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Abstract
Abstract — This paper presents a technique to detect 

the presence of P. palmivora disease in jackfruit trunk 
using Naïve Bayes classifier. In this study, 200 sample 
images of jackfruit trunk were used, which were divided 
into two sets: for training and for testing. Each set 
contains 50 images for healthy and 50 images for disease 
infected. The input images were subjected to image pre-
processing such as cropping, scaling, and brightness and 
contrast adjustment. Then, the images were segmented 
into two regions using color masking. Texture features 
such as angular second moment (uniformity) and sum 
of squares (variance) were also extracted from the 
images. Next, Naïve Bayes classifier was used to classify 
whether the jackfruit is infected with the disease or not. 
Finally, the performance of the classifier was evaluated 
by computing the overall accuracy of the system. Based 
on the result, the classifier achieved 94% accuracy in 
detecting the disease incidence. Moreover, this rate can 
be further improved by adding texture features and by 
applying other classification algorithms.

Keywords: Phytophthora palmivora, Naïve Bayes 
classification, texture features, image processing 

I.  Introduction

Jackfruit, which is scientifically known as Artocarpus 
heterophyllius Lam and locally known as “nangka” or 

“langka,” is one of the most widely grown fruit crops in 
the Philippines, which produces the largest edible fruit 
that may weigh as much as 50 kg [1]. It is an emerging 
industry in the country especially in Eastern Visayas, where 
it is marketed as the “flagship fruit.” It is a multipurpose 

tropical fruit tree which can be the source of food, timber, 
fodder, dyes, latex, and medicinal and other value-added 
products [2]. In 2013, jackfruit was planted in a total area 
of 14,526 hectares (ha) with a total production of 46,080 
metric tons (mt) [3]. A follow-up report in [4] shows that 
production of jackfruit amounted to about 44,605 mt 
in 2014, 43,666 mt in 2015, and 42,021 mt in 2016. It 
indicates that the country’s production continued to decline. 

This decline can be attributed to a variety of reasons 
such as natural calamities, pests, and boring insects; 
however, damage caused by pathogens plays a significant 
role in crop reduction in both quality and quantity. To name 
one, Phytophthora palmivora (Butler), which is known as 
one of the most destructive genera of plant pathogens in 
temperate and tropical regions [5], was identified as the 
major cause of jackfruit production decline in southern 
Philippines, which affects 85% of jackfruit orchards 
in Leyte and Samar [6]. The occurrence of this disease 
hampered its production and threatened the livelihood of 
local farmers.

Jackfruit infected with P. palmivora shows symptoms 
including trunk cankers (Fig. 1), chlorosis and wilting of 
the foliage, root lesions, and tree death. As described by 
the authors in [7], stem cankers appeared firstly as wet 
lesions on the bark surfaces, often close to the insertion 
of large branches, but more frequently at trunk bases. A 
reddish-brown resin oozed from cracks in the bark. The 
wood tissues under the lesions showed cream to reddish 
brown discoloration. The infected areas enlarged, girdling 
the stems and causing severe decline of the trees.

Fig. 1. Jackfruit infected with P. palmivora disease. a. Exterior 
tree trunk showing canker lesions. b. Exterior surface removed 
to show reddish color disease
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If timely handling and proper management are 
not taken into consideration, this disease poses a 
serious threat to jackfruit yield and long-term 
viability of plantation. In this context, early and 
advanced disease detection is of utmost 
importance.Currently, jackfruit growers and domain 
experts identify the occurrence of the disease 
through naked-eye observation and laboratory tests. 
On the other hand, these could be time consuming 
and laborious especially in monitoring big jackfruit 
orchards. With the advent of technology, this 
process can be automated through image processing 
and machine learning techniques. These techniques 
have been applied to various agricultural 
applications such as to detect the incidence and 
severity of plant diseases, to determine plant 
varieties, and to identify the quality grading level of 
fruits and vegetables. For instance, in the studyof 
[8], features such as color, morphology, and color 
coherent vector(CCV) were extracted and support 
vector machine (SVM) classification was used to 
determine incidence of pomegranate disease, in 
which the authors obtained an accuracy rate of 
82%.Aside from SVM, other classification 
algorithms were proven to be effective, notably the 
Naïve Bayes[9] classifier wherein it outperforms the 
conventional classifiers as indicated in the studies 
of[10]  and [11] in terms of classification accuracy. 

There are other numerous studies pertaining to 
automated crop diseases 
identification[12][13];however,detection of 
P.palmivora disease occurrence in jackfruit does not 
exist yet. This could be beneficial in monitoring big 
farms and in the absence of domain experts, hence 
the conduct of this study. 

