generation plot. 
 
In the fourth generation as shown in Error! Reference 
source not found.Figure 8, the first samples started 
extremely low but still managed to recover and attained a 
maximum score throughout the generation. 
 
Figure 8 
Figure9 illustrates the four generations of mutations done 
by the system. As shown, multiple iterations are repeated 
for mutation of the acquired samples. At the start of the 
experiment, mutations are low; however, the system 
continuous to attempt a prediction on how the specimen 
would succeed in reaching its target. The VI requires at least 
11ms before it settles for the best fitness outcome. 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 89. Mutation results. 

6. CONCLUSIONS AND RECOMMENDATIONS 
 
The point plotting GA system was able to execute locus 
plots through the reception of sensor data. Mutations of 
several samples on the target specimen’s velocity and 
position wereobtained and monitored through NI LabVIEW 
as well as the importation on a spreadsheet summary for 
further analysis and assessment. The VI software can be 
modified to perform other tasks which allows gathering of 
other parameters of moving samples. 
 

The system structure can be enhanced through several 
software and hardware modifications. These enhancements 
will improve genetic mutations on movement predictions, 
namely, 
 Increase in CPU processing speed by utilizing greater 

hardware specifications, 
 Replacement of a higher sensitivity reception 

transducers, 
 Modifications on the LabVIEW program for generation 

mutations, and 
 Placement of transmitter and receiver transducers on 

terrains with less inclinations as well as geographical 
obstructions.  
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Fig. 8. Fourth-generation plot.

In the fourth generation as shown in Figure 8, the first 
samples started extremely low but still managed to recover 
and attained a maximum score throughout the generation.

Figure 9 illustrates the four generations of mutations 
done by the system. As shown, multiple iterations are 
repeated for mutation of the acquired samples. At the start 
of the experiment, mutations are low; however, the system 
continuous to attempt a prediction on how the specimen 
would succeed in reaching its target. The VI requires at least 
11 ms before it settles for the best fitness outcome.

A LabVIEW-based Target Optimization Genetic Algorithm for Biological Predators   
 
 

 
 

 
 

Figure 78.Fourth-generation plot. 
 
In the fourth generation as shown in Error! Reference 
source not found.Figure 8, the first samples started 
extremely low but still managed to recover and attained a 
maximum score throughout the generation. 
 
Figure 8 
Figure9 illustrates the four generations of mutations done 
by the system. As shown, multiple iterations are repeated 
for mutation of the acquired samples. At the start of the 
experiment, mutations are low; however, the system 
continuous to attempt a prediction on how the specimen 
would succeed in reaching its target. The VI requires at least 
11ms before it settles for the best fitness outcome. 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 89. Mutation results. 

6. CONCLUSIONS AND RECOMMENDATIONS 
 
The point plotting GA system was able to execute locus 
plots through the reception of sensor data. Mutations of 
several samples on the target specimen’s velocity and 
position wereobtained and monitored through NI LabVIEW 
as well as the importation on a spreadsheet summary for 
further analysis and assessment. The VI software can be 
modified to perform other tasks which allows gathering of 
other parameters of moving samples. 
 

The system structure can be enhanced through several 
software and hardware modifications. These enhancements 
will improve genetic mutations on movement predictions, 
namely, 
 Increase in CPU processing speed by utilizing greater 

hardware specifications, 
 Replacement of a higher sensitivity reception 

transducers, 
 Modifications on the LabVIEW program for generation 

mutations, and 
 Placement of transmitter and receiver transducers on 

terrains with less inclinations as well as geographical 
obstructions.  
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Fig. 9. Mutation results.

VI. conclusIons and recommendatIons

The point plotting GA system was able to execute 
locus plots through the reception of sensor data. Mutations 
of several samples on the target specimen’s velocity and 
position were obtained and monitored through NI LabVIEW 
as well as the importation on a spreadsheet summary for 
further analysis and assessment. The VI software can be 
modified to perform other tasks which allows gathering of 
other parameters of moving samples.

The system structure can be enhanced through several 
software and hardware modifications. These enhancements 
will improve genetic mutations on movement predictions, 
namely,

•  Increase in CPU processing speed by utilizing greater 
hardware specifications,

•  Replacement of a higher sensitivity reception transducers,
•  Modifications on the LabVIEW program for generation 

mutations, and
•  Placement of transmitter and receiver transducers on 

terrains with less inclinations as well as geographical 
obstructions. 
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