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Abstract—This paper presents the design and 
implementation of an analog fractional-order 
differentiator (FOD) in a microelectronics scale. It 
focused on the design and implementation of sixteen 
selectable fractional-order (0.10, 0.20, 0.25, 0.30, 0.35, 
0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85 
and 0.90) differentiators in a 0.35um CMOS technology 
operated at 1.5-V supply. In comparison with the 
previous work that uses generic microcontroller for 
switching an FOD from one order to the next, this 
design of a 16 selectable FOD was realized in an analog 
microelectronic scale, thus, the physical implementation 
is relatively smaller. The authors employed reusability 
of resistors and capacitors when switching from 
one order to the other. The RC ladder in the design 
was implanted using NMOS capacitor and NWELL 
resistors while the IC design was implemented using 
TANNER software. The whole chip layout of the design 
has a dimension of 11.55mm x 8.32mm or equivalent 
to a final area of 96.10mm2. Each fractional order 
was characterized in terms of its frequency response 
—magnitude and phase response—in the bandwidth 
from 10Hz to 1kHz. 

Index Terms—constant phase element, resistor-
capacitor ladder, selectable fractional-order 
differentiator, CMOS

I. Introduction

THE concept of fractional calculus dates back to the 
time of Leibniz and L’Hospital in 1695 [1]. It is 

based on calculus with derivatives and integrals having 
non-integer orders. The concept fractional order calculus 

has not been easily adapted due to the complexity of its 
realization. Some definitions have been used for the general 
fractional calculus such as the Grunwald-Letnikov (GL) 
and the Riemann-Liouville (RL) [2]. Recently, it became 
a powerful and widely used tool for dynamical systems 
modeling [3], [4], [5], processes control [6], [7], [8], 
signal processing [9], [10], [11], and in many other fields 
of science and engineering.

Fractional-order differentiator (FOD) is a differentiator 
that performs non-integer-order differentiation, e.g. 
½-order differentiation which is half derivative of a 
function. FOD can be realized through one of the following 
ways: a) Poly-Methyl-Methacrylate (PMMA) [12]; b) 
LiN2H5SO4 or commonly known as the Lithium Salt [13]; 
c) Field Programmable Gate Arrays (FPGA) [14]; or d) 
electric component in the form of a Resistor-Capacitor 
(RC) ladder network [15], [16]. 

This paper focuses on the analog realization of a 
fractional-order differentiator implemented on a single 
integrated circuit (IC) design layout similar to the one 
presented in [17], [18].

II. Theory of Fractional-order Differentiator

A.  Fractional Order Differentiator 

A fractional-order differentiator is the generalization of 
a basic differentiator. An FOD can also be realized using 
operational amplifier (op-amp) circuit as shown in Figure 
1. Instead of using a simple capacitor at its input side, an 
FOD uses a constant phase element (CPE).

Fig. 1. Fractional-order differentiator circuit implementation
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According to [15], a fractional-order differentiator has a 
continuous-time transfer function of

	 G(s) = sα	 (1)

wherein the magnitude of impedance depends on frequency 
according to the order of differentiation (α). Its value 
in decibels varies with the expression (20*α) dB/dec. 
Furthermore, the phase of the impedance is constant at the 
expression (90*α)o. 

B.  Constant Phase Element

An ideal constant phase element is composed of infinite 
number of lumped-sum parallel resistor-capacitor (RC) 
networks according to the concept of continued fraction 
expansions (CFE) representing an ideal transmission line 
[19]. Practically, the CPE in Figure 1 can be electronically 
realized using an RC ladder that approximates a fractional-
order element with the schematic shown in Figure 2. This 
RC ladder was presented in [15] and was used successfully 
in the practical realization of fractional-order system. 

