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Abstract—Imitating the real world in emulations, 
such as the effect of light, is an important research 
area in software applications. However, a computing 
machine cannot precisely imitate all the aspects of light 
in short processing periods. Ray tracing is a technique 
that renders and accurately depicts light with a high 
time delay. Parallelizing the computers that run the 
rendering is not enough to reduce its running time. 
To further increase computing efficiency and improve 
ray tracing’s applicability for mainstream purposes, 
load balancing must be performed. In this study, a 
proposed alternative load balancing technique that 
uses a reservoir was implemented to tackle the issue 
of using heterogeneous computers in the network and 
to minimize the communication overhead introduced 
by parallel applications. Results show that when using 
a reservoir, high speed-up is achieved at 80% initial 
task distribution while high efficiency is achieved 
between 20–75% initial task distribution. With speed-
up as the priority, reservoir achieves at most 87% 
better speed-up than the scatter decomposition and 
36% than the hybrid technique. It also has at most 
28% better efficiency than the scatter decomposition. 
Finally, the reservoir algorithm achieved at most 
25% better achieved speed-up (ASU) than the scatter 
decomposition and 10% than the hybrid.

Index Terms—Computer Graphics, Load Balancing, 
Parallel Programming, Ray Tracing, Rendering

I.  Introduction

THE recent trend in computer development has 
been towards shorter execution times for complex 

applications. However, these applications have 
developed faster than the advances done in computer 
architectures. Single-core processors have thus given 
way to multi-processors, paving the way for parallel 

solutions to these complex problems. An example of 
this complex application is ray tracing. Many people 
consider ray tracing to be the best image synthesizing 
technique to date [1]. Ray tracing naturally shows 
precise reflections, shadows, and transmissions by 
following the path of light and applying the laws of 
geometric optics. Unfortunately, high quality images can 
only be produced at a large amount of time. Ray tracing 
has not been used in mainstream graphics yet, aside from 
the film industry, because no computing machine can 
single-handedly render large images in a relatively small 
useful amount of time [2]. Thus, ray tracing is a good 
candidate for implementation in a network of computers 
that would execute that application in parallel.

The use of parallelization has its own set of areas 
that need improvement when it comes to efficiency. One 
such issue is load balancing. The workloads assigned to 
different computers are not always equal and a balancing 
scheme must be applied in such a way that the computers 
complete their task at the same time [3]. Load balancing 
techniques are classified as static and dynamic. Static 
load balancing distributes tasks before processing, taking 
into account certain assumptions such as tasks with equal 
workload unless otherwise stated.  Static load balancing 
techniques are based on the partitioning of the image plane 
(screen). One static technique found to be effective for 
network systems with less than 128 computers is Scatter 
Decomposition [4], [5].  In this algorithm, the tasks are 
alternately distributed to increase the probability that 
machines get equal workload amounts. It distributes the 
pixels in an alternating sequence (i mod p) where the p is 
the number of computers and i is the pixel to be rendered. 
The result of the alternating sequence formula is the 
computer, which renders that pixel. For example, Figure 1 
shows how scatter decomposition is applied unto a picture 
with 100 pixels per row. Given that there are 3 computers 
within the network, the 1st, 4th, 103rd, 106th, etc. pixel 
is assigned to the first computer while the 2nd, 5th, 101st, 
104th, etc pixel is given to the second computer and finally, 
the 3rd, 6th, 102nd, 105th, etc. pixel is given to the third 
computer.
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Dynamic load balancing redistributes the tasks during 
processing. Techniques that use this type of load balancing 
can be further subdivided into two approaches: centralized 
and decentralized [6]. The centralized approach uses one 
machine as the controller (or master) of the system. It 
is responsible for task allocation and assignment. The 
decentralized approach uses all the machines in deciding 
where the next tasks will be given, with or without 
cooperation between machines. We focused on the 
centralized techniques as these would be more suitable 
for ray tracing. Some centralized techniques include the 
algorithm by Wang, et al. [7] that assigns tasks based on 
whether it is an I/O consuming task or a CPU compute 
task and the algorithm by Sidhu et al. [8] that uses particle 
swarm optimization. However, the first algorithm mentioned 
was not used as the assignment of tasks would introduce 
more variables in a heterogeneous system and the second 
is more suitable to a large-scale network. A third highly 
scalable centralized dynamic technique is Diffusion, which 
redistributes the tasks evenly when one of the slaves have 
completed earlier than the others [4]. Diffusion is started 
when a slave completes its task queue by sending a request 
signal to its neighboring machines. The neighbors reply  
with the number of tasks left in their queue. The average 
number of the remaining tasks is determined and the 
machines with a higher average give their excess tasks to 
the machines with a smaller queue. It has been shown that 
a hybrid technique (scatter decomposition with diffusion) 
resulted in greater efficiencies and speed up compared to 
them working alone [4]. However, scatter decomposition 
and diffusion only used homogenous computer architectures 
in their networks.

