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Abstract — Current deployment of WLAN access 
points (AP) require manual configuration of wireless 
parameters. Wireless parameters are commonly 
set haphazardly without being aware of the basic 
wireless conditions. This paper proposes a self-
adaptive AP based on genetic algorithms (GA). The 
AP adapts to interference and link quality of client 
stations.  Interference is mitigated and client link 
quality is improved or optimized. A chromosome 
consists of genes of parameters such as frequency 
channel, channel width, maximum data rate, 
maximum transmit power, and guard interval. Often 
competing objectives such as mitigating interference, 
maximizing the data rate, and minimizing the error 
rates necessitate that the GA be multi-objective. 
The MOGA comes up with the fittest candidates by 
running them through a fitness function which scores 
the genes based on the survey scan of other interferer 
AP and the wireless performance statistics of client 
devices. The GA’s chosen configuration is applied and 
its effect is continuously assessed. Finally, the result 
of the self-adaptive WLAN AP genetic algorithm 
is compared against the Linux hostapd Automatic 
Channel Selection scheme.

Index Terms— access point, AP, IEEE 802.11n, WiFi, 
automatic configuration, interference, self-adaptive, genetic 
algorithm, GA, multi-objective, MOGA

I.  Introduction

WIRELESS devices have become so ubiquitous 
that there are now almost as many mobile 

phones as there are people in the world. Most people 

also own at least two mobile phones from different 
mobile operators for voice, short messaging service, 
and Internet use.  Moreover, demand for Internet speed 
and reasonable cost of access resulted in mobile phones 
having multiple radio access technologies – such as 
mobile 2G/3G/4G and WiFi. The choice of which 
radio access technology to use when connecting to 
the Internet is driven by quality, cost, and availability 
resulting to what is called Heterogenous Networks 
(HetNets). In HetNets, access to the Internet does 
not converge to a single wireless access technology 
but instead takes advantage of the different wireless 
technologies available to the user. Users can even 
share their Internet access with other mobile phone 
users within their vicinity using hotspot tethering.  
In hotspot tethering, multiple devices connect, using 
WiFi or Bluetooth, to a primary device which accesses 
the Internet access via 3G or 4G. Direct wireless 
connection to a high-power base station tower is 
replaced with ad-hoc user-to-user connectivity and the 
primary device is said to act as a WiFi base station. 
Eventually, this trend could result to a new cellular 
paradigm shift where there will be more base stations 
than cellular phones [1].
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As the number of hotspots increase, new ways of managing 
spectrum use and interference are called for. Traditional methods 
of interference management like frequency reuse or base station 
coordination do not directly translate to HetNets [1]. Current 
hotspot access point (AP) deployments are uncoordinated, 
particularly the choice of WiFi frequency channel in commercial 
establishments, residences, or personal tethered hotspots.  One 
can easily find that 2.4 GHz channel frequencies overlap by 
performing a spectrum scan using a laptop with software like 
inSSIDER from metageek.com.  Of course, non-overlapping 20 
MHz frequency channels can be used for 3 nearby access points 
– channels 1, 6, 11 standing for 2.412, 2.437, and 2.462 GHz 
respectively.  This is an ideal and desired scenario but the 
deployment becomes more complex as the number of access 
points in the area grows, as in HetNets.   Furthermore, the WiFi 
IEEE 802.11n standard implements 40 MHz channels to double 
the data rate making operating in overlapping channels more 
likely.     

From an AP’s perspective, any interferer operating or leaking 
into its own frequency channel of operation is a co-channel 
interferer.  Co-channel interference is not the only type of 
interference that can affect an AP. An interferer present in an 
adjacent channel is an adjacent channel interferer.  Adjacent 
Channel Interference (ACI) causes problems that are related to 
the carrier sensing mechanism in IEEE 802.11 and are especially 
severe in multi-radio systems, where the radios are very closely 
spaced [2].   The number of available orthogonal (or non-
interfering) channels in 2.4 GHz IEEE 802.11n depends on the 
spatial spacing between the radios, the channel width (HT20 vs. 
HT40), and trafc pattern.  In a multi-radio system scenario, the 
separation between the three non-overlapping WiFi channels is 
almost nullified.  The situation becomes worse since no two 
frequency channels can be considered orthogonal.    ACI can be 
addressed by placing enough spatial separation between the 
access points.  If there are constraints to the space limitations, 
the only option to overcome ACI problems is through transmit 
power control [2].  For this study, frequency channel, channel 
width, and transmit power are some of the AP wireless 
parameters included in the chromosome for evaluation by the 
genetic algorithm (GA).  Figure 1 show all the parameters used 
in this paper and includes maximum data rate and guard interval 
(GI). Maximum data rate puts a limit on the maximum 
modulation coding scheme (MCS) for the downlink (AP to 
STA).  Guard interval by default is 800 nanoseconds although 
this can be adjusted to 400 nsec during better network conditions 
to increase network throughput but at the risk of higher 
transmission errors.  In this research, only 802.11n radios are 
used but in no way does this constraint limit the validity of the 
findings to 802.11n only.  The same theoretical wireless  
concepts  and  experimental  results  should    apply   to  

 
802.11a/b/g or even to mobile technologies like 3G and 4G. 

The chromosome’s genes represent the adjustable wireless 
parameters in a given radio, and by genetically manipulating the 
chromosomes, the GA can find a set of parameters which 
optimize the radio to meet certain objectives.  Some of these 
objectives can be utilized to improve performance and Quality of 
Service (QoS), to enhance spectrum usage in the midst of 
interferers, or to further advance wireless ubiquity [3].    

A genetic algorithm that takes into consideration multiple and 
often-competing objectives for optimization and decision 
making is a multi-objective GA (MOGA).  A paper written by 
Rondeau et al. [3], as they developed the GA-based adaptive 
component of a cognitive radio in Virginia Tech (VT) Center for 
Wireless Telecommunications (CWT), gave a thoughtful 
consideration on the application of a multi-objective genetic 
algorithm (MOGA) to a wireless system.  Rondeau et al. cited 
the limitation of a particular GA selection and evaluation method 
in which evaluations along different dimensions are combined 
into a single metric.  In the case of wireless communications, the 
dimensions can be bit error rate (BER), bandwidth, power 
consumption or network latency, to name a few.  According to 
this paper, the single-metric method breaks down in cases where 
the values of the dimensions can vary greatly in magnitude (as in 
BER of 10-6

 versus data rate of 106) and normalizing each 
dimension requires a great deal of domain knowledge.  
Nonetheless, one contribution of the present study is to propose 
a single metric, which will be called PRR-MCS, to evaluate and 
score each of the genes in a chromosome (Figure 1).   PRR-MCS 
is the packet reception rate in percent (%) multiplied by the MCS 
data rate in megabits per second (Mbps).  Each gene is given a 
score whose unit is in terms of PRR-MCS.  As the wireless 
parameters or genes reflect the dimensions of the MOGA, 
normalization across the different dimensions is simplified since 
all of the gene scores have a common unit of measure.   Basic 
operations such as summing, averaging, or weighted 
sum/average of the gene scores can then be used to operate an 
AP toward a desired objective such as optimizing network 
performance in the presence of radio interference.  

Figure 1.  Chromosome representation and example showing the 
wireless parameters available for manipulation by the GA. Note that 
transmit power reduction (in dB) is used for the gene instead of 
absolute unit of maximum power (in dBm) which varies from AP to 
AP 
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Fig 1. Chromosome representation and example showing the 
wireless parameters available for manipulation by the GA. Note 
that transmit power reduction (in dB) is used for the gene instead 
of absolute unit of maximum power (in dBm) which varies from 
AP to AP

As the number of hotspots increase, new ways of 
managing spectrum use and interference are called 
for. Traditional methods of interference management 
like frequency reuse or base station coordination do 
not directly translate to HetNets [1]. Current hotspot 
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access point (AP) deployments are uncoordinated, 
particularly the choice of WiFi frequency channel in 
commercial establishments, residences, or personal 
tethered hotspots. One can easily find that 2.4 GHz 
channel frequencies overlap by performing a spectrum 
scan using a laptop with software like inSSIDER from 
metageek.com. Of course, non-overlapping 20 MHz 
frequency channels can be used for 3 nearby access 
points – channels 1, 6, 11 standing for 2.412, 2.437, and 
2.462 GHz respectively. This is an ideal and desired 
scenario but the deployment becomes more complex 
as the number of access points in the area grows, as in 
HetNets. Furthermore, the WiFi IEEE 802.11n standard 
implements 40 MHz channels to double the data rate 
making operating in overlapping channels more likely. 

From an AP’s perspective, any interferer operating 
or leaking into its own frequency channel of operation 
is a co-channel interferer. Co-channel interference is not 
the only type of interference that can affect an AP. An 
interferer present in an adjacent channel is an adjacent 
channel interferer. Adjacent Channel Interference (ACI) 
causes problems that are related to the carrier sensing 
mechanism in IEEE 802.11 and are especially severe in 
multi-radio systems, where the radios are very closely 
spaced [2]. The number of available orthogonal (or 
non-interfering) channels in 2.4 GHz IEEE 802.11n 
depends on the spatial spacing between the radios, the 
channel width (HT20 vs. HT40), and traffic pattern. In a 
multi-radio system scenario, the separation between the 
three non-overlapping WiFi channels is almost nullified. 
The situation becomes worse since no two frequency 
channels can be considered orthogonal. ACI can be 
addressed by placing enough spatial separation between 
the access points. If there are constraints to the space 
limitations, the only option to overcome ACI problems 
is through transmit power control [2]. For this study, 
frequency channel, channel width, and transmit power 
are some of the AP wireless parameters included in the 
chromosome for evaluation by the genetic algorithm 
(GA).  Figure 1 show all the parameters used in this 
paper and includes maximum data rate and guard 
interval (GI). Maximum data rate puts a limit on the 
maximum modulation coding scheme (MCS) for the 
downlink (AP to STA). Guard interval by default is 800 
nanoseconds although this can be adjusted to 400 nsec 
during better network conditions to increase network 
throughput but at the risk of higher transmission errors. 
In this research, only 802.11n radios are used but in no 
way does this constraint limit the validity of the findings 

to 802.11n only. The same theoretical wireless concepts  
and  experimental results should apply to 802.11a/b/g or 
even to mobile technologies like 3G and 4G.

The chromosome’s genes represent the adjustable 
wireless parameters in a given radio, and by 
genetically manipulating the chromosomes, the GA 
can find a set of parameters which optimize the radio 
to meet certain objectives. Some of these objectives 
can be utilized to improve performance and Quality 
of Service (QoS), to enhance spectrum usage in the 
midst of interferers, or to further advance wireless 
ubiquity [3].   

