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Abstract — This study aims to compare high-side 
and synchronous trapezoidal brushless DC (BLDC) 
control methods using an XMC-based motor controller 
for pedelecs. The electric bicycle implemented three 
different pedal-assist modes with varying human-to-
motor power ratios and one throttle mode with the use 
of proportional-integral control. The study compares 
the efficiencies of two trapezoidal control methods 
through the throttle and pedal-assist mode. The data 
obtained shows that the high-side trapezoidal control is 
more efficient than the synchronous trapezoidal control 
in all modes implemented on the e-bike. This research 
opens possibilities to improve other BLDC control 
algorithms especially in terms of efficiency.

Keywords: Android, telemetry, PID, BLDC motor, 
trapezoidal motor control, Cortex-M0

I.  Introduction

Electric bicycles—or e-bikes—are lighter and smaller 
compared to motorcycles, yet they can give the 

comfort of riding one. To be able to get these benefits, a 
good motor controller for the electric bicycle is needed. 
Currently, e-bikes available in the market can assist riders 
when pedalling. Unfortunately, they do not have the 
capability to process complex data from the e-bike [1]. 
The study aims to improve the e-bike by focusing on the 
refinement of the motor controllers.

Electric bicycles would normally have a hub motor, 
which may be brushed or brushless [2]. In this study, the 
brushless DC (BLDC) motor is used. BLDC motors have 

favorable characteristics such as high efficiency, high 
speed ranges, and high torque-to-size ratios. However, 
they require complex control methods to commutate the 
motor as it requires six pulse width modulation (PWM) 
signals to operate. The BLDC motor would interface with 
a 32-bit microcontroller, which controls the MOSFETs 
(metal–oxide–semiconductor field-effect transistors) in 
order to adaptively drive the motor.

One similar study about pedelecs implemented smart 
features using an off-the-shelf motor controller from the 
market. However, the motor controller is treated as a 
black box, and the response of it is unpredictable [12]. 
This study designed the motor controller to control the 
motor’s response effectively depending on the status 
of the e-bike.

From the previous study “Adaptive Speed and 
Power Control for a Pedelec Using an ARM Cortex-M0 
Microcontroller,” the motor controller already 
implemented three modes of pedal assist (executive, 
mid, and sport) that control the target power depending 
on human input and throttle mode, which control the 
target speed of the user [6]. This study implemented two 
trapezoidal BLDC control signals to the motor controller 
and compared the difference of the two control methods 
in terms of efficiency of different modes discussed from 
the previous study.

II.  Design Consideration and Methodology

A.	 Infineon XMC 32-Bit ARM Microcontroller

The researchers used Infineon’s XMC1302 with a 32-
bit ARM Cortex-M0 microprocessor inside (Fig. 1). This 
microcontroller is used specifically for motor control by 
having the hardware capable of giving PWM signals of 
over 20kHz [8].
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Fig.1. XMC1302 boot kit microcontroller.

B.	 BLDC Motor Control Using MOSFETs

The commutation of the BLDC motor functions 
appropriately by applying the concept of an inverter. 
Basically, an inverter is a switching control that converts 
direct current to alternating current or vice versa [3]. There 
are several types of inverters; however, one of the types 
of inverters used to drive a BLDC motor is the full-wave 
three-phase inverter. The inverter consists of six switching 
devices similar to the diagram shown below (Fig. 2) [5]. 
These MOSFETs are controlled with a pulse controller, 
which generates switching pulse signals. The signals 
generated consist of varying PWM, which controls the 
switching MOSFETs.

Fig. 2. Three-phase inverter.

C.	 High-Side and Synchronous Trapezoidal BLDC 	 	
	 Control Methods

The BLDC motor has its advantages; however, it 
requires complex algorithms to operate [3]. Using a three-
phase inverter made of MOSFETs, the operation of the 
BLDC motor can be controlled using PWM signals to 
move the motor to its desired position. Hall sensors would 
determine the current position of the motor [15]. Table I and  
Figure 3 show the high-side trapezoidal control signals 
applied in the inverter for proper commutation of the BLDC 
motor while Table II and Figure 4 show the synchronous 
trapezoidal control signals that have the same function of 
high-side with an additional inverted PWM in the low-side 
MOSFETs [10][11].