In order to normalize the performance of networks 
that use computers with heterogeneous architectures, an 
additional parameter is taken into consideration: speed index 
[5]. This determines the relative speed of one machine over 
another within the system.  It is measured by determining 
the execution time of running a recursive function.  Thus, 
distribution of tasks took advantage of which computer is 
faster by possibly assigning more tasks to these computers.

The goal of the study was to implement a new load 
balancing technique that uses a reservoir and compare its 
performance against existing load balancing algorithms. 
The study was implemented on a fully connected network 
with different computer hardware architectures. Figure 2 
shows the hardware environment and the communications 
involved in the system. The hardware environment used 
heterogeneous commercial desktop computers with 1 
designated as the master and the rest as slaves. It used the 
distributed memory architecture and communicated over a 
fully connected network.

Fig 2. Implementation environment

The master was responsible for initializing the scene and 
distributing the tasks. It shall accept a ‘request for more’ 
signal from any slave and give it more tasks to do unless 
there’s none left. The master accepts all the partial images 
from the slaves and compiles them as a single image. The 
slaves performed the ray tracing and requested for more 
tasks once its queue is empty.

II.  Methodology

A.	 Reservoir Algorithm

The diffusion algorithm has a high communication 
overhead especially when the computers are in a fully 
connected network. When a slave requests for more rays, 
the master will ask each slave to send their task queue. The 
master averages the number of tasks and calls the slaves with 
task queue higher than the average to distribute their tasks to 
those who have less. Meaning, it redistributes tasks that were 
initially assigned already. This overhead is neglected since 
the amount of time it takes to send and receive data is much 
smaller than the rendering process. The reservoir algorithm 
will reduce the communication overhead by preventing any 
redistribution needed in the middle of the process. It does 
this by making the initial task distribution biased in such a 
way that faster computers receive more. Also, it does not 
distribute all the tasks during initial assignment. It keeps a 
certain number of tasks in a reservoir which will only be 
assigned when a slave requests for more.

Fig 1. Scatter decomposition
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There are three (3) major blocks in the Reservoir 
algorithm, as shown in Figure 3. The Reservoir Preparation 
uses the speed index of each slave to calculate the division 
of labor when biasing the task distribution. The steps for 
this procedure are shown next.

Fig. 3. Reservoir block diagram

Input:	 speed indices (speed1, speed2, …, speedc) and the 
number (c) of slaves

Output:	 sequence of percentage division of labor per slave 
(div1, div2, …, divc)

1.		 procedure reservoir_preparation (speed, c)
2.			  slowest : = speed1
3.			  for i : = 2 to c do
4.				   if speedi > slowest then
5.					    slowest : = speedi
6.			  ratio_total : = 0
7.			  for i : = 1 to c do
8.				   begin
9.				   ratioi : = slowest / speedi

10.				   ratio_total : = ratio_total + ratioi
11.				   end
12.			  for i : = 1 to c do
13.				   divi : = ratioi / ratio_total
14.			  return (div)
15.		 end reservoir_preparation

The variable slowest is the speed index of the slowest 
computer within the network.  This is searched for linearly in 
lines 2–5.  In the sequence, ratioi is the theoretical equivalent 
amount of work that can be completed by slavei in the same 
time that the slowest slave completes 1 task—assuming 
that all tasks are equal.  The sum of all ratio’s are stored in 
ratio_total (lines 6–11) to be used as divisor in lines 12–13 
to determine the division of labor.