A genetic algorithm that takes into consideration 
multiple and often-competing objectives for 
optimization and decision making is a multi-objective 
GA (MOGA).  A paper written by Rondeau et al. [3], 
as they developed the GA-based adaptive component 
of a cognitive radio in Virginia Tech (VT) Center 
for Wireless Telecommunications (CWT), gave a 
thoughtful consideration on the application of a 
multi-objective genetic algorithm (MOGA) to a 
wireless system. Rondeau et al. cited the limitation 
of a particular GA selection and evaluation method 
in which evaluations along different dimensions are 
combined into a single metric.  In the case of wireless 
communications, the dimensions can be bit error rate 
(BER), bandwidth, power consumption or network 
latency, to name a few. According to this paper, the 
single-metric method breaks down in cases where 
the values of the dimensions can vary greatly in 
magnitude (as in BER of 10-6

 versus data rate of 106) 
and normalizing each dimension requires a great deal 
of domain knowledge. Nonetheless, one contribution 
of the present study is to propose a single metric, which 
will be called PRR-MCS, to evaluate and score each 
of the genes in a chromosome (Figure 1). PRR-MCS 
is the packet reception rate in percent (%) multiplied 
by the MCS data rate in megabits per second (Mbps). 
Each gene is given a score whose unit is in terms of 
PRR-MCS. As the wireless parameters or genes reflect 
the dimensions of the MOGA, normalization across 
the different dimensions is simplified since all of the 
gene scores have a common unit of measure. Basic 
operations such as summing, averaging, or weighted 
sum/average of the gene scores can then be used to 
operate an AP toward a desired objective such as 
optimizing network performance in the presence of 
radio interference. 

Genetic algorithms have common processes such as 
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the definition and representation of data into genes and 
chromosomes, the operations of crossover and mutation, 
the selection of chromosome for the succeeding 
generations, and the existence of a fitness function to 
determine chromosome fitness. A main contribution 
of the present study is to design and implement into 
a software code a genetic algorithm with a fitness 
function which utilizes two key inputs: (a) a survey 
scan of interferer access points operating in the area and  
(b) associated client station (STA) statistics such as 
signal level, packet retransmit and failure rates, and 
MCS data rates for uplink and downlink. The genetic 
algorithm used is multi-objective and takes into 
consideration certain dimensions such as frequency 
channel of operation, bandwidth, maximum data 
rate, and maximum transmit power. Finally, to the 
knowledge of the authors, the metric proposed to score 
each of the chromosome genes is a novelty.  PRR-MCS 
is a common unit to evaluate each of the wireless 
parameters or genes which the self-adaptive AP takes 
in as recommended configurations.

In this paper, Section 2 cites related researches to 
the current subject. Section 3 covers the background of 
the problem and the objectives of this paper as well as 
its scope. Section 4 describes the MOGA as a method 
to converge to a solution to the problem. The fitness 
function is discussed in detail in Section 5, specifically 
how each of the chromosome genes is scored and how 
PRR-MCS for each is computed. Section 6 discusses 
the experimental result and also gives a comparison 
of the proposed self-adaptive GA and the Automatic 
Channel Selection (ACS) feature of hostapd. 
Finally, Section 7 concludes the present paper and 
identifies future work and enhancements.

II.  Related Work

The need to automate the deployment and 
configuration of radio access points or base stations 
to achieve certain objectives is extensively studied 
[2],[4],[5]. The studies can be classified in general 
as (1) whether the optimization applies to a whole 
network planning and deployment, or 2) whether 
the configuration applies locally to a single radio 
or access point. As will be shown in the following 
discussion, while there are numerous literatures related 
to the former subject, the latter subject seems to lack 
significant attention. The present paper falls under 
the latter category as it proposes self-adaptation of a 

single AP to interfered states and optimizing network 
performance using the wireless statistics of associated 
client stations.

For network-wide application of wireless parameter 
configurations, Zubow, et al. [2] recommend sufficient 
spatial spacing to obtain more orthogonal channels out 
of the 2.4 GHz  WiFi band. Moreover, control of transmit 
power becomes vital in space-limited, multi-radio 
systems. Garcia-Saavedra, et al. [4] presents a novel 
Self-Optimizing, Legacy-Compatible Opportunistic 
Relaying (SOLOR) framework, which optimizes 
the network topology and relay schedules while 
considering different node performance and power 
consumption trade-off preferences. Recommendations 
in optimizing the configuration of wireless parameters 
have been investigated, often targeting automatic 
adaptation to specific trade-off preferences. A load-
balancing algorithm for reducing Radio Frequency 
(RF) Electromagnetic Fields (EMF) exposure while 
maintaining a level of QoS performance has also been 
proposed by Sidi, et al. [5]. They developed a stochastic 
approximation based self-optimizing algorithm that 
dynamically adapts the network to reduce the exposure 
index (EI) in a heterogeneous network with macro- and 
small cells.

Some works on radio network planning and 
deployment used genetic algorithms to optimize 
the radio configurations. Such works investigated 
the usability of genetic algorithms for optimizing 
wireless mesh networks. Pries, et al focused on the 
routing and channel assignment in large-scale wireless 
mesh networks to achieve a max-min fair throughput 
allocation [6]. It should be noted that the terms mesh 
and relay have something in common with user-to-
user type connectivity such as hotspot tethering. A few 
other papers focused channel assignment problems 
and planning [7] - [11]. The paper by Chia, et al. [7] 
introduces an adaptive genetic algorithm (GA)-based 
channel assignment strategy for resource management 
and to reduce the effect of EMC interferences. Fu, 
et al. [8] developed a new heuristic algorithm which 
includes GA to tackle the same channel assignment 
problem to assign a minimum number of channels 
under certain constraints to requested calls in a cellular 
radio system. Ding et al. [9] used a weighted conflict 
graph to model interference between wireless links 
more accurately. They also presented a novel genetic 
algorithm to demonstrate that the network performance 
can be dramatically improved by properly utilizing 
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partially overlapping channels. The genetic algorithm 
was also found to outperform the greedy algorithm 
in mitigating the interference within the network 
leading to higher network throughput. The paper by 
Jalili, et al. [10] compared Taboo Search and GA in 
planning and optimization of 3rd Generation  (3G) 
Universal Mobile Telecommunication System (UMTS) 
networks. Finally, Cacciani, et al. [11] attempted to 
solve the problem of identifying sites where to place the 
resources (or access points) for the optimal coverage 
of a given area using genetic algorithms.  

Genetic algorithms continue to find more 
applications in mobile wireless networks. The paper 
by Paikaray [12] presents a design of an adaptive 
multi-attribute, vertical handoff decision algorithm 
for 4th Generation mobile networks based on fuzzy 
logic and genetic algorithms. The minimization of 
the number of handoffs in heterogenous 4G networks 
has been shown to be achievable in the paper by 
Chandralekha and Behera [13] through optimization 
of network parameter values.  They proposed a multi 
criteria vertical handoff decision algorithm which 
will select the best available network with optimized 
parameter values (such as cost of network should be 
at a minimum). The decision problem was formulated 
as multiple objective optimization problems and 
simulated using genetic algorithm. 

In comparison to studies of network-wide 
optimization of wireless parameters, papers which 
aim to develop GA-based programs for a single access 
point are limited. One such study uses GA for cognitive 
radios [3]. This paper by Rondeau et al. is part of an 
initiative by Virginia Tech (VT) Center for Wireless 
Telecommunications (CWT) to develop a cognitive 
radio engine and presents its adaptive component 
which uses GA and is cited quite extensively in the 
present study.

A few more references were used for the present 
paper as they provide key concepts and data for the 
computations used in the program code. Zhang, et al. 
[14] emphasized a limitation of WiFi IEEE 802.11 
protocols in handling frame losses which are not 
due to link quality but is rather due to interference. 
In their study, rate adaptation is guided by signal-
to-noise ratio (SNR) for handling of interference.  It 
should be noted that rate adaptation is just one of 
the components of the self-adaptive access point. As 
shown in the chromosome genes, frequency channel 
selection and transmit power optimization are also 

features of the self-adaptive AP. Like the present 
study and the paper by J. Zhang et al., another paper 
which attempted to restore confidence to theoretical 
prediction of wireless link quality is that of D. Halperin 
et al. [15]. They introduced the concept of effective 
SNR to make packet delivery predictions. As for the 
guard interval parameter, the literature is limited and 
the effect of changing the GI from the default value 
is not well-studied.  Measurements conducted by the 
University of Hampshire Interoperability Laboratory 
[17] estimated the effect of GI on packet error rates. 
Experimental result of software program coded in 
C++ for the self-adaptive AP is compared to that of 
the Automatic Channel Selection (ACS) feature of 
Linux-based access points. 

Hostapd is a user-space daemon commonly 
used in Linux-based access points. One of its options 
is Automatic Channel Selection (ACS) so that a WiFi 
device can automatically figure out which channel 
to operate on depending on the level of interference.  
ACS utilizes the same information provided by iw 
wlan0 survey dump . ACS introduces a 
metric called interference factor which is computed 
from the formula: (busy time – tx time) / (active 
time – tx time). The rationale for this formula is given 
in [16]. The formula is intuitive in that it gives the 
percentage of time in which a channel is busy. This 
ratio is also used in the current study. However, the 
ratio is not treated as a final metric, rather the ratio is 
used to give a correction factor to the interference noise 
floor generated from survey scan of interferer access 
points. The correction factor was found reasonable as 
in the case where an AP does not generate any data 
traffic and just transmits beacon signals. The average 
transmit power is approximated as the signal power 
during beacon transmissions multiplied by the channel 
busy time divided by the channel active time. The 
correction of the interference noise floor using the 
busy time / active time ratio is discussed in detail in 
the previous sections.  

The ACS first takes the average of 5 readings of the 
busy time/active time ratio. This average becomes the 
interference factor for a channel. It does this for all the 
channels on which an AP can operate on (channels 1 up 
to 11 or up to 13).  When the 11 readings are computed, 
ACS computes the total interference for each channel. 
It does this by summing up the interference factor for 5 
neighboring channels since 5 channels always overlap 
with a specific channel of choice. If HT40+ or HT40- 
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is used, ACS will add up the interference factors of 9 
neighboring channels. The 5 or 9 neighboring channels 
apply for the centermost channels and not the ones on 
the edges. For the edge channels 1 and 11, for instance, 
only 3 channels will be summed up while for channels 
2 and 10, 4 channels will be summed up. A similar 
scheme will apply to 40 MHz configurations.

