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Abstract — A group of algorithm enhancing 
collective behavior is inspired by the animals working 
together as a group such as ants, bees, and etc. In 
connection, swarm is defined as a set of two or more 
independent homogenous or heterogeneous agents 
acting upon a common environment in a coherent 
fashion which generates emergent behavior. The 
development of artificial swarms or robotic swarms 
has attracted a lot of researchers in the last two 
decades including pheromone, trophallaxis and 
task allocation algorithms. However, among these 
swarm based algorithms, the most efficient in terms 
of group performance, efficiency and interference 
in collecting the dusts or objects in an environment 
with variable terrains has not been identified. With 
this, the researchers see the need to developed swarm 
simulation platform that would compare the swarm-
behavior-based algorithms for an ideal use of robots 
in different environments in dust collection.

Index Terms — Swarm intelligence, swarm 
foraging, swarm simulation platform development

I.  Introduction

Design and implementation of collective behavior 
of agents in accomplishing tasks are gaining 

popularity nowadays. Social animals and insects are 

the key inspiration of creating distributed behavior 
amongst independent agents. In connection, swarm 
is defined as a set of two or more independent 
homogeneous or heterogeneous agents acting in a 
common environment in a coherent fashion, which 
generates emergent behavior. The creation of artificial 
swarms or robotic swarms has attracted many 
researchers in the last two decades. Many studies have 
been undertaken using practical approaches to swarm 
construction such as investigating the navigation of the 
swarm, task allocation and elementary construction.

Examination of the behaviors of ants has led to the 
recently developed field of Swarm Intelligence. Ants 
can perform diverse collective tasks such as foraging, 
nest building, sorting, and cooperative transport. In this 
proposed study, three different behavior of ant system 
will be studied with certain given measures: speed, 
accuracy, efficiency, and collision avoidance. The goal 
is to obtain the best or most effective ant-based swarm 
behavior in foraging, specifically in dust collection, 
within a given platform environment.

A number of researchers have proposed many 
swarm robotics algorithm and the emerging trend in the 
field of interest are the study of ant-based algorithms 
like the pheromone, trophallaxis and task allocation. 
However, among these swarm based algorithms, 
the most efficient, in terms of speed, efficiency, and 
collision avoidance has not yet been determined. Thus, 
there is a need to develop a swarm simulation platform 
to compare the swarm behavior based algorithms for 
an ideal use of swarm robots in different environments 
for dust collection.
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II.  Swarm Behaviors

This section will discuss the different swarm 
behavior algorithms as presented by select models.  
The first part presents the three ant-based swarm 
behaviors and their basic description; we also state the 
algorithm that will represent them in the study. The 
second part will present the strengths of each behavior 
as opposed to the others; need for the comparison of 
the behaviors.

A.	 Trophallaxis (mouth-to-mouth feeding)
Trophallaxis is a basic behavior observed in 

majority of social animals and insects [5]. Its main 
purpose is to provide nutrition to offspring in nursing 
stage. However, it is also observed in several colony-
based insects, that trophallaxis occurs among adults 
to better distribute food. In [6, 7] it was shown that 
trophallaxis plays an important role in the regulation 
of collective foraging decisions in honeybees. Aside 
from its function to transfer nutrients, trophallaxis is 
also observed as a tool in exchanging information about 
available food sources in honeybees. A trophallaxis-
based algorithm is a self-organized task exchange in 
a swarm of autonomous, movable, and reconfigurable 
agents. In our study, the trophallaxis-based algorithm 
will be the BEECLUST Algorithm [5].

B.	 Task Allocation 
Task allocation and learning is normally quite 

important to a swarm of robots. Task decomposition 
and allocation can greatly improve efficiency for 
especially complex tasks. In [8], they compared the 
costs and benefits of different types of task   allocation 
approaches in noisy world. Learning is also useful 
since the parameters of the control mechanism are 
hard to tune. With the help of self-adaptive learning 
and optimizing methods, the swarm shows better 
adaptability in the different environments [4]. Task 
allocation assigns the robot members among different 
tasks in an adaptive and flexible way [7]. Task 
allocation will be represented by the Task Partitioning 
Model in [10].