The Initial Distribution block initially allocates specific 
amounts of the total tasks to the slaves. This initial number 

of tasks is determined by a quantity specified by the user 
called the initial task distribution percentage or initial 
percentage.  Subsequently, a sequence of pixels is computed 
by multiplying the division of labor, initial percentage, 
and total number of tasks. These pixels are then given in 
a sequential manner. The first sequence of pixels is given 
to the first slave, the second sequence to the second slave, 
etc.  The remaining unassigned tasks will be placed in the 
last block as reserved tasks. The steps for this procedure 
are shown next.

Input:	 initial task distribution percentage (p)  
sequence (ray1, ray2, …, rayn) and number (n) of 
tasks 
sequence (slave1, slave2, …, slavec) and number 
(c) of slaves 
division of labor (div1, div2, ..., divc) per slave

Output:	 undistributed tasks (reserve)

1.		 procedure initial_distribution (p, ray, n, slave, c, div)
2.		 limit : = p * n
3.		 prev_limit : = 0
4.		 for s : = 1 to c do
5.			  begin
6.			  next_limit : = prev_limit + (limit * divs)
7.			  for i : = prev_limit to next_limit do
8.				   begin
9.		 AssignTask (rayi, slaves)

10.				   end
11.			  prev_limit : = next_limit + 1;
12.			  end
13.		 reserve : = raylimit+1, raylimit+2, … rayn
14.			  return (reserve)
end initial_distribution

When a slave finishes its assigned tasks, it will ask for 
more from the reservoir.  In the final block of the algorithm, 
a fraction of the reserved tasks is given to the requesting 
slave based on the division of labor. The algorithm ends 
when there are no more reserved tasks, as shown below.

Input:	 requesting slave (slave)  
division of labor of requesting slave (div)  
sequence (ray1, ray2, …, rayn) and number (n) of 
undistributed tasks

Output:	 remaining undistributed tasks (reserve)

1.		  procedure Reservoir (slave, div, ray, n)
2.			   limit : = div * n
3.			   for i : = 1 to limit do
4.				    AssignTask (rayi, slave)
5.			   reserve : = raylimit+1, raylimit+2, …, rayn
6.			   return (reserve)
end Reservoir
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All arithmetic operations are rounded up for the 
algorithm to converge. A test simulation is shown in  
Table 1. Slave 3 is determined to be the slowest with speed 
index 12.  Ratio is the slowest speed index divided by the 
speed index of the slave under consideration. It represents 
how many tasks that computer can accomplish compared to 
the slowest assuming that all tasks are equal. For example, 
since slave 1 is 12 times faster compared to the slave 3, 
it could theoretically complete 12 tasks when slave 3 
completes 1. The sum of these ratios will be used as a divisor 
to acquire the percent division of labor. The division of labor 
must be rounded up for the algorithm to converge.

On the last column, we assume slave 1 finished its tasks 
and there are 100 tasks in the reserve. Since the percent 
division of labor of slave 1 is 65%, 65 tasks will be given 
to it and the rest will remain as reserve until another slave 
completes its queue.

B.	 Phase I – Serial Ray Tracer (SRT)

In the first phase of the study, a functional serial ray tracer 
was built, which was used as the basis for the succeeding 
tracers. Ray tracing is a pixel by pixel type of rendering. 
Each pixel in the final image is calculated independently 
from those beside it. Looking at Figure 4, E refers to the 
viewer’s eye which is looking at object 6. Objects 6 and 
4 are opaque spheres. Objects 3 and 9 are translucent 
planes and LA and LB are light sources. The different rays 
will be described later. A primary ray (from E to 3) from 
the viewport travels in a straight line towards a pixel on 
the screen. This ray continues to the scene until it hits a 
surface. The algorithm that finds any intersection is called 
visible surface determination or intersection tests. Different 
algorithms were developed to find the most efficient visible 
surface determination algorithm. This is often a bottleneck 
in ray tracing algorithms as well as trying to parallelize it. 
Characteristics of the surface are taken into consideration 
to determine the reflection and refraction properties as well 
as its color at the point of intersection.