With the current computation of ACS of simply 
summing up the interference factors, it is obvious 
that a 40 MHz channel will never be chosen by the 
algorithm since it will always have a higher sum of 
interference factors than that of 20 MHz channel.  
Thus, the self-adaptive AP algorithm will be compared 
with a modified ACS algorithm in which the total 
interference is taken as the average, not the sum, of 
interference factors of 5 (for 20 MHz) or 9 (for 40 
MHz) neighboring channels. Also, instead of taking 
5 readings for each channel, only 2 readings will be 
performed which are spaced 5 seconds apart and the 
busy time/active time ratio becomes the ratio of the 
difference of two busy times to the difference between 
two successive active time readings.

Unlike the self-adaptive AP GA algorithm, ACS 
does not take into account how much a channel is 
affecting the channel of operation. It is expected that 
the effect of one channel is less as its distance from 
the channel of choice increases. Thus, the authors do 
not see enough justification to simply average the 
interference factors. A weighted average could be 
more fit in quantifying the interference to a channel. 
It can also be observed that the interference in ACS 
is quantified as ratio of busy and active times. The 
self-adaptive AP expresses interference in the proper 
unit – dBm or mWatts.  Thus, although ACS can tell 
what percentage of time a channel is busy, it says 
nothing about how strong is the power of interferer 
signal making the channel busy. The self-adaptive AP 
starts with the strength of the interferer access points to 
generate an interference noise floor for the whole 2.4 
GHz band. After that, this interference noise is corrected 
because the signal strengths measured are not present 
in the air for the whole time. The busy time/active 
time ratios for several channels are gathered for the 
whole band, these ratios are expressed in dB, and they 
are subtracted from the initial interference noise floor. 
A major advantage of the self-adaptive AP algorithm 
is the use of correct units in expressing interference.  
Nevertheless, the ACS has the properties of simplicity 
of computation and ease of implementation.  Now that 

the ACS has been introduced and compared with the 
self-adaptive AP algorithm, this paper will proceed 
with the quantitative comparison between the results 
of both algorithms.

III.  Background and Scope of the Study

Rondeau et al. gave 3 parts of a cognitive radio 
which made it cognitive: the ability to sense the RF 
spectrum even at a minimum sensing, geographical 
surroundings, and the user’s needs; the capacity to 
learn, ideally in both supervised and unsupervised 
modes; and finally, the capability to adapt within any 
layer of the radio communication system [3].  This 
definition is useful in scoping the current paper.   

The primary objectives of a self-adaptive Wireless 
LAN (WLAN) AP are: 1) to operate optimally in a 
wireless medium in which interferers are present and 
2) to do so while improving its wireless performance 
to deliver sufficient QoS to its connected clients. As 
in some of the citations in the related works, it may 
also be desirable to have a secondary objective where 
human exposure to EMF is reduced after attaining 
the primary objectives. Thus, in the context of the 
definition of cognitive radios by Rondeau, et al., the 
self-adaptive AP can do the following: sense the RF 
spectrum to detect interferers and to gather wireless 
statistics of associated client stations performance. It 
can also learn which configurations are most fit using 
a genetic algorithm based on the knowledge of other 
interfering access points and the wireless performance 
of the client devices.  

The scope of the present study is self-adaptation 
only at the level of the wireless configuration which 
is accessible to users and administrators. The self-
adaptive AP automates the configuration by network 
administrators and even improves on it by making 
informed decisions on which combination of values of 
wireless configuration parameters to use. In addition 
to this, the adjustments made by the self-adaptive 
AP to its own configurations are dynamic due to 
changing wireless network conditions. For instance, the 
turning on of a new interferer AP will result to a new 
configuration evaluated by the genetic algorithm. The 
self-adaptive AP is informed of the new recommended 
configuration and applies it at appropriate times 
to reduce instability and minimize the downtime 
of associated clients. The wireless performance of 
associated clients is also taken into consideration in 
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the decision to recommend new wireless configuration. 
Note that this adaptation mechanism is outside of 
the existing MAC layer mechanisms in IEEE 802.11 
such as data rate adaptation. Adaptation at the 1PHY 
or MAC layers and protocols is outside the scope of 
this study. Moreover, most previous works on rate 
adaptation rely only on frame losses to infer channel 
quality, but performs poorly if frame losses are mainly 
caused by interference [14]. 

IV.  The Self-Adaptive AP Program Flow

This section will discuss the overall flow of the 
program  whose code will be installed on a Linux-
based Access Point (AP) to make it self-adaptive 
and optimize itself for network performance under 
interfered scenarios. Another key topic of this section 
is the fitness function, which utilizes a single-metric 
(PRR-MCS) method and normalizes each dimension 
of the multi-objective genetic algorithm (MOGA). The 
fitness function uses the PRR-MCS to evaluate and 
score each of the genes in a chromosome (Figure 1).

This section also identifies the commands and 
programs used to gather the data needed by the fitness 
function.  These commands or programs are installed 
in a Linux-based access point in order to perform 
data gathering functions such as channel survey scan 
and client station performance statistics.  Whenever 
mentioned, these commands or programs are formatted 
in the Courier font. The device interface 
under test is also represented as wlan0 to facilitate 
understanding of the command usage.

Before going through the details and operation 
of the fitness function used by the GA, it is worth 
mentioning what operations are inside the multi-
objective GA cycle in Figure 2.  The internals of the 
MOGA is shown in Figure 3. First, the genes of the 
initial chromosomes are randomly generated.  The 
population size is 50 chromosomes whose format is 
shown in Figure 1. A function in the C++ code, called 
objective_channel(), generates the interference noise 
floor for the whole 2.4 GHz band from 2400 – 2483 
MHz. The fitness of the chromosomes are evaluated 
using the output of the objective_channel() function 
and the chromosomes are given their corresponding 

Fig. 2. Over-all flow of the program whose code is installed in an Access Point (AP) to make it self-adaptive
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scores. A penalty function is also used to remove 
disallowed configurations resulting from incorrect 
combinations of channel frequency and channel setting. 
The chromosomes are sorted from the highest score to 
the lowest score for easier processing. After sorting, the 
standard GA operations are then applied to the initial 
population. The crossover() function performs single 
point crossover between neighboring chromosomes 
(parents) in the sorted array at a crossover probability 
of 90%. This operation produces a new generation of 
offspring. The mutation() function introduces random 
changes to the genes at a mutation probability of 20%. 
Fitness is again evaluated for the new generation of 
offspring. Then, the selection() function selects the 
top 50 chromosomes from the set of 100 composed 
of the previous generation of parents and the current 
generation of offspring. This cycle is repeated for 5 to 
10 generations to converge to a solution. In Figure 2, 
this initial run of the GA cycle seeks to find a solution 
with the objective of identification of a least-interfered 
channel while maximizing the other parameters of 
transmit power and MCS data rate (GI is also at default 
of 800 nsec). In this run of the GA, the fitness function 
relied on the objective_channel() function which uses 
Linux commands to survey the interferer access points 
in the air.  These commands are discussed in detail 
below.  Another function, the objective_station_dump() 
function, which uses the wireless performance statistics 
of client stations associated to the AP, will be used 
together with objective_channel() for the succeeding 
runs of the GA cycle. The objectives are also revised 

when the fitness function is called. Interference 
mitigation is still part of the revised objectives. For 
the succeeding runs of the GA cycle, however, the 
revised objectives include optimization of transmit 
power and MCS data rate instead of just maximization 
of these parameters. The standard operations of genetic 
algorithms are also shown in Figure 3.  

V.  The Fitness Function

Upon start-up of the Linux-based device, it operates 
as a client station (STA) instead of an AP. This is 
necessary in order to gather a complete survey scan of 
the other interferer access points operating in an area.   
Although this feature is also possible while the device 
is operating as an AP using iwinfo wlan0 
scan, a more complete set of data is gathered using 
iwlist wlan0 scanning . The latter 
command shows the secondary channel which an 
interferer AP uses and this piece of information is not 
in the former command.   An AP uses a secondary 
channel when it operates in HT40+ or HT40- channel 
setting which means that the bandwidth used is 40 
MHz instead of the usual 20 MHz. Figure 4 illustrates 
a sample of the data gathered by iwlist wlan0 
scanning and what the program will construct 
out of these raw data.
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access points currently present in the air medium.  Then, it 
constructs an interference noise floor which is the sum of the 
noise floor (around -93 dBm) and the contribution of each AP to 
its specific channel of operation.  The net result if the topmost 
line in the graph in Figure 4.  A few more items need further 
explanation in the figure.  If the secondary channel offset is 
present in the output of the program, it means that the channel 
used by that AP is 40 MHz instead of the usual 20 MHz.  
Furthermore, an above offset means that the AP occupies its 
primary channel and the next channel (e.g. 1+5) while a below 
offset means that the primary channel and channel below are 
used (e.g. 11+7).   

The access point is also operated as a station (STA) initially to 
gain access to another crucial command - iw wlan0 survey 
dump.  This command measures the amount of time a chosen 
channel is busy and the channel active time.  Just before running 
this command, it is necessary to place the STA at the chosen for 
scanning through iw wlan0 set channel <number>.   
For this study, the following WiFi channels are scanned : 1 
(2402-2422 MHz), 5 (2422-2442 MHz), 9 (2442-2462 MHz), 
and 11 (2452-2472 MHz).   The readings at channels 1, 5, and 9 
are used as is while the reading at channel 11 is divided by 2 to 

compensate the fact that the channel 9 scan already covered half 
of channel 11.   

It will be shown later that the ratio of the busy time and the 
active time is a good correction factor to the interference noise 
floor (Figure 4) computed from the signal levels (in dBm) of all 
the interferer access points.  If the computed interference noise 
floor used remains unchanged in the program, the level of 
interference is overestimated.  The signal level received from 
interferer access points are only those of beacon transmissions 
which are typically broadcasted by an AP every 100 
milliseconds and occupying the medium only for a brief 50 bytes 
at 1 Mbps data rate.   After computing the interference noise 
floor, the busy time/active time ratio for the chosen channels are 
expressed in dB and are subtracted from the interference noise 
floor for those channels resulting to reduction to more 
reasonable values.   Figure 5 shows a sample output of iw 
wlan0 survey dump and the corrected 
interference noise floor.  As already mentioned, 
channels 1, 5, 9, and 11 are measured for busy 
and active times.  This measurement is done 
twice and the differences for each parameter are 
used to  compute  for the  ratio.  A  more  
accurate  
formula which is also used by the hostapd 
Automatic Channel Selection (ACS) algorithm is 
(busy time - transmit time) ÷ (active time - 
transmit time) although this value is very near the 
busy time ÷ active time.  