C.	 Pheromone
Ant colonies in the nature are famous for their 

navigation and migration behaviors with the help of 

pheromones. The researchers of the swarm robotics 
society employed such scheme into swarm robotics by 
simulating the pheromones using part of the robots in 
the swarm which serve as the beacons [4]. Usage of 
pheromone for swarm robotics vary with its purpose 
such as in [11] where it is unique to a location on a 
map which was used to create a path from garbage 
sites to dump sites or in [12] where it was a signal the 
robot always carried to be able to inform robots of 
its current position and heading when they are close 
enough to each other. It may also be a numerical value 
in shared memory such as in [9] that acts as a request 
to other robots for assistance in a task. In our study, 
Pheromone-based behavior will be represented by the 
model in [12].

III.  Unique Characteristics

Pheromone-based swarm robots select different 
tasks of the same type with different probabilities 
according to the pheromone amounts to assign 
themselves in the performing of these tasks [9]. They 
can use simple attraction or repulsion behaviors 
and they also do not require distinct step of map 
generation [12]. Though communication is indirect, 
they move with respect to pheromones “left” by other 
bots and “drop” their own for other robots [4]. Thus 
Pheromone-based swarms provide a robust, scalable 
approach for achieving the swarm level behaviors 
using a large number of small-scale robots in tasks 
such as reconnaissance and path-finding [13][15]. 
Trophallaxis-based swarm robots do not require such 
information nor do they need to know the position 
of other robots meaning that there is no need for 
a collection of the information of bots [5], like in 
Pheromone-based swarms [9], since communication 
happens at the instance when two robots meet [5]. 
Trophallaxis-based robots can also exchange tasks 
between robots of different capabilities to reduce the 
energy consumption of reconfiguration when and if  
they meet [10]. Trophallaxis-based swarm robots 
also do not require additional hardware for onboard 
processing or memory [5]. Task-allocated swarms 
on the other hand boast high adaptability in different 
environments and greatly improve efficiency for 
especially complex tasks [4]. Taskallocated swarm 
bots are also specialized and can switch between 
specializations if the remaining tasks require more 
participants [9].
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IV.  Simulation Parameters

Based on parameters used in [10], the measurement 
of group performance, individual efficiency, and 
interference:

Group Performance is the total number of prey 
objects collected within the time period while 
Individual Efficiency is the number of prey objects 
collected by each individual robot [10].

Interference is measured as the time spent 
performing actions not strictly related to the task, 
but rather those actions that are lost due to negative 
interactions with the environment (e.g., obstacle 
avoidance maneuvers) [10]

V.  Behavior Algorithm

A.	 Trophallaxis
Figure 1 shows the logical representation of the 

flow of events in a BEECLUST algorithm. First, to 
achieve random movement, each bot is assigned a 
direction and moves in a straight line in that direction 
until it encounters an obstacle, boundary or other bot. 
Bot collisions are detected by determining whether bots 
are within a certain distance of each other.  Then, the 
bot determines whether it has collided with an obstacle 
or another bot. Once a bot is stopped (as a result of 
collision with another bot), then it measures the value 
of the function at that location. Lastly, cluster finding 
is done when the search is terminated. In general, the 
bots begin to collide/stop/wait at the beginning of the 
search. Thus, the bots tend to cluster soon after the 
search begins so the search can be stopped at any time 
to observe the location(s) of the clusters. 

Fig. 1. Simplified state diagram of trophallaxis behavior based 
on BEECLUST algorithm

B.	 Task Allocation
Figure 2 shows the state diagram for the Task 

Allocation Algorithm [10]. Gray states belong to the 
harvest task, while the white states to the store task. The 
obstacle avoidance state has been omitted for clarity, 
as it is applicable in all states of the robot. tw is the 
time spent in the exchange zone and θ is the threshold. 

Fig. 2. Simplified state diagram of the controller of the robots

The first step of the algorithm is spatially 
partitioning the environment. The global foraging 
task is automatically partitioned into two subtasks 
particularly; harvesting prey objects from a harvesting 
area (source) and then transporting them to a home 
area (nest).

These subtasks have a sequential inter-dependency 
in the sense that they have to perform one after the other 
in order to complete the global task once: delivering a 
prey object to the home area [12].

A robot in the first subtask has to wait for a specific 
time before passing an object to the robot in the  
second subtask. A long waiting time could mean 
insufficient robots in subtask. The robots have the 
capability to switch a subtask. The waiting time could 
be used by the robot to decide whether it will switch 
a subtask or not.