Shown in Figure 5 is the serial ray trace flowchart. The 
shading model used in the flowchart is a simplified hall 
shading model which consists of 4 terms. The first term is 

the low-level ambient light. The second term is a modified 
Phong Shading model which combines diffuse and specular 
term. The ambient term is neglected because the simplified 
hall shading model already considers it. The third term 
is the perfect specular reflection and the fourth is perfect 
specular transmission. The third and fourth terms are subject 
to recursion.

Fig. 4. Ray tracing paths

Fig. 5. Serial ray tracer

TABLE I
Sample Simulation

Slave Speed Index Slowest Ratio Sum of 
Ratios

Percent division of 
labor Ex 100 Tasks

1 1
Slave 3 with 
speed index 

12

12

18.714

64.12% (65%) 65
2 3 4 21.37% (22%)
3 12 1 9.16% (10%)
4 7 1.714 5.34% (6%)
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To make ray tracing faster, effort was given to the 
intersection test algorithm. The bulk of the running time of 
any ray tracer is devoted in finding the intersection between 
each ray and scene objects. To reduce the calculations, each 
object is assigned a bounding box—it is a box that tightly 
covers the space occupied by each object. The minimum and 
maximum x, y, and z coordinates of the object will be used 
as the dimensions of the bounding box. The 6 coordinates 
will correspond to the 6 faces of the box. When testing for 
the intersection between a ray and an object, the ray is tested 
against one face at a time.

The ray tracer could read the scene details from an 
external text file. The details include camera information, 
output image information, light sources, object (with 
surface) properties and environment variables. The output 
image information includes the width and height in pixels 
and the output file name, which has the extension of the 
output image type. The light sources are defined using 
its location and color. The object properties are defined 
differently. Surface properties have the same syntax for 
all types of primitives and are defined together with the 
object. The environment variables include the background 
color, ambient color and the maximum levels of reflection/
transmission rays. 

The serial ray tracer, using the minimum set of features, 
was able to render images with a single machine. It was 
able to render three (3) different types of primitive objects, 
namely spheres, boxes and one-sided planes, shown in 
Figure 6. Its resulting images have shown reflections, 
transmissions and shadows, similar to Figure 7.

Additional features such as super sampling and 
distributed ray tracing were also implemented to improve 
the quality of the pictures and increase the weight of the 
tasks. Super sampling is an anti-aliasing technique by 
shooting more rays per pixel. Distributed ray tracing slightly 
changes the angle of produced reflection, refraction and 

shadow rays to apply blurry phenomena such as gloss, blurry 
transparency, and penumbras. Shown in Figure 8 is a sample 
scene that shows all the basic features. A transparent sphere 
with properties similar to glass is included in the figure. 
Below it is a plane that reflects everything on top of it. There 
are multiple opaque left objects, 3 smaller blue spheres and 
a yellow box behind the transparent sphere.  Two point-light 
sources are used, one behind the camera and another to the 
left of the box.  Super sampling and distributed ray tracing 
were also implemented. The functionality of the SRT was 
then tested and verified.

Fig. 8. Image created by SRT with basic features  

C.	 Phase II – Parallel Ray Tracer 

The next phase involved implementing the first of the 
three (3) parallel ray tracers (PRT). This PRT implemented 
only the scatter decomposition as a load balancing technique.  

Fig. 7. Shiny sphere over a mirror  

Fig. 6.  Basic primitives  
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A master and slave side was created to distribute the tasks 
of the PRT. Additional modules were created for the master 
to pass the scene details to the slaves and for the slaves to 
compile the partial images for the master. The flowchart 
and points of communication are shown in Figure 9.  
Initialization is executed by the master while the slave 
executes ray tracing. The distribution of rays amongst 
the slaves, third block in the master side, is the static load 
balancing.

Different computers were used to test the parallelized ray 
tracer. The execution and idle time of each slave are noted 
in order to calculate efficiency and speed up. The results are 
tested against the results of phase III. The overall efficiency 
of the program is the sum of the execution times of each 
slave over the total elapsed time (execution and idle time) 
of all the slaves.