In summary, the AP is started in STA mode in 
order to gain access to two Linux commands:  
iwlist wlan0 scanning and iw 
wlan0 survey dump.  When the device 
enters AP mode which is its normal mode of 
operation, it is still useful for it to be alerted 
when new interferer access points are turned 
on.  The command iwinfo wlan0 scan 
here becomes valuable.   This command 
does not require the AP to go back to STA 
mode.  Instead, the AP can regularly run this 
command in the background while serving 
STA clients accessing the network.    The AP 
is effectively alerted if there are new interferer access points in 
the air.  The AP can then defer a more thorough survey scan 
using the two main commands mentioned above at scheduled 
times, or when there are no connected client stations.  So far, the 

results of the survey of interferer access point are enough for the 
GA to select a frequency channel (1 to 11 or 13 in some AP) and 
the channel setting (HT20, HT40- below, or HT40+ above).  For 

Cell 01 - Address: xx:xx:xx:xx:xx:xx
... 
          Mode: Master  Channel: 1 
          Signal: -56 dBm  Quality: 54/70 
... 
Cell 02 - Address: xx:xx:xx:xx:xx:xx
... 
          Frequency:2.462 GHz (Channel 11) 
          Quality=53/70  Signal level=-57 dBm 
... 
HT operation: 

       * primary channel: 11 
       * secondary channel offset: below 

 

Figure 4.  Sample iwlist wlan0 scanning output (truncated … and 
MAC addresses replaced with xx:xx:xx:xx:xx:xx) and the equivalent 
interference noise floor 

Survey data from wlan0 
        frequency:  2412 MHz [in use] 
        noise:      -95 dBm 
        channel active time:  3466683 ms 
        channel busy time:     386128 ms 
        channel receive time:  306527 ms 
        channel transmit time:  22693 ms 
…
Survey data from wlan0 
        frequency:  2412 MHz [in use] 
        noise:      -95 dBm 
        channel active time:  3467674 ms 
        channel busy time:     386144 ms 
        channel receive time:  306527 ms 
        channel transmit time:  22703 ms 
 

Figure 5.  Sample iw wlan0 survey output (truncated …) and the corrected 
interference + noise floor 

Station xx:xx:xx:xx:xx:xx (on wlan0) 
        inactive time:  40 ms 
        rx bytes:       38189 
        rx packets:     351 
        tx bytes:       37705 
        tx packets:     521 
        tx retries:     339 
        tx failed:      8 
        signal:         -60 dBm 
        signal avg:     -61 dBm 
        tx bitrate:     19.5 MBit/s MCS 2 
        rx bitrate:     6.5 MBit/s MCS 0 

  
Figure 6.  Sample iw wlan0 station dump output for a single STA 
associated to the AP 

STA RX_SIGNAL RX_MCS TX_MCS TX_RETRY TX_FAIL 
XX:XX:XX:73:42:68 -53.62 39.00 19.50 0.39 0.01 
XX:XX:XX:3b:0a:b4 -61.46 26.00 26.00 0.68 0.04 
XX:XX:XX:8d:a7:0d -65.69  6.50 52.00 0.23 0.01 
XX:XX:XX:89:30:e3 -49.23 58.50  6.50 0.18 0.00 

 
Figure 7.  Sample summary of iw wlan0 station dump as generated 
 by a bash script (xx:xx:xx hides the device manufacturer) 

Comment [MRJ27]: Then, it constructs an 
interference noise floor 

Comment [MRJ28]: A few more items need 
further explanation in the figure. 

Comment [MRJ29]: An above offset 

Comment [MRJ30]: a below offset 

Comment [MRJ31]: If the computed 
interference noise floor used remains unchanged in 
the program, 

Comment [MRJ32]: Expand to milliseconds 
before using as msec so that readers will not assume 
what it means 

Comment [MRJ33]: When the device enters AP 
mode which is its normal mode of operation, 

Comment [MRJ34]: The command iwinfo 
wlan0 scan here becomes valuable. 

Comment [MRJ35]: The AP can then defer a 
more thorough survey scan using the two main 
commands mentioned above at scheduled times, or 
when there are no connected client stations 

Comment [MRJ36]: Far, (insert comma) 

Fig 4. Sample iwlist wlan0 scanning output (truncated … and MAC 
addresses replaced with xx:xx:xx:xx:xx:xx) and the equivalent 
interference noise floor

Fig. 3. The internals of the MOGA Cycle  
shown as a block in Figure 2
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The self-adaptive AP program makes use of the 
output of iwlist wlan0 scanning to capture 
the interference caused by all the other access points 
currently present in the air medium. Then, it constructs 
an interference noise floor which is the sum of the noise 
floor (around -93 dBm) and the contribution of each AP 
to its specific channel of operation. The net result if the 
t opmost line in the graph in Figure 4. A few more items 
need further explanation in the figure. If the secondary 
channel offset is present in the output of the program, 
it means that the channel used by that AP is 40 MHz 
instead of the usual 20 MHz. Furthermore, an above 
offset means that the AP occupies its primary channel 
and the next channel (e.g. 1+5) while a below offset 
means that the primary channel and channel below are 
used (e.g. 11+7). 

The access point is also operated as a station (STA) 
initially to gain access to another crucial command - 
iw wlan0 survey dump. This command 
measures the amount of time a chosen channel is 
busy and the channel active time. Just before running 
this command, it is necessary to place the STA at the 
chosen for scanning through iw wlan0 set 
channel <number> . For this study, the 
following WiFi channels are scanned: 1 (2402-2422 
MHz), 5 (2422-2442 MHz), 9 (2442-2462 MHz), and 
11 (2452-2472 MHz). The readings at channels 1, 5, 
and 9 are used as is while the reading at channel 11 is 
divided by 2 to compensate the fact that the channel 9 
scan already covered half of channel 11.

It will be shown later that the ratio of the busy 
time and the active time is a good correction factor 
to the interference noise floor (Figure 4) computed 
from the signal levels (in dBm) of all the interferer 
access points. If the computed interference noise floor 
used remains unchanged in the program, the level of 
interference is overestimated. The signal level received 
from interferer access points are only those of beacon 
transmissions which are typically broadcasted by an 
AP every 100 milliseconds and occupying the medium 
only for a brief 50 bytes at 1 Mbps data rate.   After 
computing the interference noise floor, the busy time/
active time ratio for the chosen channels are expressed 
in dB and are subtracted from the interference noise 
floor for those channels resulting to reduction to more 
reasonable values. Figure 5 shows a sample output of 
iw wlan0 survey dump and the corrected 
interference noise floor. As already mentioned, 
channels 1, 5, 9, and 11 are measured for busy and 

active times. This measurement is done twice and the 
differences for each parameter are used to  compute  
for the  ratio. A more accurate formula which is also 
used by the hostapd Automatic Channel Selection 
(ACS) algorithm is (busy time - transmit time) ÷ (active 
time - transmit time) although this value is very near 
the busy time ÷ active time. 

Survey data from wlan0
        frequency:  2412 MHz [in use]
        noise:      -95 dBm
        channel active time:  3466683 ms
        channel busy time:     386128 ms
        channel receive time:  306527 ms
        channel transmit time:  22693 ms
…
Survey data from wlan0
        frequency:  2412 MHz [in use]
        noise:      -95 dBm
        channel active time:  3467674 ms
        channel busy time:     386144 ms
        channel receive time:  306527 ms

        channel transmit time:  22703 ms

Fig. 5. Sample iw wlan0 survey output (truncated …) and the 
corrected interference + noise floor

In summary, the AP is started in STA mode in order 
to gain access to two Linux commands: iwlist 
w l a n 0  s c a n n i n g  and i w  w l a n 0 
survey dump.  When the device enters AP mode 
which is its normal mode of operation, it is still useful 
for it to be alerted when new interferer access points 
are turned on.  The command iwinfo wlan0 
scan here becomes valuable. This command 
does not require the AP to go back to STA mode. 
Instead, the AP can regularly run this command in 
the background while serving STA clients accessing 
the network. The AP is effectively alerted if there are 
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new interferer access points in the air. The AP can 
then defer a more thorough survey scan using the 
two main commands mentioned above at scheduled 
times, or when there are no connected client stations. 
So far, the results of the survey of interferer access 
point are enough for the GA to select a frequency 
channel (1 to 11 or 13 in some AP) and the channel 
setting (HT20, HT40- below, or HT40+ above). For 
the initial objective, power and MCS data rate will 
be maximized and the guard interval will stay at 800 
nsec. After the recommendation from the GA, the 
AP configures itself accordingly and clients can now 
associate to it.

The fitness function utilizes two key inputs: (a) 
a survey scan of other access points operating in the 
area and (b) associated client station statistics such as 
signal level, packet retransmit and failure rates and 
MCS data rates for uplink and downlink. The first input 
has already been discussed in detail above. In the C++ 
code, the first input is used by the objective_channel() 
function. This leads the other input to the fitness 
function, the associated client station statistics, used 
by the objective_station_dump() function. With the 
device now operating in AP mode, the program calls 
another Linux command iw wlan0 station 
dump. Figure 6 shows a sample output for a single STA 
associated to the AP.  The data from all the associated 
STA are gathered and will be used to further optimize 
the operation of the AP.  Furthermore, for more 
significant readings, the AP generates ping traffic to 
all associated client STA before running the station 
dump. A bash script is written for this purpose and 
the main C++ code uses a system() call to occasionally 
run this bash script. 

Station xx:xx:xx:xx:xx:xx (on wlan0)
        inactive time:  40 ms
        rx bytes:       38189
        rx packets:     351
        tx bytes:       37705
        tx packets:     521
        tx retries:     339
        tx failed:      8
        signal:         -60 dBm
        signal avg:     -61 dBm
        tx bitrate:     19.5 MBit/s MCS 2
        rx bitrate:     6.5 MBit/s MCS 0

Fig. 6. Sample iw wlan0 station dump output 
for a single STA associated to the AP

STA RX_SIGNAL RX_MCS TX_MCS TX_RETRY	TX_FAIL
XX:XX:XX:73:42:68 -53.62 39.00 19.50 0.39 0.01
XX:XX:XX:3b:0a:b4 -61.46 26.00 26.00 0.68 0.04
XX:XX:XX:8d:a7:0d -65.69  6.50 52.00 0.23 0.01
XX:XX:XX:89:30:e3 -49.23 58.50  6.50 0.18 0.00

Fig. 7.  Sample summary of iw wlan0 station dump as generated 
by a bash script (xx:xx:xx hides the device manufacturer)

The single-metric of PRR-MCS which will be 
used to score each of the genes in a chromosome is 
the prominent feature of the objective_station_dump() 
function. Each gene score will be expressed in terms 
of PRR-MCS which is the packet reception rate % 
multiplied by a corresponding MCS data rate in Mbps. 
In order for the C++ code not  to become littered with 
command parsing functions, the already mentioned 
bash script also summarizes the output of iw wlan0 
station. Figure 7 shows a sample output of the 
bash script. 