Fig. 2. CPE realization using RC ladder based on [15]

The following discussions of CPE was lifted from [15] 
and [18]. Generally, the higher the number of branches, the 
better the approximation of a CPE [15]. But for practical 
purposes, [15] and [18] only used five (5) branches in 
their CPE realization using RC-ladder network which is fit 
enough to meet the desired frequency band of interest. The 
method of RC ladder computation in this study are based 
primarily on [18] which is an improved and more general 
way compared to RC ladder network design presented in 
[16]. Table 1, which is based from [18], shows a summary 
comparing the original method of computation [16] and the 
optimized RC ladder branch values computation developed 
by the authors of this paper. The established optimization 

procedures developed by the authors are more general, 
straightforward and flexible since the recalibration step 
from the old method is eliminated. In effect, infinite sets of 
RC ladder can be obtained using the new approach which 
allows common values of resistor and capacitor for different 
fractional orders.

In the new CPE design procedure, four initial values 
are needed: 1) the maximum allowable phase ripple (Δφ); 
2) the number of RC ladder branches (m); 3) the order of 
differentiation (α); and 4) the initial value of R1 (same for 
all orders). The remaining nine values of resistors (R2 to 
R5) and capacitors (C1 to C5) for the ladder branch can be 
computed using equations (2) to (7) as follows:

TABLE I
Comparison of the Original and Optimized RC Ladder 

Branch Values Computation
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capacitor for different fractional orders.

In the new CPE design procedure, four initial values are 
needed: 1) the maximum allowable phase ripple (Δφ); 2) the 
number of RC ladder branches (m); 3) the order of 
differentiation (α); and 4) the initial value of R1 (same for all 
orders). The remaining nine values of resistors (R2 to R5) and 
capacitors (C1 to C5) for the ladder branch can be computed 
using equations (2) to (7) as follows:

TABLE I. COMPARISON OF THE ORIGINAL AND OPTIMIZED RC LADDER 
BRANCH VALUES COMPUTATION

STEPS ORIGINAL  
COMPUTATION [15] 

OPTIMIZED 
COMPUTATION 

Initial values 
needed 

Phase Ripple (Δϕ) 
Desired Gain (Dr) 

Order (α) 
No. of branch (m) 
Initial R1 and C1 

Phase Ripple (Δϕ) 
Order (α) 

No. of branch (m) 
Initial R1 

Determination 
of parameters 

‘a’ and ‘b’ 

ab ≈
0.24

1 + Δφ
 

loga = αlog (ab) 

ab =
0.24

1 + Δφ
 

loga = αlog (ab) 

Determination 
of RC ladder 

branch values 

Rk = R1ak−1 
Ck = C1bk−1 

Rk = R1ak−1 

Ck =
bk−1

100R1
 

Determination 
of ‘Rp’ and ‘Cp’ 

Rp = R1
1 − a

a
 

Cp = C1
bm

1 − b
 

Rp = R1
1 − a

a
 

Cp = C1
bm

100R1(1− b)
 

Approximation 
of the 

minimum and 
maximum 

frequencies of 
operation 

ωmax ≈
ωmin

(ab)m
 

ωav = �ωmaxωmin 

ωmax ≈
ωmin

(ab)m
 

ωav = �ωmaxωmin 

Recalibration 
of the resistor 
and capacitor 

values 

Y(jω) =
1

Rp
+ jωCp … 

… +�
jωCk

1 + jωRkCk

m

k=1

 

D =
1

|Y(jωav)|ωav
α  

Resistors multiplied by Dr/D 
Capacitors divided by Dr/D 

NO RECALIBRATION 
NEEDED 

Rk = R1ak−1                               (2)

and

Ck = bk−1

100R1
                                (3)

According to [15], the parameters ‘a’ and ‘b’ ranges between 0 
and 1 which can be computed using their relationships with the 
order of differentiation (α) and the maximum allowable phase 
ripple (Δφ) as

                               ∆𝜑𝜑 = 0.24
𝑎𝑎𝑎𝑎

− 1                                     (4)

and

α = loga
log (ab)

                                     (5)

	 k 1
k 1R R a −= 	  (2)

and

	
k 1

k
1

bC
100R

−

= 	 (3)
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According to [15], the parameters ‘a’ and ‘b’ ranges 
between 0 and 1 which can be computed using their 
relationships with the order of differentiation (α) and the 
maximum allowable phase ripple (Δφ) as

                                                                    
	 0.24 1ϕ∆ = −

ab
	 (4)

and

	
log a

log (ab)
α = 	 (5)