D.	 Phase III – Parallel Ray Tracer with Dynamic  
	 Load Balancing

The last two PRTs were implemented in this phase. The 
first PRT used the hybrid load balancing technique which 
combines scatter decomposition and diffusion. The second 
PRT implemented used the reservoir algorithm. Additional 
modules were also created, such as the module that computes 
the speed index and the module that commands slaves to 
receive/send tasks from/to other slaves. Figure 10 shows 
the block diagram of the PRT with dynamic load balancing.

E.	 Testing and Benchmarking

For the testing of the SRT, a series of test scenes were 
created that focused on the specific features of the ray tracer.  
This set of scenes was also rendered using an older version 

of a commercial ray tracer originally developed by Mental 
Images, the Mental Ray tracer. The resulting images were 
compared against those created by the SRT.

The test scenes created focused on the following features: 
shading, reflections, shadows, transmissions, and their 
combinations. Figure 11 shows one image that combines 
all of the features. 

Fig. 11. Test scene that combined features

To compare the three (3) PRTs with the SRT, a complex 
scene (Figure 12) was rendered with varying parameters by 
all four ray tracers. This test scene approximated practical 
scenes since it has varying workloads throughout the image. 
The SRT was modified to calculate its speed index even if it 
was not used during its image processing. It was used later as 
a reference for comparison.  For the PRTs, the total program 
execution times and slave speed index were recorded. The 
speed-up was computed by dividing the execution time of 

Fig. 9. Parallel ray tracer Fig. 10. Parallel ray tracer that uses dynamic load balancing 
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the PRT over the execution time of the SRT that rendered 
the image with the same parameters. It was assumed that 
since the hardware environment used was exactly the same 
for all the tests, the speed indices of the machines within 
the network would be the same for all tracers. 

The efficiency is computed as follows:

	 S T( ET ) /(ET n)η = ∑ × 	 (1)

where ETT is total elapsed time of the program, n is the 
number of slaves, and ΣETS is a summation of the execution 
times of all slaves.

Fig. 12.  Complex scene used as a benchmark.  

Since the computers within the network do not have 
equal speeds, a new unit of measurement was used.  This is 
the achieved speed-up (ASU) which relies on the validity 

of the speed index.  The ASU is the ratio of the computed 
speed up compared to the maximum achievable speed up 
(MASU).  Table 2 shows an example on how to compute 
the MASU and ASU. The theoretical speed-up is computed 
by dividing the speed index of the SRT over the speed 
index of the machine under consideration.  The sum of all 
these theoretical speed ups would account for the MASU.  
If all the machines are homogenous, including the SRT, 
then the MASU is equal to the number of the slaves (ex. 4 
homogenous slaves have 400% MASU).  For the example 
below, the MASU is 341.79%.  The ASU is then computed 
by dividing the speed up over the MASU.

TABLE 2
Sample Computation of ASU

Machine Speed Index 
(seconds)

Theoretical 
Speed Up (%)

Achievable 
Speed Up (%)

SRT 0.3 100 –

Slave 1 0.30525 98.28 28.75

Slave 2 0.644833 46.52 13.61

Slave 3 0.301333 99.56 29.13

Slave 4 0.307917 97.43 28.51

III.  Results and Analysis

A.	 Validity of Features

The SRT built from phase I was compared with another 
ray tracer using special scenes that were customized in order 
to exclude other features that the serial ray tracers could not 
perform.  The following are a series of images of the different 
scenes rendered in both the SRT and Mental Ray Renderer. 

As can be seen, Figure 13 has a significant difference— 
mainly, the hue of green visible in the whole scene. This is 

Fig. 13. Shading equation and reflections

a. Mental Ray Render b.  Serial Ray Tracer
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due to the set ambient light and the shading equation used.  
The Mental Ray Renderer applies a bigger weight to the 
ambient color compared to the serial ray tracer. Looking 
at the reflection and the color of the objects in the scene, it 
can be shown that other elements of the shading equation 
between the Mental Ray Renderer and the serial ray tracer 
is the same for the surface properties present.