The statistics in Figure 7 need some explanation.  
STA is, of course, the MAC address of the wireless 
client associated to the AP. RX_SIGNAL is the 
signal power in dBm received by the AP from the 
transmission of a client STA while RX_MCS is the 
rate if transmission from the client STA to the AP. 
Thus, these two readings refer to the uplink: from the 
STA to the AP. The following readings refer to the 
downlink path: AP to STA. TX_MCS is the downlink 
data rate to each STA, TX_RETRY is the percent of 
packets which were retransmitted, and TX_FAIL is 
the percent of packets which failed to reach the AP. 
One of the functions of the bash script is to compute 
these percentages from the raw output in Figure 6. In 
order to have a sense of the quality of the downlink, 
we define the transmit packet reception rate (TX_PRR) 
= 1 - TX_RETRY - TX_FAIL. To preview the use of 
the key metric PRR-MCS, one can see that the quality 
of the downlink can be expressed as the summation 
for all STA of (TX_PRR of the STA) x (MCS of the 
STA). This total PRR-MCS metric has the advantage 
of giving more weight to client stations with good 
link quality, that is, the stations with the poorest 
downlink connections (low MCS) do not contribute 
much to the calculation of the total PRR-MCS.  This 
ensures that the quality of the downlink is assessed 
using the performance statistics of the best associated 
client stations, as it should be. The total downlink 
PRR-MCS is the key metric to score one of the genes 
in a chromosome – the maximum MCS data rate. A 
modified form of the downlink PRR-MCS will also be 
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used for rating the maximum transmit power and the 
guard interval. On the other hand, channel frequency 
and channel setting will be scored using an uplink 
PRR-MCS with one key difference. Note that the any 
PRR calculation for the uplink is only a prediction since 
the retransmission and failure rates are not available in 
the station dump. The only uplink parameters available 
in the station dump are RX_SIGNAL and RX_MCS.  
To make such prediction of the uplink packet  
reception rate, a graph from [15] will be used as shown 
in Figure 8. 
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For channel frequency and channel setting, the score 
computation is straightforward.  The gene score is the 
summation across all the associated client stations of (RX_PRR) 
x (RX_MCS).  RX_MCS is readily available as shown in Figure 
7.  RX_PRR is determined in the following manner.  First the 
uplink SNR of a client is computed as the client RX_SIGNAL 
minus the average interference at the particular channel.  The 
interference noise floor is stored in an array for the whole 2400-
2483 MHz band (Figure 5).  The average interference for a 
channel frequency and setting combination is the sum of the 
interference for the channel band divided by the channel 
bandwidth.  For instance, for a channel 1 HT20 setting, the 
average interference is the sum of the interference array (in 
mWatts) from 2402 to 2422 MHz divided by 20 MHz.   Once 
SNR is derived from this computation, it becomes a simple 
matter to locate from the graph the expected RX_PRR given the 
SNR and the RX_MCS. 

The maximum MCS data rate is considered as a proposition 
for the AP to operate at this rate at the maximum.  Note that 
IEEE 802.11 dynamically changes the MCS data rate based in 
the link quality as measured by packet losses.  The maximum 
MCS data rate gene is a proposed cap on the current MCS  data 
rate, that is, if the proposed MCS rate is say MCS-6, then the AP 
cannot transmit at MCS-7 towards any STA at the downlink.   
The gene score is computed as the summation for all client STA 
of the (PREDICTED TX_PRR) x (GENE MCS DATA RATE).   
The GENE MCS DATA RATE is the rate in Mbps as proposed 
by the gene in a chromosome, so this value is readily available 
for use in the computation.  The PREDICTED TX_PRR is not 
specified and is also not available in the station dump command 
output.  From the station dump output (Figure 7), the TX_PRR 
for each client can be computed using TX_PRR = 1 -  
TX_RETRY - TX_FAIL.  Since, the TX_PRR and the TX_MCS 
are known, one can use the graph in Figure 8 to estimate the 
TX_SNR for each client STA.   To get the PREDICTED 
TX_PRR, one again uses the same graph but this time with two 
new input parameters: an adjusted TX_SNR and the proposed 
GENE MCS DATA RATE instead of the measured TX_MCS.   

Take note that the MCS parameter is not the only one that  
changes.  The MCS parameter to be considered to predict the 
TX_PRR is not the TX_MCS of client, rather it is the MCS 
setting of the gene.  In addition to this, the TX_SNR is also 
adjusted because changing the MCS data rate entails a change in 
the effective transmit power.  IEEE 802.11n radios are required 
to comply with decrease in power output when the MCS data 
rate is increased.  The AP used in this experiment has the 
following characteristic MCS versus transmit power: MCS0 to 
MCS3 28 dBm; MCS4 27 dBm; MCS5 25 dBm; MCS6 24 dBm; 
MCS7 23 dBm.   The adjusted TX_SNR is equal to TX_SNR + 
(AP transmit power at the proposed gene MCS – AP transmit 
power at the TX_MCS).   It is expected that this property of the 
AP of higher transmit power at lower MCS data rates together 
with the particular link conditions of the associated STA will 
lead to a trade-off in the choice of the optimum MCS data rate.  
That is, the highest MCS data rate will not always be the 
optimum MCS and such result can only be expected when the 
quality of all or most client STA links are very good.  Now, the 
PREDICTED TX_PRR for each client station is known and one 
can proceed with the gene score computation.  

 For scoring the maximum transmit power gene, an adjusted 
SNR is computed for each STA.  This adjusted SNR is simply 
the TX_SNR used in the MCS gene score above minus the 
proposed dB reduction in transmit power.  From this adjusted 
SNR and the STA TX_MCS, the PRR vs SNR graph yields an 
adjusted TX_PRR.  The gene score is then computed as the 
summation across all STA of the (ADJUSTED TX_PRR) x 
(TX_MCS).   Although it is expected that the highest transmit 
power setting will get the highest score, one can set a margin of 
allowance for optimization of transmit power.  For instance, if 
the gene score of two transmit power values are within 
approximately 5%, the lower of the two transmit power values 
can be given a higher score.   

Finally,  for the guard interval gene, the short GI of 400 nsec 
is only recommended if the downlink data rates toward the client 
STA are high.  A rule of thumb from [17] will be used.  
According to their test measurements, a short GI leads to a 30% 
increase in error rates while boosting the throughput by 11% 
(from IEEE 802.11n standard).    From this, the gene is scored as 
follows.  For 800 nsec, the gene score is the summation across 
all clients of (TX_PRR) x (TX_MCS).   The gene score for the 
400 nsec case is computed differently as the summation for all 
clients of (1 – 1.3 x (1- TX_PRR)) x (TX_MCS) x 1.11.   

  An overview of the multi-objective GA was outlined in 
Section 4 while a thorough discussion of the fitness function was 
given in Section 5.  The next section compares the self-adaptive 
AP algorithm with the Automatic Channel Selection (ACS) 
algorithm used in hostapd.   The operation and computations 
involved in ACS are not discussed in much detail and the reader 
is referred to [16] for a more complete discussion.   
 

Figure 8.  A reprint of the graph in [15] relating the signal to noise ratio 
with the packet reception rate.  This is a variant of the more well-known 
bit error rate (BER) versus SNR or Eb/No graphs which characterizes a 
digital modulation technology.  The graph above applies to 802.11n 
MCS data rates. 
 

Comment [MRJ40]: can be computed using 

Comment [MRJ41]: Take note that the MCS 
parameter is not the only one that changes. 

Comment [MRJ42]: Instance, (insert comma) 

Comment [MRJ43]: Within approximately 5% 
of the neighborhood, 

Fig. 8. A reprint of the graph in [15] relating the signal to noise 
ratio with the packet reception rate. This is a variant of the more 
well-known bit error rate (BER) versus SNR or Eb/No graphs 
which characterizes a digital modulation technology. The graph 
above applies to 802.11n MCS data rates.

One can think of packet reception rate (PRR) as a 
thread  that ties together the indicators of link quality 
which are the more familiar received signal level 
(dBm), signal to noise ratio (dB) and interference noise 
floor (dBm). The graph in Figure 8 is stored as a two-
dimensional array in the C++ code. Using this graph, 
one can either predict the downlink SNR at a client 
STA given the TX_MCS and the computed TX_PRR. 
Conversely, one can estimate the RX_PRR given the 
RX_MCS and the uplink SNR as seen by the AP from 
each STA.  The uplink SNR can be estimated indirectly 
as the difference between the RX_SIGNAL and the 
average interference in the channel of operation.  As 
discussed above, the interference information is made 
available to the fitness function since  the  output  of  
the  channel survey commands are processed into an 
interference noise floor.  

Now, the data gathered and the tools to be used 
by the GA fitness function are complete and all that 
needs to be done is to score the genes of a chromosome 

(Figure 1). The formulas used by the fitness function 
for scoring each gene are presented in Table 1.

For channel frequency and channel setting, the 
score computation is straightforward. The gene score 
is the summation across all the associated client 
stations of (RX_PRR) x (RX_MCS). RX_MCS is 
readily available as shown in Figure 7. RX_PRR is 
determined in the following manner. First the uplink 
SNR of a client is computed as the client RX_SIGNAL 
minus the average interference at the particular 
channel. The interference noise floor is stored in an 
array for the whole 2400-2483 MHz band (Figure 5).  
The average interference for a channel frequency and 
setting combination is the sum of the interference for 
the channel band divided by the channel bandwidth.  
For instance, for a channel 1 HT20 setting, the average 
interference is the sum of the interference array (in 
mWatts) from 2402 to 2422 MHz divided by 20 MHz. 
Once SNR is derived from this computation, it becomes 
a simple matter to locate from the graph the expected 
RX_PRR given the SNR and the RX_MCS.