C.	 Pheromone 
Pheromones are locally transmitted without 

specifying a recipient. This obviates the need for 
unique identities that are impractical in a large group. 
Figure 3 shows the Pheromone’s diffusion gradients 
that provide important navigational cues and it can 
also encode useful information about barriers in the 
environment that block pheromone propagation. But 
Pheromones decay over time, which reduces obsolete 
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or irrelevant information and obstacles are sensed by 
the robot when pheromone messages bounce off them. 
The robot will remember the direction of the received 
virtual pheromone and will serve as guideposts for the 
following robots. 

Fig. 3. Diagram of Pheromone field strength

VI.  Simulation Environment

The testing environment has an area of 90 cm 
x 90cm, including the walls at the edge of the 
environment, divided into 3 cm x 3 cm sections 
called “patches”. The environment will be leveled 
throughout. The test will also include static obstacles 
which will be expressed as a percent of the total area 
of the environment. In this study, the percentages will 
be: (a) 0% or no obstacles, (b) 25%, (c) 50% and (d) 
75%. The environment will be generated so that all dust 
particles (not enclosed by obstacles) can be collected 
and that there are no single-block obstacles. The same 
generated environment will be used for testing all bots 
and algorithms so that all results can be compared. 
Each combination will be simulated 10 times with an 
upper limit of 40 if results are inconclusive. There will 
be a total of 50 dust particles in static tests and may 
be formed in clumps called “dust sites” or individual 
pieces simply called “dust”. In dynamic tests, the first 
25 dust particles will be placed on the field and the 
last 25 dust particles will be dropped randomly across 
the field.

VII.  Dimensions and Specification  
of Swarm Robots

Fig. 4. Swarm robot and environment GUI

The robots in general will be able to move, rotate 
in place, detect the dust particle when they are near or 
over it, and carry the dust. Other specifications such as 
LEDs will be incorporated depending on the algorithm 
they will be using to perform the test. 

Fig. 5. Swarm robots in random movement (55 bots)

The size of the robots will be less than one patch, 
exactly the width of one patch and larger than one 
patch to allow for robot exploration. The diameter of 
the robots will be: (a) 2 cm, (b) 3 cm and (c) 4 cm. 
This study will use (a) 50 robots, (b) 100 robots, (c) 
150 robots, (d) 200 robots of each size. The goal of 
the robots is to collect the dust scattered across the 
environment and bring it back to the nest located at 
the center. The dust will have no dimensions and no 
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weight. The robots will be programmed to follow the 
algorithms presented in Chapter 2 to search for, collect 
and, return the dust.

The main algorithm used for the program of the 
graphical user interface and the environment is as 
follows:

The size of the robots will be less than one patch, exactly 
the width of one patch and larger than one patch to allow for 
robot exploration. The diameter of the robots will be: (a) 2 cm, 
(b) 3 cm and (c) 4 cm. This study will use (a) 50 robots, (b) 
100 robots, (c) 150 robots, (d) 200 robots of each size. The 
goal of the robots isto collect the dust scattered across the 
environment and bring it back to the nest located at the center. 
The dust will have no dimensions and no weight. The robots 
will be programmed to follow the algorithms presented in 
Chapter 2 to search for, collect and, return the dust. 

The main algorithm used for the program of the graphical 
user interface and the environment is as follows: 

Figure 7.3 Main algorithm of the simulation platform 

VIII. SIMULATION RESULTS

In the simulation environment with 50 bots, it is observed 
that more or less 40 bots on average intersect at periods of 
random movements.  

Figure 8.1 Random movements of 50 Bots 

Figure 8.2 Initial position of Dynamic Obstacles 

Figure 8.3 50 bots used 

Figure 8.4 100 bots used 

        Figure 8.5 150 bots used 

Fig. 6. Main algorithm of the simulation platform

VIII.  Simulation Results

In the simulation environment with 50 bots, it is 
observed that more or less 40 bots on average intersect 
at periods of random movements. 

The size of the robots will be less than one patch, exactly 
the width of one patch and larger than one patch to allow for 
robot exploration. The diameter of the robots will be: (a) 2 cm, 
(b) 3 cm and (c) 4 cm. This study will use (a) 50 robots, (b) 
100 robots, (c) 150 robots, (d) 200 robots of each size. The 
goal of the robots isto collect the dust scattered across the 
environment and bring it back to the nest located at the center. 
The dust will have no dimensions and no weight. The robots 
will be programmed to follow the algorithms presented in 
Chapter 2 to search for, collect and, return the dust. 