2.  Methodology 

Figure 2illustrates that the system architecture 
applied in this study consists of two main 
components: image processing and Naïve Bayes 

classification. In the following, details about each 
component were presented. 
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recognizer. 
 
2.1.Image Acquisition and Image Pre-Processing 

The imagesof jackfruit trunk (healthy and 
infected)were captured using a 12-megapixel digital 
camera last July 24, 2017,and September 5, 2017,in 
two jackfruit farms located at Mahaplag, 
Leyte.Cropping was applied to images to remove 
unwanted details/objects and to emphasize the 
region of interest.Further pre-processing such as 
scaling into 600×600and brightness and contrast 
adjustments were also performed.  

2.2.Image Segmentation and Feature Extraction 
Features such as color and texture were 

extracted from the images. For the color features, 
images were segmented into tworegions using color 
masking based on the formula shown in Eq. (1). 
Threshold values that indicate the color 
characteristics of the infected region are reflected in 
Figure 3. 

where 
Ciiscolor 
R1 is infected region 
R2 is not infected region 
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A.	 Image Acquisition and Image Pre-Processing

The images of jackfruit trunk (healthy and infected) 
were captured using a 12-megapixel digital camera last July 
24, 2017, and September 5, 2017, in two jackfruit farms 
located at Mahaplag, Leyte. Cropping was applied to images 
to remove unwanted details/objects and to emphasize the 
region of interest. Further pre-processing such as scaling 
into 600 × 600 and brightness and contrast adjustments 
were also performed. 

B.	 Image Segmentation and Feature Extraction 

Features such as color and texture were extracted from 
the images. For the color features, images were segmented 
into two regions using color masking based on the formula 
shown in Eq. (1). Threshold values that indicate the color 
characteristics of the infected region are reflected in Figure 3.
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where
Ci is color
R1 is infected region
R2 is not infected region

Hue is an angle between 0° and 360°. Equations (2)  
and (3) show the computations for hue angle and brightness 
[14].

     	 (2)

	 	 (3)

The angle of incidence (∠) is used to compute the 
distance between hue of red and the hue of Ci.
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hue angleand brightness[14]. 

The angle of incidence () is used to compute 
the distance between hue of red and the hue of Ci. 

 

 

 
Figure 3. Color space for (a) hue and (b) brightness. 

Furthermore, for the texture features, two of 
the 14descriptors defined by Haralick[15] from 
GLCM were extracted. These include angular 
second moment (Eq. 5) and sum of squares: 
variance (Eq. 6). GLCM produces features which 
describe well the relationship of adjacency among 
pixels in a texture image. 

The extracted features values were then 
categorizedbased on the defined range of values 
for a specific category level shown in Table 1 to 
Table 3. Thesefeatures from all images in the 
training setwere stored in the database to be used 
in the classification process. 

Table 1. Category of Values for the Masked Regions 
Category     Values 

Very low >0 to <=10 
Low >10 to <=20 
Moderate >20 to <= 35 
High >35 to <= 55 

Very high >55 

Table 2. Category of Values for ASM 
Category     Values 

Very low <= 0.00105200 
Low >0.00105200to <=0.00203048 
Moderate >0.00203048 to <=0.00300897 
High >0.00300897 to <=0.00398745 
Very high >0.00398745 

Table 3. Category of Values for Variance 
Category Values 

Very low <=58.05314194 
Low >58.05314194to <=92.45157227 
Moderate >92.45157227to <=126.85000259 
High >126.85000259 to <=161.24843291 
Very high >161.24843291 

2.3. Training and Classification Phase 

During the training phase, a dataset of 100 
images wasused,which is composed of 50 healthy 
trunks and 50 infected trunks. 

Class values for Naïve Bayes classifier were 
defined,which include: not infected and 
infected.The probabilities for each 
attribute/featureconditional on the class value were 
computed. Then, product rule was applied to 
obtain a joint conditional probability for the 
attributes while Bayes’ rulein Eq. (7)was used to 
derive the conditional probabilities for each class, 
wherein the class with the highest probability was 
considered as the outcome of the prediction[16]. 

where
�(�|�)—posterior probability 
�(�|�)—likelihood 
�(�)—class prior probability 
�(�)—predictor prior probability 

3.Experimental Results 

The graphical interface for the training phase 
is shown in Figure 4.It illustrates that once the 
image is loaded into the system, the extracted 
feature values and its equivalent category level are 
displayed. The user then needs to indicate the 
expert’s classification on the image before clicking 
the save button. These values will be saved into 
the database and will be used for the training 
process. 

��(�) = min(360 � ��� �) (4)	 (4)
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Furthermore, for the texture features, two of the 14 
descriptors defined by Haralick [15] from GLCM were 
extracted. These include angular second moment (Eq. 5) and 
sum of squares: variance (Eq. 6). GLCM produces features 
which describe well the relationship of adjacency among 
pixels in a texture image.