To replace the truncated sections by a simple network for 
the CPE, the resistive side of the ladder (upper portion) can 
be represented by a single resistor Rp while the capacitive 

(lower portion) can be represented by a single capacitor Cp 
with values computed using 

	 p 1
1 aR R

a
−

= 	 (6)

and

	
m

p
1

bC
100R (1 b)

=
−

	 (7)

For this study, the authors used phase ripple Δφ = 0.2,  
m = 5, R1 = 200kΩ. The values for the sixteen fractional 
orders are α = 0.10, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 
0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, and 0.90. Table 2 
shows the list of all the computed resistor and capacitor 
values for the sixteen fractional orders. 

TABLE II
List of All Resistor and Capacitor Values for 16FOD RC Ladder Network

ORDER 0.10 0.20 0.25 0.30 0.35 0.40 0.45 0.50

R1(Ω) 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00

R2(Ω) 170267.98 144955.93 133748.06 123406.77 113865.06 105061.11 96937.87 89442.72

R3(Ω) 144955.93 105061.11 89442.72 76146.16 64826.26 55189.19 46984.76 40000.00

R4(Ω) 123406.77 76146.16 59813.95 46984.76 36907.23 28991.19 22773.01 17888.54

R5(Ω) 105061.11 55189.19 40000.00 28991.19 21012.22 15229.23 11037.84 8000.00

Rp(Ω) 34923.79 75945.93 99069.76 124131.32 151293.00 180730.79 212635.41 247213.60

ORDER 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

R1(Ω) 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00 200000.00

R2(Ω) 82527.08 76146.16 70258.60 64826.26 59813.95 55189.19 50922.00 46984.76

R3(Ω) 34053.60 28991.19 24681.35 21012.22 17888.54 15229.23 12965.25 11037.84

R4(Ω) 14051.72 11037.84 8670.39 6810.72 5349.92 4202.44 3301.08 2593.05

R5(Ω) 5798.24 4202.44 3045.85 2207.57 1600.00 1159.65 840.49 609.17

Rp(Ω) 284689.37 325305.56 369325.32 417033.86 468740.30 524779.66 585515.03 651339.92

ORDER 0.10 0.20 0.25 0.30 0.35 0.40 0.45 0.50

C1(F) 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08

C2(F) 1.1746E-08 1.3797E-08 1.4953E-08 1.6207E-08 1.7565E-08 1.9037E-08 2.0632E-08 2.2361E-08

C3(F) 2.7595E-09 3.8073E-09 4.4721E-09 5.2531E-09 6.1703E-09 7.2478E-09 8.5134E-09 1.0000E-08

C4(F) 6.4826E-10 1.0506E-09 1.3375E-09 1.7027E-09 2.1676E-09 2.7595E-09 3.5129E-09 4.4721E-09

C5(F) 1.5229E-10 2.8991E-10 4.0000E-10 5.5189E-10 7.6146E-10 1.0506E-09 1.4496E-09 2.0000E-09

Cp(F) 4.6763E-11 1.1049E-10 1.7067E-10 2.6467E-10 4.1235E-10 6.4592E-10 1.0183E-09 1.6180E-09

ORDER 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

C1(F) 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08 5.0000E-08

C2(F) 2.4234E-08 2.6265E-08 2.8466E-08 3.0852E-08 3.3437E-08 3.6239E-08 3.9276E-08 4.2567E-08

C3(F) 1.1746E-08 1.3797E-08 1.6207E-08 1.9037E-08 2.2361E-08 2.6265E-08 3.0852E-08 3.6239E-08

C4(F) 5.6933E-09 7.2478E-09 9.2268E-09 1.1746E-08 1.4953E-08 1.9037E-08 2.4234E-08 3.0852E-08

C5(F) 2.7595E-09 3.8073E-09 5.2531E-09 7.2478E-09 1.0000E-08 1.3797E-08 1.9037E-08 2.6265E-08

Cp(F) 2.5955E-09 4.2132E-09 6.9442E-09 1.1678E-08 2.0188E-08 3.6335E-08 6.9718E-08 1.5041E-07
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III. Conceptual Design of a Selectable FOD
A conceptual selectable fractional-order differentiator 

was shown in [16] using discrete components. The 
conceptual design’s order of differentiation can be chosen 
from 0 to 1 with an increment of 0.05. 