The maximum MCS data rate is considered as 
a proposition for the AP to operate at this rate at 
the maximum.  Note that IEEE 802.11 dynamically 
changes the MCS data rate based in the link quality as 
measured by packet losses.  The maximum MCS data 
rate gene is a proposed cap on the current MCS  data 
rate, that is, if the proposed MCS rate is say MCS-6, 
then the AP cannot transmit at MCS-7 towards any 
STA at the downlink.  

The gene score is computed as the summation 
for all client STA of the (PREDICTED TX_PRR) x 
(GENE MCS DATA RATE). The GENE MCS DATA 
RATE is the rate in Mbps as proposed by the gene in a 
chromosome, so this value is readily available for use 
in the computation.  he PREDICTED TX_PRR is not 
specified and is also not available in the station dump 
command output. From the station dump output (Figure 
7), the TX_PRR for each client can be computed using 
TX_PRR = 1 - TX_RETRY - TX_FAIL. Since, the 
TX_PRR and the TX_MCS are known, one can use 
the graph in Figure 8 to estimate the TX_SNR for 
each client STA. To get the PREDICTED TX_PRR, 
one again uses the same graph but this time with two 
new input parameters: an adjusted TX_SNR and the 
proposed GENE MCS DATA RATE instead of the 
measured TX_MCS. Take note that the MCS parameter 
is not the only one that changes. The MCS parameter 
to be considered to predict the TX_PRR is not the 
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Gene Input Parameters Score (in unit of % Mbps) 

Channel Frequency rx_prr is derived from the graph and the 
computed snr.  snr = rx_signal – channel 
interference

Σ (rx_prr)(rx_mcs) all sta

Channel Setting rx_prr is derived from the graph and the 
computed snr.    

Σ (rx_prr)(rx_mcs) all sta

Maximum MCS Data Rate given the tx_mcs and the tx_prr., tx_snr is 
derived from the graph  using an adjusted tx_snr 
and the proposed gene mcs, a new predicted tx_prr 
is obtained from the same graph for each sta

Σ (predicted_tx_prr)  
      x (gene_mcs) all sta

Maximum  Transmit Power adjusted tx_snr = tx_snr – db reduction of 
transmit power.  this adjusted tx_snr is used to 
obtain the adjusted tx_prr at the sta tx_mcs.

Σ (adjusted tx_prr)  
      x (tx_mcs) all sta

 tx_prr and tx_mcs are readily available from the 
station dump

For 800 nsec:
Σ (tx_prr)x(tx_mcs) all sta

For 400 nsec: 
(1-1.3(1-tx_prr)) x 

Σ (tx_mcs) x 1.11 all sta

TABLE 1
Fitness Scoring for each Gene of a Chromosome

TX_MCS of client, rather it is the MCS setting of the 
gene. In addition to this, the TX_SNR is also adjusted 
because changing the MCS data rate entails a change 
in the effective transmit power. IEEE 802.11n radios 
are required to comply with decrease in power output 
when the MCS data rate is increased. The AP used in 
this experiment has the following characteristic MCS 
versus transmit power: MCS0 to MCS3 28 dBm; 
MCS4 27 dBm; MCS5 25 dBm; MCS6 24 dBm; MCS7 
23 dBm. The adjusted TX_SNR is equal to TX_SNR 
+ (AP transmit power at the proposed gene MCS – AP 
transmit power at the TX_MCS). It is expected that 
this property of the AP of higher transmit power at 
lower MCS data rates together with the particular link 
conditions of the associated STA will lead to a trade-
off in the choice of the optimum MCS data rate. That 
is, the highest MCS data rate will not always be the 
optimum MCS and such result can only be expected 
when the quality of all or most client STA links are 
very good. Now, the PREDICTED TX_PRR for each 
client station is known and one can proceed with the 
gene score computation. 

For scoring the maximum transmit power gene, 

an adjusted SNR is computed for each STA. This 
adjusted SNR is simply the TX_SNR used in the MCS 
gene score above minus the proposed dB reduction 
in transmit power.  From this adjusted SNR and the 
STA TX_MCS, the PRR vs SNR graph yields an 
adjusted TX_PRR. The gene score is then computed 
as the summation across all STA of the (ADJUSTED 
TX_PRR) x (TX_MCS). Although it is expected 
that the highest transmit power setting will get the 
highest score, one can set a margin of allowance for 
optimization of transmit power. For instance, if the 
gene score of two transmit power values are within 
approximately 5%, the lower of the two transmit power 
values can be given a higher score.

Finally, for the guard interval gene, the short GI 
of 400 nsec is only recommended if the downlink 
data rates toward the client STA are high. A rule of 
thumb from [17] will be used. According to their test 
measurements, a short GI leads to a 30% increase 
in error rates while boosting the throughput by 11% 
(from IEEE 802.11n standard). From this, the gene 
is scored as follows. For 800 nsec, the gene score 
is the summation across all clients of (TX_PRR) x 
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(TX_MCS).   The gene score for the 400 nsec case is 
computed differently as the summation for all clients 
of (1 – 1.3 x (1- TX_PRR)) x (TX_MCS) x 1.11. 

An overview of the multi-objective GA was 
outlined in Section 4 while a thorough discussion of 
the fitness function was given in Section 5. The next 
section compares the self-adaptive AP algorithm with 
the Automatic Channel Selection (ACS) algorithm 
used in hostapd. The operation and computations 
involved in ACS are not discussed in much detail 
and the reader is referred to [16] for a more complete 
discussion. 

VI.  Experimental Results

A s a m p l e  r e s u l t  o f  i w l i s t  w l a n 0 
scanning  is summarized in Figure 9. Again a 
bash script is  used to create this summary. It averages 
the values of the signal received from each AP to 
smooth out sudden spikes in the readings. Also, only 
the access points with the highest signals are considered 
– those with signals higher than -90 dBm. Other access 

points which are too close to the noise floor are ignored 
since they will not affect the interference noise floor 
computation in a significant way.

The output of the ACS algorithm and its 
recommended channel use is presented here. A 
complete scan from channels 1 to 11 is performed. 
For each channel, two readings are gathered spaced 
5 seconds apart. From the raw data similar to Figure 
5, a summary table is obtained (Table 2). From this 
computation, the unmodified ACS algorithm used by 
hostapd recommends using Channel 1 for HT 20 
MHz and Channel 1+5 for HT 40 MHz. If one will 
check [16], the sample computation led to a choice 
of channel 13 HT 20 MHz. This is not surprising 
because the edge channels just summed up 3 values of 
interference factors versus 5 for the center channels. 
These results supports the seeming inadequacy of 
the ACS algorithm, particularly the formulas used to 
quantify interference. With a modified ACS, using 
average instead of sum for the interference factors, the 
recommended channels are channel 2 for HT 20 MHz 
and 4+8 for HT 40 MHz. Even before a full analysis 

Channel  prim+seC setting band (Mhz) SUM oF interf factor AVE oF interf factor

1 HT20 2402-2422 0.1798 0.0599
1+5 HT40+ 2402-2442 0.4814 0.0688
2 HT20 2407-2427 0.2187 0.0547
2+6 HT40+ 2407-2447 0.5184 0.0648

3 HT20 2412-2432 0.2779 0.0556

3+7 HT40+ 2412-2452 0.5745 0.0638

4 HT20 2417-2437 0.3174 0.0635

4+8 HT40+ 2417-2457 0.5695 0.0633
5 HT20 2422-2442 0.3389 0.0678

5+9 HT40+ 2402-2442 0.6527 0.0725

6 HT20 2427-2447 0.3386 0.0677

6+10 HT40+ 2407-2447 0.6153 0.0769

7 HT20 2432-2452 0.3558 0.0712

7+11 HT40+ 2412-2452 0.5763 0.0823

8 HT20 2437-2457 0.3804 0.0761

9 HT20 2442-2462 0.3888 0.0778

10 HT20 2C447-2467 0.3137 0.0784

11 HT20 2452-2472 0.2767 0.0922

TABLE 2
Recommended Channels of Operation (in bold) Based on the ACS Algorithm
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using the self-adaptive AP algorithm, the soundness 
of the result of the modified ACS specifically 4+8, is 
supported by the raw data in Figure 9.

AP CHANNEL_FREQ SIGNAL SECONDARY_CHANNEL
XX:XX:XX:B6:52:3F 2412 -52.00 no
XX:XX:XX:D4:D9:68 2462 -57.00 below
XX:XX:XX:06:ED:7E 2412 -77.00 above
XX:XX:XX:31:F3:A4 2462 -79.00 below
XX:XX:XX:40:A5:3E 2462 -87.00 below
XX:XX:XX:0A:14:5F 2437 -85.00 no

Fig. 9. Sample summary of iwlist wlan0 scanning 

Just by observation, the two most powerful 
interferer access points with signal levels of -52 and -57 
dBm are situated at channels 1, and 7+11, respectively. 
Thus, if one is to choose a 20 MHz channel, channel 4 
would be a sound choice indeed. It is now time to apply 
the algorithm used in the self-adaptive AP.

As discussed in previous sections, the AP will first  
use the raw data of interferer access points as shown 
in Figure 9. The resulting interference + noise floor is 
shown in Figure 10. The AP signal readings in Figure 9 
and plotted in Figure 10 are just that – signal strengths. 
They do not tell what percentage of time that signal 
strength is present in the air. Thus, the average powers 
of the interferers are overestimated.  Theoretical 
calculations of packet reception rates (PRR) are 
found to be too high compared to real measurements 
when the uplink signal-to-noise ratios are used to 
get the corresponding PRR from the graph using the 
interference + noise floor in Figure 10. Thus, the busy 
time/active time ratio is used as a correction factor 
to generate a lower interference + noise floor (Figure 
11). The signal level received from interferer access 
points are only those of beacon transmissions which 
are typically broadcasted by an AP every 100 msec 
and occupying the medium only for a brief 50 bytes 
at 1 Mbps data rate. After computing the interference 
noise floor, the busy time/active time ratio for the 
chosen channels are expressed in dB and are subtracted 
from the interference noise floor for those channels 
resulting to reduction to more reasonable values. After 
this correction, the uplink signal-to-noise ratios will be 
higher than before the correction and the theoretical 
PRR estimates decrease and become closer to real 
measurements. Note that the uplink signal-to-noise 
ratio from a client STA is the gathered RX_SIGNAL 

minus the average interference present in the gene 
channel frequency-channel setting combination.
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for HT 40 MHz.   If one will check [16], the sample computation 
led to a choice of channel 13 HT 20 MHz.  This is not surprising 
because the edge channels just summed up 3 values of 
interference factors versus 5 for the center channels.  These 
results supports the seeming inadequacy of the ACS algorithm, 
particularly the formulas used to quantify interference.  With a 
modified ACS, using average instead of sum for the interference 
factors, the recommended channels are channel 2 for HT 20 
MHz and 4+8 for HT 40 MHz.  Even before a full analysis using 
the self-adaptive AP algorithm, the soundness of the result of the 
modified ACS specifically 4+8, is supported by the raw data in 
Figure 9.  