	

Hue is an angle between 0 and 360 .
Equations (2) and (3) show the computations for 
hue angleand brightness[14]. 

The angle of incidence () is used to compute 
the distance between hue of red and the hue of Ci. 
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The extracted features values were then categorized 
based on the defined range of values for a specific category 
level shown in Table 1 to Table 3. These features from all 
images in the training set were stored in the database to be 
used in the classification process.
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III. Experimental Results

The graphical interface for the training phase is shown 
in Figure 4. It illustrates that once the image is loaded into 
the system, the extracted feature values and its equivalent 
category level are displayed. The user th en needs to indicate 
the expert’s classification on the image before clicking the 
save button. These values will be saved into the database 
and will be used for the training process. 
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Fig. 4. Features extraction result of the system.

The difference between healthy jackfruit trunks and  
those with P. palmivora disease infection is indicated in 
Table 4.
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TABLE 4
Sample Images of Infected and Not Infected  

Jackfruit Trunks 

INFECTED NOT INFECTED

Table 5 illustrates the training set for the system after 
extracting features from all 100 images. It contains columns 
for extracted numerical values, its equivalent category, and 
its expected classification values.

Apart from 100 jackfruit trunk images used during the 
training phase, a different set of 100 images was used for 
the testing phase. These images were loaded into the system 
and were then converted into features form.  For each image, 
the predicted class label obtained by Naïve Bayes classifier 
was saved into the database table alongside with its values 
(Table 6).

The system can now be used to determine whether the 
image of the jackfruit trunk shows occurrence of the disease 
or not. Figure 5 illustrates the decision of the classifier based 
on the features extracted from the given image. 
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Fig.5. Recognition result of the system.

Table 5 
Training Dataset

Sample 
No. Mask 1 Mask 2 ASM Variance Mask 1 

Category
Mask 2 

Category
ASM 

Category
Variance 
Category

Expected 
Result

1 34.76 65.24 0.00051 55.11715 Moderate Very High Very Low Very Low Infected

2 48.62 51.38 0.00252 23.65471 High High Moderate Very Low Infected

3 36.17 63.83 0.00033 46.04551 High Very High Very Low Very Low Infected

4 22.99 70.01 0.00108 30.03209 Moderate Very High Low Very Low Infected

5 59.31 40.69 0.00497 23.97449 Very High High Very High Very Low Infected

6 18.80 81.20 0.00027 54.99160 Low Very High Very Low Very Low Infected

7 4.22 95.78 0.00011 140.87128 Very Low Very High Very Low High Not Infected

8 3.15 96.85 0.00018 124.68015 Very Low  Very 
High

Very Low Moderate Not Infected

9 10.31 89.69 0.00012 134.12725 Low Very High Very Low High Not Infected

10 7.22 92.78 0.00016 169.53530 Very Low Very High Very Low Very High Not Infected

11 12.50 87.50 0.0009 178.21163 Low Very High Very Low Very High Not Infected

: : : : : : : : : :

100 0.16 99.84 0.00025 78.19798 Very Low Very High Very Low Low Not Infected
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Table 6 
Testing Dataset

Sample 
No. Mask 1 Mask 2 ASM Variance Mask 1 

Category
Mask 2 

Category
ASM 

Category
Variance 
Category

Expected 
Result

Actual 
Result

1 43.57 56.43 0.00031 36.31061 High Very High Very Low Very Low Infected Infected

2 33.09 66.91 0.00008 31.70688 Moderate Very High Very Low Very Low Infected Infected

3 30.21 69.79 0.00043 71.98274 Moderate Very High Very Low Low Infected Infected

4 19.57 80.43 0.00012 103.2699 Low Very High Very Low Moderate Infected Not Infected

5 16.54 83.46 0.00007 105.0948 Low Very High Very Low Moderate Infected Not Infected

6 16.04 83.96 0.00021 67.90312 Low Very High Very Low Low Infected Infected

7 13.71 86.29 0.00030 84.07898 Low Very High Very Low Low Infected Infected

8 12.3 87.70 0.00018 160.4463 Low Very High Very Low High Not Infected Not Infected

9 10.15 89.85 0.00023 96.82886 Low Very High Very Low Moderate Infected Not Infected

10 9.82 90.18 0.00012 166.3141 Very Low Very High Very Low Very High Not Infected Not Infected

11 7.28 92.72 0.00016 118.4576 Very Low Very High Very Low Moderate Not Infected Not Infected

: : : : : : : : : :

100 7.02 92.98 0.00015 107.681 Very Low Very High Very Low Moderate Not Infected Not Infected

A.	 Discussions

Table 7 shows the classifier created from the training 
set where NI means not infected and I means infected. The 
probabilities are computed as the number of samples of a 
class having the value (category) for a feature divided by 
the frequency of a class. In this case, the probability of not 
infected p(NI) is 0.50 and the probability of infected p(I) is 
0.50 as well.