The main algorithm used for the program of the graphical 
user interface and the environment is as follows: 

Figure 7.3 Main algorithm of the simulation platform 
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Figure 8.1 Random movements of 50 Bots 

Figure 8.2 Initial position of Dynamic Obstacles 

Figure 8.3 50 bots used 

Figure 8.4 100 bots used 

        Figure 8.5 150 bots used 

Fig. 7. Random movements of 50 Bots

The size of the robots will be less than one patch, exactly 
the width of one patch and larger than one patch to allow for 
robot exploration. The diameter of the robots will be: (a) 2 cm, 
(b) 3 cm and (c) 4 cm. This study will use (a) 50 robots, (b) 
100 robots, (c) 150 robots, (d) 200 robots of each size. The 
goal of the robots isto collect the dust scattered across the 
environment and bring it back to the nest located at the center. 
The dust will have no dimensions and no weight. The robots 
will be programmed to follow the algorithms presented in 
Chapter 2 to search for, collect and, return the dust. 

The main algorithm used for the program of the graphical 
user interface and the environment is as follows: 

Figure 7.3 Main algorithm of the simulation platform 

VIII. SIMULATION RESULTS
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that more or less 40 bots on average intersect at periods of 
random movements.  

Figure 8.1 Random movements of 50 Bots 

Figure 8.2 Initial position of Dynamic Obstacles 

Figure 8.3 50 bots used 

Figure 8.4 100 bots used 

        Figure 8.5 150 bots used 

Fig. 8 Initial position of Dynamic Obstacles

The size of the robots will be less than one patch, exactly 
the width of one patch and larger than one patch to allow for 
robot exploration. The diameter of the robots will be: (a) 2 cm, 
(b) 3 cm and (c) 4 cm. This study will use (a) 50 robots, (b) 
100 robots, (c) 150 robots, (d) 200 robots of each size. The 
goal of the robots isto collect the dust scattered across the 
environment and bring it back to the nest located at the center. 
The dust will have no dimensions and no weight. The robots 
will be programmed to follow the algorithms presented in 
Chapter 2 to search for, collect and, return the dust. 

The main algorithm used for the program of the graphical 
user interface and the environment is as follows: 

Figure 7.3 Main algorithm of the simulation platform 

VIII. SIMULATION RESULTS

In the simulation environment with 50 bots, it is observed 
that more or less 40 bots on average intersect at periods of 
random movements.  

Figure 8.1 Random movements of 50 Bots 

Figure 8.2 Initial position of Dynamic Obstacles 

Figure 8.3 50 bots used 

Figure 8.4 100 bots used 

        Figure 8.5 150 bots used 

Figure 9. 50 bots used

The size of the robots will be less than one patch, exactly 
the width of one patch and larger than one patch to allow for 
robot exploration. The diameter of the robots will be: (a) 2 cm, 
(b) 3 cm and (c) 4 cm. This study will use (a) 50 robots, (b) 
100 robots, (c) 150 robots, (d) 200 robots of each size. The 
goal of the robots isto collect the dust scattered across the 
environment and bring it back to the nest located at the center. 
The dust will have no dimensions and no weight. The robots 
will be programmed to follow the algorithms presented in 
Chapter 2 to search for, collect and, return the dust. 

The main algorithm used for the program of the graphical 
user interface and the environment is as follows: 

Figure 7.3 Main algorithm of the simulation platform 

VIII. SIMULATION RESULTS

In the simulation environment with 50 bots, it is observed 
that more or less 40 bots on average intersect at periods of 
random movements.  

Figure 8.1 Random movements of 50 Bots 

Figure 8.2 Initial position of Dynamic Obstacles 

Figure 8.3 50 bots used 

Figure 8.4 100 bots used 

        Figure 8.5 150 bots used 

Figure 10. 100 bots used

The size of the robots will be less than one patch, exactly 
the width of one patch and larger than one patch to allow for 
robot exploration. The diameter of the robots will be: (a) 2 cm, 
(b) 3 cm and (c) 4 cm. This study will use (a) 50 robots, (b) 
100 robots, (c) 150 robots, (d) 200 robots of each size. The 
goal of the robots isto collect the dust scattered across the 
environment and bring it back to the nest located at the center. 
The dust will have no dimensions and no weight. The robots 
will be programmed to follow the algorithms presented in 
Chapter 2 to search for, collect and, return the dust. 