The design utilizes cascaded operational amplifiers 
and resistor-capacitor ladders as its main components, 
while a generic microcontroller is introduced for switching 
purposes. Initial simulation results through Matlab and 
LTSpiceIV show that the designed resistor-capacitor ladders 
can perform as an analog FOD [16]. 

For the sole purpose of switching circuitry, utilization 
of microcontroller apparently results to much lower 
component density in the hardware implementation. While 
the trend in electronics physical realization is to go smaller 
and lightweight, the authors were inspired to design and 
implement a sixteen selectable FOD in microelectronic 
scale using 0.35um CMOS technology. The whole design 
was implemented in a relatively much simpler architecture 
wherein the switching circuitry is already an integrated part 
of the whole circuit eliminating the use of microcontroller.

F i g .  3 .  S c h e m a t i c  l a y o u t  o f  a  s e l e c t a b l e  F O D  
utilizing selector module circuitry

Figure 3 shows the basic schematic overview of a 
selectable FOD. Basically, change of α would require a 
change of ladder values (see Table 2) as well as the value 
of feedback resistor (see Table 3). There will be two sets of 
selector module circuit: one for CPE module (pins A and B) 
and the other for feedback (pins X and Y). Table 3 also shows 
the magnitude gain of the FOD at different frequencies.

Reuse of resistors and capacitors was adopted in the 
design to further scale down the physical dimension of the 
implementation. This simply means that some of the RC 
components in one fractional order to another are being 
utilized as switching occurs. As can be observed in Table 2, 
all fractional orders have 200-kΩ R1 and 50-nF C1. Instead 
of having sixteen 200-kΩ R1 and sixteen 50-nF C1 in the 
circuit design, it is possible to have just one 200-kΩ R1 
and one 50-nF C1 for all FODs. The concept of reusability 
was initially employed by the authors in two-order FOD 

(2FOD) design [18]. Generally, 16FOD is just an expansion 
of 2FOD. 

TABLE III
Magnitude Gain and Corresponding RF for 16FOD

ORDER
Magnitude Gain of the FOD (in dB) Feedback 

Resistor (RF) 
in Ω 10Hz 100Hz 1kHz

0.10 3.60 5.60 7.60 17k

0.20 7.19 11.19 15.19 51k

0.25 8.99 13.99 18.99 77k

0.30 10.79 16.79 22.79 110k

0.35 12.59 19.59 26.59 155k

0.40 14.39 22.39 30.39 206k

0.45 16.18 25.18 34.18 271k

0.50 17.98 27.98 37.98 351k

0.55 19.78 30.78 41.78 436k

0.60 21.58 33.58 45.58 531k

0.65 23.38 36.38 49.38 646k

0.70 25.17 39.17 53.17 716k

0.75 26.97 41.97 56.97 766k

0.80 28.77 44.77 60.77 804k

0.85 30.57 47.57 64.57 814k

0.90 32.37 50.37 68.37 816k

Fig. 4. Top-level schematic of a 2FOD [18]

An understanding of reusability can be simply deduced 
from Figure 4 which shows the top-level schematic of a 
two-order selectable FOD. The control bit A determines 
which order of differentiation to actuate: A=“0” for 
FOD(0.25) and A=“1” for FOD(0.50). The design utilizes 
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several transmission gates to switch from one order to the 
next. An OR gate is used for actuating set of capacitors. 
For both orders of differentiation, all capacitor D0’s have 
to be activated. Capacitors D1’s connected in parallel to 
capacitor D0’s supplement the necessary capacitance values. 
The switch-activated RC ladder circuit serves as the input 
impedance to the two-stage CMOS operational amplifier 
that is then post-cascaded to another inverting amplifier 
[18].