Table 7 
Probability of Feature Conditional on the Class

Category

Features

Mask 1 Mask 2 ASM Variance

NI I NI I NI I NI I

Very low .47 .00 .00 .00 .50 .43 .00 .44

Low .03 .20 .00 .00 .00 .05 .01 .06

Moderate .00 .22 .00 .00 .00 .01 .11 .00

High .00 .07 .00 .02 .00 .00 .34 .00

Very high .00 .01 .50 .48 .00 .01 .04 .00

Table 8 below contains the values for all the extracted 
features from a sample image to be classified as not infected 
or infected.

Table 8 
Sample Extracted Values to be Classified as Infected 

or Not Infected

Feature Value
Mask 1 Low
Mask 2 Very high
ASM Very low
Variance Low

For the classification as not infected, the posterior is 
given by Eq. (8).

	

Table 8. Sample Extracted Values to be Classified as Infected 
or Not Infected 

Feature Value 
Mask 1 Low 
Mask 2 Very high 
ASM Very low 
Variance Low 

For the classification as not infected, the 
posterior is given by Eq. (8). 

While for the classification as infected, the 
posterior is given by Eq. (9). 

where 

However, given the sample, the predictor is a 
constant and thus scales both posteriors equally. In 
this case, it does not affect the classification and 
can be ignored. 

Therefore, considering the posterior numerator 
of NotInfected, which was calculated as  
        ���������(�����������)

= .03 × .50 × .50 × .01 × .50 = .00004
and the posterior numerator of Infected, which was 
calculated as  
        ���������(��������)

= .20 × .48 × .43 × .06 × .50 = .00012
it can be predicted that the sample is infected. 

For each image, the predicted class label 
obtained by Naïve Bayes classifier was then 
compared to the actual class label specified by the 
domain expert. The overall results are displayed in 
the confusion matrix (Table 9) to emphasize how 
many images from the total of each class are 
accurately predicted. 

Then detection accuracy for each class was 
compute as shown in Eq. (10). 

sum of correctly predicted class label
total number of predictions (10)

While the overall accuracy of the system was 
calculated using Eq. (11).  

sum of correct classification
total number of classification (11) 

Table 9. Confusion Matrix 

Class 
Not

Infected Infected
Detection 
Accuracy  

Not
Infected

50 0 100.00% 

Infected 6 44 88.00% 

Overall Accuracy 94.00% 

The result shows that the detection accuracy of 
infected class is lower (88%) compared to the not 
infected class (100%). However, it is notable that 
the system was able to achieve a high overall 
accuracy rate of 94%. 

4. Conclusion and Recommendation 

The overall accuracy rate of the system, which 
is 94%, indicates thatthe application of Naïve 
Bayes classifier on the extracted color and texture 
featurescan significantly support an accurate 
detection of theP.palmivora disease.The 
recognition accuracy rate can be further improved 
by using more high-resolution images, applying 
other image processing techniques, adding more 
features, and applying other classification 
algorithmssuch as artificial neural network, C4.5 
classifier, SVM, etc.It would also be better that the 
system be able to classify the severity of the 
disease infection for a basis of appropriate disease 
management strategies. 

References
 
[1] "Jakfruit in the Philippines, Part 1," March 

1985. [Online]. Available: 
http://rfcarchives.org.au. 

[2] C. R. Elevitch and H. I. Manner, "Artocarpus 
heterophyllus (jackfruit)," April 2006. 
[Online]. Available: www.traditionaltree.org. 

[3] "Philippines: Jackfruit planted area and 
production 2008-2013," [Online]. Available: 
https://www.statista.com/. 

[4] "CountrySTAT Philippines," 10 November 
2017. [Online]. Available: 
http://countrystat.psa.gov.ph. [Accessed 18 

	 (8)

While for the classification as infected, the posterior is given 
by Eq. (9).

	

Table 8. Sample Extracted Values to be Classified as Infected 
or Not Infected 

Feature Value 
Mask 1 Low 
Mask 2 Very high 
ASM Very low 
Variance Low 

For the classification as not infected, the 
posterior is given by Eq. (8). 

While for the classification as infected, the 
posterior is given by Eq. (9). 

where 

However, given the sample, the predictor is a 
constant and thus scales both posteriors equally. In 
this case, it does not affect the classification and 
can be ignored. 