CHANNEL   
PRIM+SEC

SETTING BAND (MHZ) SUM OF
INTERF 
FACTOR

AVE OF
INTERF 
FACTOR

1 HT20 2402-2422 0.1798 0.0599 
1+5 HT40+ 2402-2442 0.4814 0.0688 
2 HT20 2407-2427 0.2187 0.0547 
2+6 HT40+ 2407-2447 0.5184 0.0648 
3 HT20 2412-2432 0.2779 0.0556 
3+7 HT40+ 2412-2452 0.5745 0.0638 
4 HT20 2417-2437 0.3174 0.0635 
4+8 HT40+ 2417-2457 0.5695 0.0633 
5 HT20 2422-2442 0.3389 0.0678 
5+9 HT40+ 2402-2442 0.6527 0.0725 
6 HT20 2427-2447 0.3386 0.0677 
6+10 HT40+ 2407-2447 0.6153 0.0769 
7 HT20 2432-2452 0.3558 0.0712 
7+11 HT40+ 2412-2452 0.5763 0.0823 
8 HT20 2437-2457 0.3804 0.0761 
9 HT20 2442-2462 0.3888 0.0778 
10 HT20 2447-2467 0.3137 0.0784 
11 HT20 2452-2472 0.2767 0.0922 

   
Table 2: Recommended channels of operation (in bold) based on the ACS  

algorithm 

Just by observation, the two most powerful interferer access 
points with signal levels of -52 and -57 dBm are situated at 
channels 1, and 7+11, respectively.  Thus, if one is to choose a  
20 MHz channel, channel 4 would be a sound choice indeed.   It 
is now time to apply the algorithm used in the self-adaptive AP. 

As discussed in previous sections, the AP will first use the raw 
data of interferer access points as shown in Figure 9.   The 
resulting interference + noise floor is shown in Figure 10.  The 
AP signal readings in Figure 9 and plotted in Figure 10 are just 
that – signal strengths.  They do not tell what percentage of time 
that signal strength is present in the air.  Thus, the average 
powers of the interferers are overestimated.   Theoretical 
calculations of packet reception rates (PRR) are found to be too 
high compared to real measurements when the uplink signal-to-
noise ratios are used to get the corresponding PRR from the 
graph using the interference + noise floor in Figure 10.  Thus, 
the busy time/active time ratio is used as a correction factor to 
generate a lower interference + noise floor (Figure 11).  The 
signal level received from interferer access points are only those 
of beacon transmissions which are typically broadcasted by an 
AP every 100 msec and occupying the medium only for a brief 
50 bytes at 1 Mbps data rate.   After computing the interference 
noise floor, the busy time/active time ratio for the chosen 
channels are expressed in dB and are subtracted from the 
interference noise floor for those channels resulting to reduction 
to more reasonable values.  After this correction, the uplink 
signal-to-noise ratios will be higher than before the correction 
and the theoretical PRR estimates decrease and become closer to 
real measurements.  Note that the uplink signal-to-noise ratio 
from a client STA is the gathered RX_SIGNAL minus the 
average interference present in the gene channel frequency-
channel setting combination. 

 

Figure 10: Interference + Noise Floor (in black line) sums up all the 
interference caused by all the interferer access points in    Figure 9 to an 
initial noise floor of -93 dBm 
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Fig. 10. Interference + Noise Floor (in black line) sums up all the 
interference caused by all the interferer access points in Figure 9 
to an initial noise floor of -93 dBm

TABLE 3
Correction factors versus band of frequencies

Band of 
frequencies Chanenl Correction in dB

2400-2422 1 -10.51

2422-2442 5 -12.28

2442-2462 9 -12.51

2462-2472 11(upper half) -11.65

The correction factor that will be used to lower the 
interference + noise floor will use the busy time/active 
time ratios of channels 1, 5, 9, and 11. The reading at 
channel 11 is divided by 2 to compensate the fact that 
the channel 9 scan already covered half of channel 11. 
The interference factors of these channels are converted 
into dB using the formula 10log(interference factor). It 
is actually more proper to call these busy time/active 
time ratio rather than interference factor since the latter 
is a terminology used by ACS. The essence of this ratio 
is that it indicates the percentage of time the channel is 
occupied or busy.  Thus, subtracting this ratio (in dB) 
from the initial power estimate (in dBm) as shown in 
Figure 10 gives the corrected interference + noise floor.   
Table 3 shows the correction factor (in dB) over the 
band of frequencies and Figure 11 gives the corrected 
interference + noise floor.
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The correction factor that will be used to lower the 

interference + noise floor will use the busy time/active time 
ratios of channels 1, 5, 9, and 11.  The reading at channel 11 is 
divided by 2 to compensate the fact that the channel 9 scan 
already covered half of channel 11.   The interference factors of 
these channels are converted into dB using the formula 
10log(interference factor).  It is actually more proper to call 
these busy time/active time ratio rather than interference factor 
since the latter is a terminology used by ACS.  The essence of 
this ratio is that it indicates the percentage of time the channel is 
occupied or busy.  Thus, subtracting this ratio (in dB) from the 
initial power estimate (in dBm) as shown in Figure 10 gives the 
corrected interference + noise floor.   Table 3 shows the 
correction factor (in dB) over the band of frequencies and Figure 
11 gives the corrected interference + noise floor. 
 The corrected or adjusted interference + noise floor will be the 
basis for the first series of runs of the GA.  At this point, the self-
adaptive AP is just exiting STA mode.  It has not operated as an 
AP yet and there are still no connected clients.  After initializing 
the 1st generation of population, the fitness function will evaluate 
50 randomly-generated chromosomes with the following 
objectives: minimize interference, maximize power, and 
maximize the MCS data rate.  The default channel setting of HT 
20 MHz and the guard interval of 800 nsec will also be given 
higher scores.  This way, the device can immediately start 
operating as an AP and serve wireless clients.  In the context of 
the overall program flow, the function objective_channel() in the 
C++ code has finished its job, that is, to construct the 
interference + noise floor (Figure 11) including the correction 
provided by the busy time/active time ratio.   At this stage of the 
code, and for simplicity, PRR-MCS has not yet been introduced 
into the fitness calculations since the AP has not yet gathered 
client STA statistics.   The channel frequency and channel 
setting configurations are initially scored using the average 
interference in their band of operation.   The average 
interference is equal to the area under the curve in Figure 11 
over the band of operation (e.g. 2402-2422 for channel 1 at HT 
20 MHz) divided by the channel setting bandwidth (e.g. 20 or 40 
MHz).  The use of a simpler fitness scoring for the initial GA run 
does not devalue the concept of PRR-MCS.  One can assume an 
RX_SIGNAL and an RX_MCS from a hypothetical wireless 
client STA and get a corresponding SNR by subtracting the 

average interference from the RX_SIGNAL.  Then the PRR vs 
SNR graph can be   used   to  
predict a RX_PRR and multiplying this by the RX_MCS yields a 
PRR-MCS metric which can be used for fitness scoring.  
However, it is obvious that such fitness scoring will lead to the 
same solution because the variables are held constant except for 
the average interference, which varies with the channel band.  
Table 4 summarizes the result of the initial set of GA runs using 
the average interference fitness scoring scheme.   Note that the 
fitness score is not yet in terms of PRR-MCS. 

The result in Table 3 clearly showed that the solution 
converged to a channel frequency of 5 and channel setting of HT 
20 MHz.  This band covers 2422 to 2442 MHz.   Figure 12 
compares the recommendations of the self-adaptive GA versus 
the best recommendation of ACS (4+8 or 2417-2457MHz) and 
clearly demonstrates that the former outperforms the latter in 
interference mitigation via channel selection.  ACS clearly 
missed channel 5 which sits in a region of lowest interference.  
There are also other recommendations from the self-adaptive 
GA, with fitness scores of 138, to use channels 7 to 11 using 20 
or 40 MHz but these chromosomes were removed by the 5th 

generation.  Lastly, channels 12 and 13 were not included in the 
calculations since the AP hardware used does not support those 
bands. 
LAST SEEN
IN
GENERATION 

CHANNEL 
FREQ

CHANNEL 
SETTING

FITNESS SCORE/
REMARKS 

5TH 6 HT20 140
5TH 9 HT40- 140

6TH 5 HT20 
144(CONVERGED 
SINGLE 
SOLUTION) 

 
 

Figure 11: Corrected Interference + Noise Floor using busy 
time/active time ratios of Channels 1,5,9 and 11

Table 3: Most fit channel configurations using initial set of  GA runs    
(6 generations)

Fig. 11. Corrected Interference + Noise Floor using busy time/
active time ratios of Channels 1,5,9 and 11

The corrected or adjusted interference + noise 
floor will be the basis for the first series of runs of the 
GA. At this point, the self-adaptive AP is just exiting 
STA mode. It has not operated as an AP yet and there 
are still no connected clients. After initializing the 
1st generation of population, the fitness function will 
evaluate 50 randomly-generated chromosomes with 
the following objectives: minimize interference, 
maximize power, and maximize the MCS data rate. 
The default channel setting of HT 20 MHz and the 
guard interval of 800 nsec will also be given higher 
scores.  This way, the device can immediately start 
operating as an AP and serve wireless clients.  In 
the context of the overall program flow, the function 
objective_channel() in the C++ code has finished its 
job, that is, to construct the interference + noise floor 
(Figure 11) including the correction provided by 
the busy time/active time ratio.   At this stage of the 
code, and for simplicity, PRR-MCS has not yet been 
introduced into the fitness calculations since the AP 
has not yet gathered client STA statistics. The channel 
frequency and channel setting configurations are 
initially scored using the average interference in their 
band of operation. The average interference is equal 
to the area under the curve in Figure 11 over the band 
of operation (e.g. 2402-2422 for channel 1 at HT 20 
MHz) divided by the channel setting bandwidth (e.g. 
20 or 40 MHz). The use of a simpler fitness scoring 
for the initial GA run does not devalue the concept of 
PRR-MCS.  One can assume an RX_SIGNAL and an 
RX_MCS from a hypothetical wireless client STA and 
get a corresponding SNR by subtracting the average 

interference from the RX_SIGNAL. Then the PRR 
vs SNR graph can be used to predict a RX_PRR and 
multiplying this by the RX_MCS yields a PRR-MCS 
metric which can be used for fitness scoring. However, 
it is obvious that such fitness scoring will lead to the 
same solution because the variables are held constant 
except for the average interference, which varies with 
the channel band. Table 4 summarizes the result of the 
initial set of GA runs using the average interference 
fitness scoring scheme. Note that the fitness score is 
not yet in terms of PRR-MCS.