Ideally, the magnitude of an FOD is 0dB at ω=1 rad/s. 
According to [16], the average frequency ωav can be computed 
using the equation shown in Table 2. For instance, if the order 
of differentiation is 0.25, then the average frequency is around 
5590.2 rad/s or equivalent to 890Hz. Using the closest decade 
point, which is at 1kHz, the magnitude of the gain should be 
at  |G(jω)|ω=2π(1000) = ω0.25| ω=2π(1000) = 8.9032 which is around 
18.99dB. Table 3 summarizes the magnitude gain for every 
decade from 10Hz to 1kHz, as well as the corresponding 
feedback resistor values empirically chosen for sixteen 
fractional orders of differentiation.

According to [18], the concept of reusability can be 
applied for other RC ladder branches. The magnitude of R2 
for FOD(0.50) from Table 2 can be reused and add up with 
44305.34Ω to complete the 133748.06-Ω R2 needed for 
FOD(0.25). Likewise, with the capacitor, the magnitude of 
C2 for FOD(0.25) can be reused and add up with 7.4072nF 
to accummulate a total of 22.361-nF C2 needed for 
FOD(0.50). This scheme significantly reduces the overall 
dimension of the analog realization since duplication of 
resistor and capacitor values is averted. Strategic placing 
of the transmission gates must be thoroughly taken into 
consideration to optimize reusability. 

Figure 5 shows the top-level schematic of 16FOD which 
consists of a 4-bit parallel-in parallel-out (PIPO) register, 
a 4x16 line decoder, arrays of CPE elements, arrays of 
feedback resistor and cascaded inverting amplifiers. The 
design of 16FOD is very similar to anexpanded Figure 4. 
Resistor array and capacitor array magnification of CPE 
elements are shown in  Figures 6 and 7 respectively after 
employing reusability for the sixteen fractional orders.

Fig. 5. Top-level schematic of a sixteen selectable FOD
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The 4-bit PIPO register catches the input order of 
differentiation. If for instance all bits (A, B, C, D) are “low,” 
FOD(0.10) is activated and if all bits are “high,” FOD(0.90) 
is activated. Transmission gates in the RC arrays are all 
normally open. The 4x16 line decoder that signals which 
set of transmission gates to trigger, in essence, dictate which 

series-connected resistors and parallel-connected capacitors 
to add up. This scheme also applies for the array of 
feedback resistors. The output of each resistor array branch 
is cascaded to its corresponding capacitor array to generate 
the necessary input impedance for the inverting operational 
amplifier. 	

Fig. 6. Resistor array of CPE employing reusability for selectable 16FOD

Fig. 7. Capacitor array of CPE employing reusability for selectable 16FOD
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IV. Integrated Circuit (IC) Layout 
Implementation

Like the layout designs in [17] and [18], Tanner Software 
was also used to produce a single-chip layout of the whole 
circuit in this study. L-edit tanner tool was used as the 
layout editor.

A.  Operational Amplifier CMOS Module

The op-amp used in [18], [20], [21] shown in Figure 5 
was adopted for this study. The design works at low voltage 
supply of around 1.5 volts instead of the typical 3.3V for 
0.35um CMOS technology. The adopted op-amp can be 
operated either by using unipolar or bipolar supply. It was 
designed to operate at +/-0.75V or 1.5V to GND. Either way, 
the op-amp exhibits same parametric response.

Fig. 8. Op-amp low voltage design [40]

Ideally, the voltage gain phase of the op-amp at 0dB 
should be at 45o and at least a gain of 60dB should be 
achieved. It is likewise important to ensure that all transistors 
are operating in saturation region. Step by step computation 
for the transistor sizes were guided by [20], [21], [22]. 
Table 4 shows the summary of the computed width size of 
transistors M1 to M11 alongside with its adjusted width size 
(actual size). A bias voltage of 0.65V is needed to operate the 
op-amp with its desired functionality. This can be achieved 
through the use of bias transistors M12 and M13 having 
values equal to 6um and 1um, respectively. All transistors 
have the length of 1um.  

B.  Experimental Validation Setup 

The actual layout underwent physical verification 
processes through Design Rule Check (DRC), ensuring that 
the created mask layout conform to the complex set of design 
rules and Layout Verification Schematic (LVS) assuring it 
represents the circuit desired to be fabricated.