Therefore, considering the posterior numerator 
of NotInfected, which was calculated as  
        ���������(�����������)

= .03 × .50 × .50 × .01 × .50 = .00004
and the posterior numerator of Infected, which was 
calculated as  
        ���������(��������)

= .20 × .48 × .43 × .06 × .50 = .00012
it can be predicted that the sample is infected. 

For each image, the predicted class label 
obtained by Naïve Bayes classifier was then 
compared to the actual class label specified by the 
domain expert. The overall results are displayed in 
the confusion matrix (Table 9) to emphasize how 
many images from the total of each class are 
accurately predicted. 

Then detection accuracy for each class was 
compute as shown in Eq. (10). 

sum of correctly predicted class label
total number of predictions (10)

While the overall accuracy of the system was 
calculated using Eq. (11).  

sum of correct classification
total number of classification (11) 

Table 9. Confusion Matrix 

Class 
Not

Infected Infected
Detection 
Accuracy  

Not
Infected

50 0 100.00% 

Infected 6 44 88.00% 

Overall Accuracy 94.00% 

The result shows that the detection accuracy of 
infected class is lower (88%) compared to the not 
infected class (100%). However, it is notable that 
the system was able to achieve a high overall 
accuracy rate of 94%. 

4. Conclusion and Recommendation 

The overall accuracy rate of the system, which 
is 94%, indicates thatthe application of Naïve 
Bayes classifier on the extracted color and texture 
featurescan significantly support an accurate 
detection of theP.palmivora disease.The 
recognition accuracy rate can be further improved 
by using more high-resolution images, applying 
other image processing techniques, adding more 
features, and applying other classification 
algorithmssuch as artificial neural network, C4.5 
classifier, SVM, etc.It would also be better that the 
system be able to classify the severity of the 
disease infection for a basis of appropriate disease 
management strategies. 

References
 
[1] "Jakfruit in the Philippines, Part 1," March 

1985. [Online]. Available: 
http://rfcarchives.org.au. 

[2] C. R. Elevitch and H. I. Manner, "Artocarpus 
heterophyllus (jackfruit)," April 2006. 
[Online]. Available: www.traditionaltree.org. 

[3] "Philippines: Jackfruit planted area and 
production 2008-2013," [Online]. Available: 
https://www.statista.com/. 

[4] "CountrySTAT Philippines," 10 November 
2017. [Online]. Available: 
http://countrystat.psa.gov.ph. [Accessed 18 

	 (9)

where

Table 8. Sample Extracted Values to be Classified as Infected 
or Not Infected 

Feature Value 
Mask 1 Low 
Mask 2 Very high 
ASM Very low 
Variance Low 

For the classification as not infected, the 
posterior is given by Eq. (8). 

While for the classification as infected, the 
posterior is given by Eq. (9). 

where 

However, given the sample, the predictor is a 
constant and thus scales both posteriors equally. In 
this case, it does not affect the classification and 
can be ignored. 

Therefore, considering the posterior numerator 
of NotInfected, which was calculated as  
        ���������(�����������)

= .03 × .50 × .50 × .01 × .50 = .00004
and the posterior numerator of Infected, which was 
calculated as  
        ���������(��������)

= .20 × .48 × .43 × .06 × .50 = .00012
it can be predicted that the sample is infected. 

For each image, the predicted class label 
obtained by Naïve Bayes classifier was then 
compared to the actual class label specified by the 
domain expert. The overall results are displayed in 
the confusion matrix (Table 9) to emphasize how 
many images from the total of each class are 
accurately predicted. 

Then detection accuracy for each class was 
compute as shown in Eq. (10). 

sum of correctly predicted class label
total number of predictions (10)

While the overall accuracy of the system was 
calculated using Eq. (11).  

sum of correct classification
total number of classification (11) 

Table 9. Confusion Matrix 

Class 
Not

Infected Infected
Detection 
Accuracy  

Not
Infected

50 0 100.00% 

Infected 6 44 88.00% 

Overall Accuracy 94.00% 

The result shows that the detection accuracy of 
infected class is lower (88%) compared to the not 
infected class (100%). However, it is notable that 
the system was able to achieve a high overall 
accuracy rate of 94%. 

4. Conclusion and Recommendation 

The overall accuracy rate of the system, which 
is 94%, indicates thatthe application of Naïve 
Bayes classifier on the extracted color and texture 
featurescan significantly support an accurate 
detection of theP.palmivora disease.The 
recognition accuracy rate can be further improved 
by using more high-resolution images, applying 
other image processing techniques, adding more 
features, and applying other classification 
algorithmssuch as artificial neural network, C4.5 
classifier, SVM, etc.It would also be better that the 
system be able to classify the severity of the 
disease infection for a basis of appropriate disease 
management strategies. 