The result in Table 3 clearly showed that the solution 
converged to a channel frequency of 5 and channel 
setting of HT 20 MHz. This band covers 2422 to 2442 
MHz. Figure 12 compares the recommendations of the 
self-adaptive GA versus the best recommendation of 
ACS (4+8 or 2417-2457MHz) and clearly demonstrates 
that the former outperforms the latter in interference 
mitigation via channel selection. ACS clearly  
missed channel 5 which sits in a region of lowest 
interference. There are also other recommendations 
from the self-adaptive GA, with fitness scores of 138, 
to use channels 7 to 11 using 20 or 40 MHz but these 
chromosomes were removed by the 5th generation. 
Lastly, channels 12 and 13 were not included in the 
calculations since the AP hardware used does not 
support those bands.

TABLE 3
Most fit channel configurations using initial set of GA 

runs (6 generations)

LAST SEEN 
IN 
generation 

channel 
freq

channel 
setting

FITNESS SCORE/ 
REMARKS

5th 6 HT20 140

5th 9 HT40- 140

6th 5 HT20
144(CONVERGED 
SINGLE 
SOLUTION)

At this point, the AP is serving wireless client 
stations and it will continuously gather wireless client 
statistics.  Again a bash script is used outside of the 
C++ code.  The code can access the bash script using 
a system() call and it will parse a text file generated by 
the bash script.  The script will also handle averaging 
the readings, specifically signal and MCS, in order 
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to smooth out any variations. For the succeeding 
discussion, the associated client STA statistics are those 
shown in Figure 7.
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 In the context of the program flow, the function 
objective_station_dump() will take over in a way similar to what 
objective_channel() did with the scan of interferer access points.  
The objective_station_dump() function will process the gathered 
wireless client statistics and most importantly, derive the PRR-
MCS values for the 5 chromosome genes.  Only after this 
function is done with these computations will evaluate_fitness() 
be called again using the revised objectives of minimize 
interference, optimize transmit power, and optimize data rate.  
The details of objective_station_dump() was already discussed 
extensively in the previous section.  For this paper, the fitness 
score of a chromosome is computed as just the sum of the fitness 
scores of each gene and all are in units of PRR-MCS (% x 
Mbps).   Table 4 shows the top 10 solutions of a sample run by 
the 6th generation.   
 Table 4 serves to illustrate the variation in the most likely 
candidates from the whole search space.   By the 10th generation 
of the sample run, most of the 50 chromosomes in the population 
have either 5 or 5+9 as channel frequencies, and only 8% of the 
chromosomes have channel 6.  Transmit power reductions are 
either 0 or 1 dB with 72% of the chromosomes recommending a 
reduction of 1 dB from the maximum transmit power.   Thus 
optimization of transmit power can be achieved by the multi-
objective GA and is often recommended as a better option than 
simply setting the transmit power at maximum.   The more 

aggressive guard interval of 400 nsec is only selected only 18% 
of the time.  Finally, the MCS data rate is more diverse.  This is a 
good indication that the multi-objective GA (MOGA) is adapting 
to the wireless conditions of the client stations.  The advantage 
of a lower data rate in downlink is that stations can connect at 
lower error rates.     From the preceding discussion, it is evident 
that the MOGA for the self-adaptive Access Point is well suited 
for such interplay of wireless parameters and network 
conditions.  Figure 13 closes this section with a graph of the 
distribution of maximum MCS data rate for the 50-chromosome 
population by the 10th generation. 

 
 
CHAN

FREQ

CHANN
SETTING

BAND 

(MHZ)
MAX 

DATA 
RATE 
MBPS

LESS 

TX 
POW
(DB)

GI FIT
SCORE

5+9 HT40+ 2422-
2462 52x2 0 800 430 

5+9 HT40+ 2422-
2462 52x2 0 800 430 

6 HT20 2427-
2447 39 0 400 424 

5+9 HT40+ 2422-
2462 6.5x2 0 400 423 

6 HT20 2427-
2447 39 1 800 422 

5+9 HT40+ 2422-
2462 52x2 1 400 416 

5+9 HT40+ 2422-
2462 39x2 1 400 416 

5+9 HT40+ 2422-
2462 52x2 1 400 416 

5+9 HT40+ 2422-
2462 39x2 1 400 416 

5 HT20 2422-
2442 52 2 400 410 

  
Table 4: Most fit chromosomes by the 6th generation 

 
 

Figure 13: Distribution graph of instances of certain MCS data rates across a 
population of 50 chromosomes by the 10th generation 
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Fig. 12. Top 3 recommendations of self-adaptive GA versus the 
best recommendation of ACS algorithm

In the context of the program flow, the function 
objective_station_dump() will take over in a way 
similar to what objective_channel() did with the scan 
of interferer access points. The objective_station_
dump() function will process the gathered wireless 
client statistics and most importantly, derive the PRR-
MCS values for the 5 chromosome genes. Only after 
this function is done with these computations will 
evaluate_fitness() be called again using the revised 
objectives of minimize interference, optimize transmit 

power, and optimize data rate. The details of objective_
station_dump() was already discussed extensively in 
the previous section. For this paper, the fitness score 
of a chromosome is computed as just the sum of the 
fitness scores of each gene and all are in units of PRR-
MCS (% x Mbps). Table 4 shows the top 10 solutions 
of a sample run by the 6th generation.  

Table 4 serves to illustrate the variation in the most 
likely candidates from the whole search space. By 
the 10th generation of the sample run, most of the 50 
chromosomes in the population have either 5 or 5+9 as 
channel frequencies, and only 8% of the chromosomes 
have channel 6. Transmit power reductions are either 0 
or 1 dB with 72% of the chromosomes recommending 
a reduction of 1 dB from the maximum transmit power. 
Thus optimization of transmit power can be achieved 
by the multi-objective GA and is often recommended as 
a better option than simply setting the transmit power 
at maximum. The more aggressive guard interval 
of 400 nsec is only selected only 18% of the time. 
Finally, the MCS data rate is more diverse. This is a 
good indication that the multi-objective GA (MOGA) 
is adapting to the wireless conditions of the client 
stations. The advantage of a lower data rate in downlink 
is that stations can connect at lower error rates. From 
the preceding discussion, it is evident that the MOGA 
for the self-adaptive Access Point is well suited for 
such interplay of wireless parameters and network 

TABLE IV
Most Fit Chromosomes by the 6th Generation

chan
freq

Chann
setting

band (Mhz) max data rate 
mbps

less tx 
pow (db)

GI FIT score

5+9 HT40+ 2422-2462 52x2 0 800 430

5+9 HT40+ 2422-2462 52x2 0 800 430

6 ht20 2427-2447 39 0 400 424

5+9 HT40+ 2422-2462 6.5x2 0 400 423

6 ht20 2427-2447 39 1 800 422

5+9 HT40+ 2422-2462 52x2 1 400 416

5+9 HT40+ 2422-2462 39x2 1 400 416

5+9 HT40+ 2422-2462 52x2 1 400 416

5+9 HT40+ 2422-2462 39x2 1 400 416

5 HT20 2422-2442 52 2 400 410
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conditions. Figure 13 closes this section with a graph 
of the distribution of maximum MCS data rate for the 
50-chromosome population by the 10th generation.
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good indication that the multi-objective GA (MOGA) is adapting 
to the wireless conditions of the client stations.  The advantage 
of a lower data rate in downlink is that stations can connect at 
lower error rates.     From the preceding discussion, it is evident 
that the MOGA for the self-adaptive Access Point is well suited 
for such interplay of wireless parameters and network 
conditions.  Figure 13 closes this section with a graph of the 
distribution of maximum MCS data rate for the 50-chromosome 
population by the 10th generation. 
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(MHZ)
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DATA 
RATE 
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GI FIT
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5+9 HT40+ 2422-
2462 52x2 0 800 430 

5+9 HT40+ 2422-
2462 52x2 0 800 430 

6 HT20 2427-
2447 39 0 400 424 

5+9 HT40+ 2422-
2462 6.5x2 0 400 423 

6 HT20 2427-
2447 39 1 800 422 

5+9 HT40+ 2422-
2462 52x2 1 400 416 

5+9 HT40+ 2422-
2462 39x2 1 400 416 

5+9 HT40+ 2422-
2462 52x2 1 400 416 

5+9 HT40+ 2422-
2462 39x2 1 400 416 

5 HT20 2422-
2442 52 2 400 410 
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Figure 13: Distribution graph of instances of certain MCS data rates across a 
population of 50 chromosomes by the 10th generation 

 

Figure 12: Top 3 recommendations of self-adaptive GA versus the 
best recommendation of ACS algorithm 
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Fig. 13. Distribution graph of instances of certain MCS data rates 
across a population of 50 chromosomes by the 10th generation

VII.  Conclusion and Future work

Variations on the fitness score or the GA operations 
are possible extensions to this work.  A weighted sum 
approach for the fitness function or a tournament 
approach in the GA selection are just some of the 
enhancements worth exploring in the future.  Such 
enhancements are well supported by the most 
important contributions of the current paper, namely: 
(1) the single-metric of PRR-MCS for scoring the 
different genes, (2) the normalization across multiple 
objectives or dimensions of interference mitigation 
and optimization of bandwidth, data rate, power, 
and guard interval, and (3) the implementation of 
multi-objective genetic algorithm (MOGA) to make a 
WLAN access point self-adaptive to dynamic wireless 
network conditions and to multi-radio ecosystems (e.g. 
HetNets).

Another important next step for this research is the 
actual compiling of the C++ code into a Linux-based 
WiFi Access Point. Important requirements for such 
endeavor have already been identified and discussed 
in this work. In order to fully implement a stand-alone 
daemon based on the C++ code, thresholds should be 
identified such as what level interference, error rates, 
or PRR-MCS will trigger a restart of the GA or the 
program. Finally, possible use of Heuristic Search 
Technique or Multi-Mode Self-Adaptive (MMSA) 
algorithm can be explored.  
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