TABLE IV
Op-Amp Transistor Sizes Used for the Selectable FOD

Transistor
Computed Width 

Size (um)
Actual Width Size 

(um)
M1 12.15 17

M2 12.15 17

M3 24.30 16

M4 22.73 22

M5 22.73 22

M6 22.73 18

M7 22.73 18

M8 11.54 20

M9 11.54 20

M10 27.27 28

M11 11.5385 37

Parasitic capacitances were considered in the design to 
create an accurate analog model of the circuit. However, 
only nodal parasitic capacitance effects were counted in 
the simulation as this was the only option possible in the 
simulation software. Parasitic resistances and inductances 
were not included in the extraction. All nodal parasitic 
capacitances were considered since all capacitance less than 
0 femtofarad were set to be ignored.

The ideal magnitude and phase response of an FOD 
for different orders are listed in Table 5, which was used 
to validate the frequency response. In reference to [16] and 
[18], ideal responses, specifically the phase response, are 
not attainable for the whole frequency band due to the gain-
bandwidth limitation of the op-amp.              

C.  CMOS Layout View of a Selectable FOD

Shown in Figure 9 is the physical layout implementation 
of the 16FOD. It has an overall IC dimension of 11.55mm x 
8.32mm. The total area of 16FOD is equivalent to just three 
times the layout of semi-differentiator presented in [17]. 

As shown in Figure 10, the microelectronic-scaled 
selectable FOD exhibits magnitude response that is almost 
equal to the ideal gain. On the other hand, the phase response 
significantly deviates from the ideal as the frequency 
increases. Table 5 presents the post-layout results of gain 
and phase response for the sixteen fractional orders. Not all 
FODs are working for this whole frequency band of interest. 
Theoretically, the RC ladder can perform the desired constant 
phase element. However, when incorporated in an op-amp 
circuit, the range of frequencies diminishes. This is mainly 
due to the characteristics and gain-bandwidth-product (GBP) 
limitation of the op-amp. For higher bandwidth applications, 
a design of op-amp with higher GBP is necessary.
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Fig. 9. Top-level layout of a selectable 16FOD

Fig. 10. Frequency response of the designed 16FOD for: a) phase response and b) magnitude response
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TABLE V

6FOD Gain and Phase Response

ORDER FREQ IDEAL GAIN (dB) Post-Layout Results (dB) IDEAL PHASE (degrees) Post-layout Result (degrees)