References
 
[1] "Jakfruit in the Philippines, Part 1," March 

1985. [Online]. Available: 
http://rfcarchives.org.au. 

[2] C. R. Elevitch and H. I. Manner, "Artocarpus 
heterophyllus (jackfruit)," April 2006. 
[Online]. Available: www.traditionaltree.org. 

[3] "Philippines: Jackfruit planted area and 
production 2008-2013," [Online]. Available: 
https://www.statista.com/. 

[4] "CountrySTAT Philippines," 10 November 
2017. [Online]. Available: 
http://countrystat.psa.gov.ph. [Accessed 18 



6 Journal of Computational Innovations and Engineering Applications 	V ol. 3 No. 1 (2018)

However, given the sample, the predictor is a constant 
and thus scales both posteriors equally. In this case, it does 
not affect the classification and can be ignored.

Therefore, considering the posterior numerator of Not 
Infected, which was calculated as 

Table 8. Sample Extracted Values to be Classified as Infected 
or Not Infected 

Feature Value 
Mask 1 Low 
Mask 2 Very high 
ASM Very low 
Variance Low 

For the classification as not infected, the 
posterior is given by Eq. (8). 

While for the classification as infected, the 
posterior is given by Eq. (9). 

where 

However, given the sample, the predictor is a 
constant and thus scales both posteriors equally. In 
this case, it does not affect the classification and 
can be ignored. 

Therefore, considering the posterior numerator 
of NotInfected, which was calculated as  
        ���������(�����������)

= .03 × .50 × .50 × .01 × .50 = .00004
and the posterior numerator of Infected, which was 
calculated as  
        ���������(��������)

= .20 × .48 × .43 × .06 × .50 = .00012
it can be predicted that the sample is infected. 

For each image, the predicted class label 
obtained by Naïve Bayes classifier was then 
compared to the actual class label specified by the 
domain expert. The overall results are displayed in 
the confusion matrix (Table 9) to emphasize how 
many images from the total of each class are 
accurately predicted. 

Then detection accuracy for each class was 
compute as shown in Eq. (10). 

sum of correctly predicted class label
total number of predictions (10)

While the overall accuracy of the system was 
calculated using Eq. (11).  

sum of correct classification
total number of classification (11) 

Table 9. Confusion Matrix 

Class 
Not

Infected Infected
Detection 
Accuracy  

Not
Infected

50 0 100.00% 

Infected 6 44 88.00% 

Overall Accuracy 94.00% 

The result shows that the detection accuracy of 
infected class is lower (88%) compared to the not 
infected class (100%). However, it is notable that 
the system was able to achieve a high overall 
accuracy rate of 94%. 

4. Conclusion and Recommendation 

The overall accuracy rate of the system, which 
is 94%, indicates thatthe application of Naïve 
Bayes classifier on the extracted color and texture 
featurescan significantly support an accurate 
detection of theP.palmivora disease.The 
recognition accuracy rate can be further improved 
by using more high-resolution images, applying 
other image processing techniques, adding more 
features, and applying other classification 
algorithmssuch as artificial neural network, C4.5 
classifier, SVM, etc.It would also be better that the 
system be able to classify the severity of the 
disease infection for a basis of appropriate disease 
management strategies. 

References
 
[1] "Jakfruit in the Philippines, Part 1," March 

1985. [Online]. Available: 
http://rfcarchives.org.au. 

[2] C. R. Elevitch and H. I. Manner, "Artocarpus 
heterophyllus (jackfruit)," April 2006. 
[Online]. Available: www.traditionaltree.org. 

[3] "Philippines: Jackfruit planted area and 
production 2008-2013," [Online]. Available: 
https://www.statista.com/. 

[4] "CountrySTAT Philippines," 10 November 
2017. [Online]. Available: 
http://countrystat.psa.gov.ph. [Accessed 18 

 
and the posterior numerator of Infected, which was 
calculated as

Table 8. Sample Extracted Values to be Classified as Infected 
or Not Infected 

Feature Value 
Mask 1 Low 
Mask 2 Very high 
ASM Very low 
Variance Low 

For the classification as not infected, the 
posterior is given by Eq. (8). 

While for the classification as infected, the 
posterior is given by Eq. (9). 

where 

However, given the sample, the predictor is a 
constant and thus scales both posteriors equally. In 
this case, it does not affect the classification and 
can be ignored. 

Therefore, considering the posterior numerator 
of NotInfected, which was calculated as  
        ���������(�����������)

= .03 × .50 × .50 × .01 × .50 = .00004
and the posterior numerator of Infected, which was 
calculated as  
        ���������(��������)

= .20 × .48 × .43 × .06 × .50 = .00012
it can be predicted that the sample is infected. 