TABLE I
High-side Commutation Pattern With Hall Sensos

No.
Hall Sensor Input MOSFET Gate Signals

U V W UH UL VH VL WH WL
1 L L H L L Pwm L L H
2 L H H Pwm L L L L H
3 L H L Pwm L L H L L
4 H H L L L L H Pwm L
5 H L L L H L L Pwm L
6 H L H L H Pwm L L L

TABLE II
Synchronous Commutation With Hall Sensors

No.
Hall Sensor Input MOSFET Gate Signals

U V W UH UL VH VL WH WL
1 L L H L L Pwm iPwm L H
2 L H H Pwm iPwm L L L H
3 L H L Pwm iPwm L H L L
4 H H L L L L H Pwm iPwm

5 H L L L H L L Pwm iPwm

6 H L H L H Pwm iPwm L L
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Fig. 3. High-side trapezoidal control signals.

C.

com
inv
can
des
po
sid
pro
Fig
hav
PW

H

N

No. 

U
1 L
2 L
3 L
4 H
5 H
6 H

High-Side and
Methods 
The BLDC m
mplex algorit
verter made of 
n be controlled
sired position.
sition of the m

de trapezoidal 
oper commuta
gure 4show the
ve thesame fun

WM in the low-

HIGH-SIDE COM

No. Hall 
Sensor 

U V W
1 L L H
2 L H H
3 L H L
4 H H L
5 H L L
6 H L H

SYNCHRONO

Hall 
Sensor 

U V W U
L L H 
L H H PW

L H L PW

H H L 
H L L 
H L H 

d Synchronous

motor has its ad
thms to opera
MOSFETs, th

d using PWM s
. Hall sensors

motor [15]. Tab
control signa

ation of the BL
e synchronous 
nction of high-
-side MOSFET

TAB

MMUTATION PA

Inpu

W UH UL
H L L
H PWM L
L PWM L
L L L
L L H
H L H

TAB

OUS COMMUTA

Input M

UH UL 
L L 
WM iPWM

WM iPWM

L L 
L H 
L H 

s Trapezoidal B

dvantages; how
ate [3]. Usin

he operation of
signals to mov
s would determ
ble Iand Figure
als applied in 
LDC motor w
trapezoidal co

-side with an ad
Ts [10][11]. 

BLE I

ATTERN WITH 

ut MOSFET Ga

L VH V
L PWM L
L L L
L L H
L L H
H L L
H PWM L

BLE II

ATION WITH HA

MOSFET Gate

VH VL 
PWM iPWM

L L 
L H 
L H 
L L 

PWM iPWM

BLDC Control 

wever, it requi
ng a three-ph
f the BLDC mo
ve the motor to
mine the curr
e 3show the hig

the inverter 
while Table IIa
ontrol signals t
dditional inver

HALL SENSORS

ate Signals 

VL WH W
L L H
L L H
H L L
H PWM L
L PWM L
L L L

ALL SENSORS

e Signals 

WH WL
L H
L H
L L

PWM iPWM

PWM iPWM

L L

ires
hase 
otor 
o its 
rent
gh-
for

and 
that 
rted

S

WL
H
H
L
L
L
L

L

M

M

Fig. 3. H

Fig.4. S

D. Dea
Dea

control
inverter
MOSFE
which i
implem
short 
implem
the poin
MOSFE
inverter

High-side trape

Synchronous tra

d Time 
d time is nece
because two P

r [9]. Without t
ETs will be s
in turn will d

mented a 150-n
circuit from

mented dead tim
nt of intersecti
ET to be switc
r will not gener

ezoidal control

apezoidal cont

essary in impl
PWMs are use
the dead time, 
horted; thus, 

destroy the M
s dead time in

m happening. 
me in the signa
on of the two 

ched on. There
rate a short circ

l signals. 

trol signals. 

ementing the 
d in the same 
the high-side a
a high curren

MOSFETs. The
n the signals to

Figures5 a
als, and theyals
signals will no

efore, the MOS
cuit during ope

2

synchronous 
phase in the 
and low-side 

nt will flow, 
e researchers 
o prevent the 
and 6show 
so show that 
ot trigger the 
SFETs in the 
eration. 