FOD(0.10)
10Hz 3.60 3.83

9.0
6.02

100Hz 5.60 5.66 8.77
1kHz 7.60 7.58 8.45

FOD(0.20)
10Hz 7.19 7.33

18.0
13.02

100Hz 11.19 11.52 19.30
1kHz 15.19 15.21 17.06

FOD(0.25)
10Hz 8.99 9.08

22.5
17.01

100Hz 13.99 14.26 23.80
1kHz 18.99 19.01 20.13

FOD(0.30)
10Hz 10.79 10.73

27.0
20.75

100Hz 16.79 16.95 28.21
1kHz 22.79 22.63 24.27

FOD(0.35)
10Hz 12.59 12.42

31.5
25.10

100Hz 19.59 20.01 32.56
1kHz 26.59 26.46 28.84

FOD(0.40)
10Hz 14.39 14.18

36.0
29.85

100Hz 22.39 22.60 36.55
1kHz 30.39 30.13 33.18

FOD(0.45)
10Hz 16.18 15.91

40.5
34.40

100Hz 25.18 25.54 41.04
1kHz 34.18 33.83 37.70

FOD(0.50)
10Hz 17.98 17.99

45.0
39.29

100Hz 27.98 28.13 45.45
1kHz 37.98 37.68 41.28

FOD(0.55)
10Hz 19.78 19.64

49.5
44.48

100Hz 30.78 31.10 49.65
1kHz 41.78 41.31 44.87

FOD(0.60)
10Hz 21.58 21.35

54.0
49.36

100Hz 33.58 33.58 52.60
1kHz 45.58 45.09 48.41

FOD(0.65)
10Hz 23.38 23.40

58.5
54.36

100Hz 36.38 36.69 56.61
1kHz 49.38 49.14 50.74

FOD(0.70)
10Hz 25.17 24.84

63.0
59.50

100Hz 39.17 39.09 60.63
1kHz 53.17 52.51 52.01

FOD(0.75)
10Hz 26.97 26.58

67.5
65.02

100Hz 41.97 41.55 64.64
1kHz 56.97 55.62 51.69

FOD(0.80)
10Hz 28.77 28.31

72.0
70.19

100Hz 44.77 44.51 67.91
1kHz 60.77 59.22 48.64

FOD(0.85)
10Hz 30.57 30.76

76.5
74.95

100Hz 47.57 47.23 70.51
1kHz 64.57 62.10 41.63

FOD(0.90)
10Hz 32.37 33.95

81.0
79.31

100Hz 50.37 51.50 71.42
1kHz 68.37 64.69 29.52
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Transient response of the design was also tested and 
analyzed. Sinusoidal input signal was used to clearly show 
the delay or the phase shift between the input and output 
signal. Transient response of FOD(0.25) is shown in Figure 
11 for an input signal, where the frequency was set to 
60Hz. At 60-Hz frequency, the magnitude gain of the FOD 
should be at |G(jω)|ω=2πf = ω0.25| ω=2π(60) = 4.41. Using the 
computed gain, with an input signal amplitude of 5mV, the 
output signal amplitude should then be equal to 22.03mV. 
This is close to the graph showing an output peak voltage 
of 22.16mV. Meanwhile, the time delay between two sine 
waves is equal to 1.03ms. The phase shift of the output signal 
with respect to the input signal is equal to 22.25o, which is 
close to the ideal phase angle for FOD(0.25) of 22.5o.

Fig. 11. FOD(0.25) transient response

V. Other Design Considerations

Initial value of R1 was carefully assessed. Using the 
computations in Table 1, R1 value must be high to have 
capacitor values relatively smaller. Figure 8 shows that 
almost 95% of the total chip area is consumed by capacitors. 
However, it was also taken into consideration that other 
capacitance in the RC ladder must not fall down to tens of 
picofarad range, which is foreseen to be highly sensitive to 
parasitic capacitances.

The type of the capacitor implemented in this design was 
carefully chosen. NMOS-type of capacitor was considered in 
the study since it has higher capacitance value compared to 
poly-to-poly capacitor. Shown in Figure 12 is the comparison 
between the two types of capacitor. With regards to resistor, 
a poly type resistor was chosen for this study. 

Fig. 12. Comparison of capacitance value of MOS and  
poly-to-poly capacitor having same physical dimension

T-gates characterization was done to examine the 
parasitic effects of the switches to the overall design. The 
number of t-gates in parallel has a significant effect to the 
phase response of an FOD. As a result, a 4-TG switch was 
used in the design to give a better phase response with the 
least physical dimension layout of the switch as possible. 
Shown in Figure 13 is the result of t-gate characterization.

Fig. 13. Phase and gain response of an FOD for a switch with 
increasing number of transmission gate (TG)

VI. Conclusions

In this study, a design of a low-voltage selectable  sixteen 
fractional-order differentiator (0.10, 0.20, 0.25, 0.30, 0.35, 
0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, and 0.90) 
has been designed and implemented in a microelectronic 
scale using 0.35um technology. Unlike in [16] which uses 
microcontroller for switching purposes, this design is 
successfully realized in an analog microelectronic scale, and 
thus, relatively smaller. The design employed reusability of 
capacitors and resistors when switching from one order to 
another. The final physical layout of the design using L-Edit 
has a dimension of 11.55mm x 8.32mm or equivalent to 
96.10mm2, which is just about three times the area of a semi-
differentiator in [17]. The whole chip was powered using 
1.5 Volt supply. Several design considerations such as the 
type of capacitor and resistor to implement, transmission 
gate design, and the initial value of R1 were evaluated. The 
overall design was characterized in its frequency response 
—the magnitude and phase response for every order. The 
gain-bandwidth limitation of the op-amp actually bounds 
the frequency response of the 16FOD which opens up for 
possible research study in the future.
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