For each image, the predicted class label 
obtained by Naïve Bayes classifier was then 
compared to the actual class label specified by the 
domain expert. The overall results are displayed in 
the confusion matrix (Table 9) to emphasize how 
many images from the total of each class are 
accurately predicted. 

Then detection accuracy for each class was 
compute as shown in Eq. (10). 

sum of correctly predicted class label
total number of predictions (10)

While the overall accuracy of the system was 
calculated using Eq. (11).  

sum of correct classification
total number of classification (11) 

Table 9. Confusion Matrix 

Class 
Not

Infected Infected
Detection 
Accuracy  

Not
Infected

50 0 100.00% 

Infected 6 44 88.00% 

Overall Accuracy 94.00% 

The result shows that the detection accuracy of 
infected class is lower (88%) compared to the not 
infected class (100%). However, it is notable that 
the system was able to achieve a high overall 
accuracy rate of 94%. 

4. Conclusion and Recommendation 

The overall accuracy rate of the system, which 
is 94%, indicates thatthe application of Naïve 
Bayes classifier on the extracted color and texture 
featurescan significantly support an accurate 
detection of theP.palmivora disease.The 
recognition accuracy rate can be further improved 
by using more high-resolution images, applying 
other image processing techniques, adding more 
features, and applying other classification 
algorithmssuch as artificial neural network, C4.5 
classifier, SVM, etc.It would also be better that the 
system be able to classify the severity of the 
disease infection for a basis of appropriate disease 
management strategies. 

References
 
[1] "Jakfruit in the Philippines, Part 1," March 

1985. [Online]. Available: 
http://rfcarchives.org.au. 

[2] C. R. Elevitch and H. I. Manner, "Artocarpus 
heterophyllus (jackfruit)," April 2006. 
[Online]. Available: www.traditionaltree.org. 

[3] "Philippines: Jackfruit planted area and 
production 2008-2013," [Online]. Available: 
https://www.statista.com/. 

[4] "CountrySTAT Philippines," 10 November 
2017. [Online]. Available: 
http://countrystat.psa.gov.ph. [Accessed 18 

 

it can be predicted that the sample is infected.
For each image, the predicted class label obtained by 

Naïve Bayes classifier was then compared to the actual class 
label specified by the domain expert. The overall results are 
displayed in the confusion matrix (Table 9) to emphasize 
how many images from the total of each class are accurately 
predicted.

Then detection accuracy for each class was compute  
as shown in Eq. (10). 
		

	

Table 8. Sample Extracted Values to be Classified as Infected 
or Not Infected 

Feature Value 
Mask 1 Low 
Mask 2 Very high 
ASM Very low 
Variance Low 

For the classification as not infected, the 
posterior is given by Eq. (8). 

While for the classification as infected, the 
posterior is given by Eq. (9). 

where 

However, given the sample, the predictor is a 
constant and thus scales both posteriors equally. In 
this case, it does not affect the classification and 
can be ignored. 

Therefore, considering the posterior numerator 
of NotInfected, which was calculated as  
        ���������(�����������)

= .03 × .50 × .50 × .01 × .50 = .00004
and the posterior numerator of Infected, which was 
calculated as  
        ���������(��������)

= .20 × .48 × .43 × .06 × .50 = .00012
it can be predicted that the sample is infected. 

For each image, the predicted class label 
obtained by Naïve Bayes classifier was then 
compared to the actual class label specified by the 
domain expert. The overall results are displayed in 
the confusion matrix (Table 9) to emphasize how 
many images from the total of each class are 
accurately predicted. 

Then detection accuracy for each class was 
compute as shown in Eq. (10). 

sum of correctly predicted class label
total number of predictions (10)

While the overall accuracy of the system was 
calculated using Eq. (11).  

sum of correct classification
total number of classification (11) 

Table 9. Confusion Matrix 

Class 
Not

Infected Infected
Detection 
Accuracy  

Not
Infected

50 0 100.00% 

Infected 6 44 88.00% 

Overall Accuracy 94.00% 

The result shows that the detection accuracy of 
infected class is lower (88%) compared to the not 
infected class (100%). However, it is notable that 
the system was able to achieve a high overall 
accuracy rate of 94%. 

4. Conclusion and Recommendation 

The overall accuracy rate of the system, which 
is 94%, indicates thatthe application of Naïve 
Bayes classifier on the extracted color and texture 
featurescan significantly support an accurate 
detection of theP.palmivora disease.The 
recognition accuracy rate can be further improved 
by using more high-resolution images, applying 
other image processing techniques, adding more 
features, and applying other classification 
algorithmssuch as artificial neural network, C4.5 
classifier, SVM, etc.It would also be better that the 
system be able to classify the severity of the 
disease infection for a basis of appropriate disease 
management strategies. 