Fig. 4. Synchronous trapezoidal control signals.

D.	 Dead Time

Dead time is necessary in implementing the synchronous 
control because two PWMs are used in the same phase in 
the inverter [9]. Without the dead time, the high-side and 
low-side MOSFETs will be shorted; thus, a high current 
will flow, which in turn will destroy the MOSFETs. The 
researchers implemented a 150-ns dead time in the signals 
to prevent the short circuit from happening. Figures 5 and 
6 show implemented dead time in the signals, and they also 
show that the point of intersection of the two signals will 
not trigger the MOSFET to be switched on. Therefore, the 
MOSFETs in the inverter will not generate a short circuit 
during operation.

Fig. 5. Dead time in rising edge of the signal for high-side MOSFET 
and falling edge of the signal for low-side MOSFET.

Fig. 6. Dead time in falling edge of the signal for high-side 
MOSFET and rising edge of the signal for low-side MOSFET.

E.	 Vehicle Kinematic Formula and Theoretical  
	 Power Computation

Power is needed to move the electric bicycle at any given 
speed. Equation 1 shows the factors that affect the required 
power to move the electric bicycle [4]. The human or the 
motor must exert more power when riding uphill, over rough 
roads, and in windy places.

	 drag fric hill
theo

P P P
P

Eff
+ +

= 	 (1)
	

Equation 1 can be expanded to consider the characteristics 
of the e-bike and the rider resulting to Equation 2. The 
efficiency can be computed when Ptheo is equated to input 
power (Pin), which is equal to the product of battery current 
and voltage. 

( ) ( )( ) ( ) ( )20.5 sinD B R R B R
theo

pAV C V m m gC V m m g V
P

eff
θ+ + + +

= 	(2)
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where
V 	 =	velocity (m/s)
mV	 = 	weight of the bicycle (kg)
mD	 = 	weight of the rider (kg)
g	 =	acceleration due to gravity (9.8 m/s2)
CRR	=	coefficient of rolling resistance (unitless)
p	 =	air density (1.2 kg/m3)
A	 =	bicycle and rider frontal area (m2)
CD	 = 	coefficient of drag
θ	 =	inclination angle in degrees from horizontal plane
Eff	=	e-bike efficiency (0 < Eff ≤ 1)

F.	 Pedal-Assist and Combining Human Power and 	 	
	 Motor Power

Pedal-assist is a concept that is achieved only when 
the motor is stimulated when the user is pedaling the 
electric bicycle. In order to detect if the user is pedaling 
the electric bicycle, a cadence sensor using hall magnets 
is utilized. To improve the response further, a torque 
sensor is used to determine the input human power into 
the system. Since the human power is identified, it is now 
possible to implement more advanced control algorithms 
that target a specific ratio between the human power and 
the motor power. The three ratios used for this study 
are the executive, mid, and sports modes. Executive 
mode makes the motor do 70% of the power output 
while the human is only 30% of the power output. Mid 
mode ensures that both the motor and the human equally 
contribute to the total power of the system. Sports mode 
makes the human do 70% of the power output while the 
motor only does 30% of the power output.
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	 (3)

where
Ph = human power (W)
τ = torque (Nm)
ω = cadence (rps)
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G.	 Speed Control

Fig. 7. Flowchart for speed control.

In this section, the researchers implemented a 
proportional-integral speed control algorithm for throttle 
mode that will target the desired speed of the user and 
maintain its current speed when the target speed is reached. 
See flowchart used in targeting speed for throttle mode 
(Fig. 7) [6].

A.	 Power Control

Fig. 8. Flowchart for power control.
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In this section, the researchers implemented proportional-
integral power control algorithm for pedal-assist mode.  
The target power will be adjusted depending on the mode 
used by the user and its peddling behavior. See flowchart 
used in controlling the motor power for pedal-assist mode 
(Fig. 8) [6].