The main algorithm used for the program of the graphical 
user interface and the environment is as follows: 

Figure 7.3 Main algorithm of the simulation platform 

VIII. SIMULATION RESULTS

In the simulation environment with 50 bots, it is observed 
that more or less 40 bots on average intersect at periods of 
random movements.  

Figure 8.1 Random movements of 50 Bots 

Figure 8.2 Initial position of Dynamic Obstacles 

Figure 8.3 50 bots used 

Figure 8.4 100 bots used 

        Figure 8.5 150 bots used 
Figure 11. 150 bots used
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        Figure 8.6 200 bots used 

Dynamic obstacles were added to the environment. These 
obstacles are movable depending on where the simulator/ user 
desires to put the obstacles in the environment area for testing 
purposes. 50 bots were first tested to walk-through the 
environment with the dynamic obstacles placed in the desired 
points by the user. It is observed that the bots avoid the 
obstacles (marked by black squares and circles)  and somehow, 
tried to escape the area they are located in the environment. 
The bots still experience collisions with an average 40 bots 
per period.  It was then followed up by using 100 bots, 150 
bots and lastly, 200 bots. 

IX. CONCLUSIONS

In the initial simulation of the swarm robots in an 
indefinite area, the source code is modifiable in terms of the 
number of bots to be added or robots present in the 
environment, the area of the environment is not yet 
determined since limitations is yet to be implemented in the 
area. The robots in the environment have collision detectors. 
In the simulation, it was able to send a signal (red blinking 
ears) that represents collision. The initial reaction of the 
robots is to avoid going to the path where the other bot it 
bumped into is heading. The robots are moving randomly and 
are initially in a circular formation. The GUI developed is to 
modify the size of each bot (as specified in the robots’ 
specification) number of robots present in the environment, 
size of the environment, and the percentage of obstacles based 
in the platform. Initially, 50 bots were put in the environment 
with random movements and it shows normal movement 
without lag. As the number of bots is increased, it was 
observed that among the ranges 50-200 the most number of 
bots with normal movement and without lag is at 55-60 bots. 
Using a hundred bots in the environment, it experienced a lot 
of collisions in the obstacles and with bots. In spite of that, it 
still managed to explore the environment with a few bots not 
experiencing collisions.  

With 150 and 200 bots in the environment, the bots 
experienced most of the collisions with all of the bots 
experiencing collisions at the initial position assigned to the 
bots. The simulation with 150 bots, however, gave a better 

response and less delay compared to the simulation with 200 
bots.  
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Figure 12. 200 bots used

Dynamic obstacles were added to the environment. 
These obstacles are movable depending on where 
the simulator/ user desires to put the obstacles in the 
environment area for testing purposes. 50 bots were 
first tested to walk-through the environment with 
the dynamic obstacles placed in the desired points 
by the user. It is observed that the bots avoid the 
obstacles (marked by black squares and circles)  and 
somehow, tried to escape the area they are located in the 
environment. The bots still experience collisions with 
an average 40 bots per period.  It was then followed 
up by using 100 bots, 150 bots and lastly, 200 bots.

IX.  Conclusions

In the initial simulation of the swarm robots in an 
indefinite area, the source code is modifiable in terms 
of the number of bots to be added or robots present in 
the environment, the area of the environment is not yet 
determined since limitations is yet to be implemented 
in the area. The robots in the environment have 
collision detectors. In the simulation, it was able to send 
a signal (red blinking ears) that represents collision. 
The initial reaction of the robots is to avoid going to 
the path where the other bot it bumped into is heading. 
The robots are moving randomly and are initially in a 
circular formation. The GUI developed is to modify the 
size of each bot (as specified in the robots’ specification) 
number of robots present in the environment, size of 
the environment, and the percentage of obstacles 
based in the platform. Initially, 50 bots were put in the 
environment with random movements and it shows 
normal movement without lag. As the number of bots 
is increased, it was observed that among the ranges 50-
200 the most number of bots with normal movement 
and without lag is at 55-60 bots. Using a hundred bots 

in the environment, it experienced a lot of collisions 
in the obstacles and with bots. In spite of that, it still 
managed to explore the environment with a few bots 
not experiencing collisions. 

With 150 and 200 bots in the environment, the bots 
experienced most of the collisions with all of the bots 
experiencing collisions at the initial position assigned 
to the bots. The simulation with 150 bots, however, 
gave a better response and less delay compared to the 
simulation with 200 bots. 
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