References
 
[1] "Jakfruit in the Philippines, Part 1," March 

1985. [Online]. Available: 
http://rfcarchives.org.au. 

[2] C. R. Elevitch and H. I. Manner, "Artocarpus 
heterophyllus (jackfruit)," April 2006. 
[Online]. Available: www.traditionaltree.org. 

[3] "Philippines: Jackfruit planted area and 
production 2008-2013," [Online]. Available: 
https://www.statista.com/. 

[4] "CountrySTAT Philippines," 10 November 
2017. [Online]. Available: 
http://countrystat.psa.gov.ph. [Accessed 18 

	 (10)

While the overall accuracy of the system was calculated 
using Eq. (11). 
		

	
Table 8. Sample Extracted Values to be Classified as Infected 

or Not Infected 

Feature Value 
Mask 1 Low 
Mask 2 Very high 
ASM Very low 
Variance Low 

For the classification as not infected, the 
posterior is given by Eq. (8). 

While for the classification as infected, the 
posterior is given by Eq. (9). 

where 

However, given the sample, the predictor is a 
constant and thus scales both posteriors equally. In 
this case, it does not affect the classification and 
can be ignored. 

Therefore, considering the posterior numerator 
of NotInfected, which was calculated as  
        ���������(�����������)

= .03 × .50 × .50 × .01 × .50 = .00004
and the posterior numerator of Infected, which was 
calculated as  
        ���������(��������)

= .20 × .48 × .43 × .06 × .50 = .00012
it can be predicted that the sample is infected. 

For each image, the predicted class label 
obtained by Naïve Bayes classifier was then 
compared to the actual class label specified by the 
domain expert. The overall results are displayed in 
the confusion matrix (Table 9) to emphasize how 
many images from the total of each class are 
accurately predicted. 

Then detection accuracy for each class was 
compute as shown in Eq. (10). 

sum of correctly predicted class label
total number of predictions (10)

While the overall accuracy of the system was 
calculated using Eq. (11).  

sum of correct classification
total number of classification (11) 

Table 9. Confusion Matrix 

Class 
Not

Infected Infected
Detection 
Accuracy  

Not
Infected

50 0 100.00% 

Infected 6 44 88.00% 

Overall Accuracy 94.00% 

The result shows that the detection accuracy of 
infected class is lower (88%) compared to the not 
infected class (100%). However, it is notable that 
the system was able to achieve a high overall 
accuracy rate of 94%. 

4. Conclusion and Recommendation 

The overall accuracy rate of the system, which 
is 94%, indicates thatthe application of Naïve 
Bayes classifier on the extracted color and texture 
featurescan significantly support an accurate 
detection of theP.palmivora disease.The 
recognition accuracy rate can be further improved 
by using more high-resolution images, applying 
other image processing techniques, adding more 
features, and applying other classification 
algorithmssuch as artificial neural network, C4.5 
classifier, SVM, etc.It would also be better that the 
system be able to classify the severity of the 
disease infection for a basis of appropriate disease 
management strategies. 

References
 
[1] "Jakfruit in the Philippines, Part 1," March 

1985. [Online]. Available: 
http://rfcarchives.org.au. 

[2] C. R. Elevitch and H. I. Manner, "Artocarpus 
heterophyllus (jackfruit)," April 2006. 
[Online]. Available: www.traditionaltree.org. 

[3] "Philippines: Jackfruit planted area and 
production 2008-2013," [Online]. Available: 
https://www.statista.com/. 

[4] "CountrySTAT Philippines," 10 November 
2017. [Online]. Available: 
http://countrystat.psa.gov.ph. [Accessed 18 

	 (10)

Table 9
Confusion Matrix

Class Not 
Infected Infected Detection 

Accuracy 

Not Infected 50 0 100.00%

Infected 6 44   88.00%

Overall Accuracy  94.00%

The result shows that the detection accuracy of infected 
class is lower (88%) compared to the not infected class 
(100%). However, it is notable that the system was able to 
achieve a high overall accuracy rate of 94%.

IV. Conclusion and Recommendation

The overall accuracy rate of the system, which is 94%, 
indicates that the application of Naïve Bayes classifier on 
the extracted color and texture features can significantly 
support an accurate detection of the P. palmivora disease. 

The recognition accuracy rate can be further improved by 
using more high-resolution images, applying other image 
processing techniques, adding more features, and applying 
other classification algorithms such as artificial neural 
network, C4.5 classifier, SVM, etc. It would also be better 
that the system be able to classify the severity of the disease 
infection for a basis of appropriate disease management 
strategies.
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