I.	 MOSFET Characteristics

The researchers used IPP04N12N13G, a MOSFET 
that is capable of blocking 120 V during off condition 
and can let 120 A pass during on condition [13]. The 
battery voltage used in the study is 36 V, and choosing 
a breakdown voltage for a MOSFET must be twice of 
its input as a rule of thumb. This MOSFET can also be 
applied to 48-V battery systems.

J.	 Gate Driver Response Time and Determination of 	
	 Switching Frequency

In this study, an Infineon MOSFET gate driver (MGD), 
2EDL05N06PF, is used for translating the switching signals 
from the microcontroller to a higher voltage to fully drive the 
MOSFET [14]. MGDs are important in the circuit as they 
provide isolation to the high-power side and the low-power 
side of the circuit. In addition to that, they can support 20-
kHz PWM frequency as an input by adjusting the value of 
the bootstrap capacitor to 1 uF. Figure 9 shows the circuit 
configuration of a MGD in one phase.

Fig. 9. MOSFET gate driver configuration.

III.  Results and Discussion

This section contains the efficiency testing of the two 
trapezoidal BLDC control methods. The testing setup 
was done on a flat road to eliminate the power needed to 
overcome slopes. 

A.	 High-Side Trapezoidal

Figures 10, 11, and 12 show the efficiency of the e-bike 
operating in three pedal-assist modes using high-side 
trapezoidal control. The calculated average efficiency is 
78.01%, which indicates efficient motor control of the 
system.
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Fig. 10. Efficiency versus time (sports mode, high-side).
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Fig. 11. Efficiency versus time (mid node, high-side).
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Likewise, Figure 13 shows the efficiency of the e-bike 
when operating in smart throttle. The calculated average 
efficiency in this case is 70.11%. This was attained through 
the use of an advanced state machine algorithm.
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Fig. 13. Efficiency versus time (smart throttle, high-side).

B.	 Synchronous Trapezoidal Control

In the synchronous trapezoidal control method, Figures 
14, 15, and 16 show the efficiency of the e-bike using the 
same testing setup in the high-side, and it is operated also 
in three pedal-assist modes, while Figure 17 shows the 
efficiency in the throttle mode that also used the same 
algorithm in the high-side.
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Fig. 14. Efficiency versus time (sports mode, synchronous).
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Fig. 15. Efficiency versus time (sports mode, synchronous).
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Fig. 16. Efficiency versus time (sports mode, synchronous).
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Fig. 17. Efficiency versus time (sports mode, synchronous).

C.	 Comparison of the Two Control Methods

Each graph in the data obtained from two trapezoidal 
control methods was used to get the average of the values 
in order to compute for efficiency of the system in each 
mode. Table II shows the summary of the efficiencies from 
two trapezoidal control methods.

TABLE III
Summary of Data for the Efficiency of  

Both Control Methods

Mode Synchronous High-Side
Sports 36.5% 78.01%
Mid 32.7% 75.41%

Executive 29.27% 61.97%
Throttle 56.25% 70.11%
Average 38.68% 71.375%

Conclusions

In summary, the study was able to compare two 
trapezoidal control methods in terms of efficiency. It was 
found that high-side trapezoidal control is more efficient 
than the synchronous trapezoidal control by a factor of 2, 
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whereas the average of efficiency across all modes of high-
side control method is 71.38% while the average efficiency 
of synchronous control method is 38.68% across all modes. 
This result shows that if the e-bike is used in synchronous 
control and it only traverses 10 km in one full charge of the 
battery, then operating it using the high-side control method 
could travel 20 km in one full charge of the battery because 
of its efficiency. When driving the motor, the synchronous 
control method produces louder acoustic noise compared 
to the high-side trapezoidal control. This was caused by 
high torque ripple present in synchronous control, which is 
inefficient in flat roads [7].

At the end of the study, the researchers were successful 
in implementing two BLDC control methods and comparing 
their difference in terms of efficiency to determine the best 
control method to be used for the e-bike.

V.  Recommendation

The researchers recommend adjusting the dead time, 
which can change the response of the synchronous 
trapezoidal control. Also, adding smart features such as 
Bluetooth connectivity to the smartphone and battery 
prediction will improve the overall response of the e-bike.
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