In Figures 14 and 15, we can clearly see that the images 
produced are identical, showing the accuracy of the serial 
ray tracer in depicting shadows and transmissions.

Figure 16 shows that when the scene gets more 
complicated, the difference between the serial ray 
tracer and that of the Mental Ray Renderer becomes 
unnoticeable.

Fig. 14. Shadows

b.  Serial Ray Tracera. Mental Ray Render

Fig. 15. Transmissions

a. Mental Ray Render b.  Serial Ray Tracer
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Fig. 16. Lights, reflections and shadows

a. Mental Ray Render

b.  Serial Ray Tracer

B.	 Serial Ray Tracer Execution Times

One objective of this study was to build a PRT and 
compare the performance of the proposed algorithm with 
the existing load balancing techniques. Using the complex 
scene at Figure 12, Table 3 shows the execution time of the 
serial ray tracer, with an average speed index of 0.3, with 
different parameters. DRT refers to distributed ray tracing 
rate, SS is the super sampling rate, ET is the execution 
time in seconds.  Since these four test cases were used all 
throughout the testing, they will be referenced as shown. 
The execution time is shown in HH:MM:SS. The four test 
cases do not have a constant increase in complexity of 
rendering with these parameters but as the execution time 
shows, test case C and D are much more difficult compared 
to A and B. This table will also serve as a reference for the 
speed up later on.

TABLE III
Serial Ray Tracer Results

Test Case DRT SS ET
A 1 8 4:14.51
B 1 16 8:34.16
C 2 8 5:22:5
D 2 16 10:46:12

C.	 Validity of Computing Speed Index

To measure the speed indices of the machines used in the 
network, a recursive function, the classic Towers of Hanoi, 
was executed.  This function was chosen due to its size. It is 
small enough to minimize the overhead for its computation 
and reliable enough to imitate the execution of ray tracing 
while measuring the speed index. To verify this assumption, 
the two algorithms were executed and compared using the 
speed up, MASU, and ASU.  Reservoir was used as the load 
balancing technique with an initial percentage set to 80%.

It can be seen in Figure 17 that the difference of values 
in the MASU and ASU is at 23.81% and 3.14% respectively. 
This means that these speed index-based values for the two 
functions differ by less than 10% of the higher value (42.38 
for the MASU and 5.31 for the ASU). Therefore, the method 
used to approximate the speed index is relatively accurate.

Fig. 17. Speed Indices of Algorithms

D.	 Maximum Speed Up for Reservoir

One difference of the reservoir algorithm over other load 
balancing techniques is the use of an additional parameter 
—initial task distribution percentage.  In this test, the most 
effective initial percentage is determined for later use.  The 
complex scene is rendered using test case C from Table 
3 while varying the initial percentage.  The speed up and 
efficiency of the PRT are shown in Figure 18.
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Fig. 18.  Comparison of Efficiency and Speed Up of PRT Using 
Reservoir

Since the objective of parallelizing applications is to 
increase speed up, it can be shown that the best initial task 
distribution percentage for this environment is at 80%.  
Beyond 80%, the speed up decreases and it performs more 
similar to scatter decomposition both in efficiency and speed 
up.  Below 80%, fewer tasks are initially distributed. These 
will make the slaves ask for more tasks earlier during the 
execution of the program. It is possible that the slaves tend 
to wait in line when requesting for additional tasks.

The efficiency, on the other hand, is consistently at 
99% until the initial percentage is at 75%. Beyond that, it 
decreases. This is because the algorithm approaches the 
performance of the scatter decomposition implementation 
when using higher initial percentages. In these cases, a 
large number of tasks remain on the slaves and do not get 
redistributed even when the reservoir is empty and other 
slaves have completed their task queues.

The objective of parallelizing ray tracing is to shorten 
the execution time. It does not necessarily mean achieving 
the maximum efficiency. Thus, all PRT using reservoir used 
80% as the initial task distribution percentage.

E.	 Comparison of Parallel Ray Tracers

Figure 19 shows the comparison of speed ups of the 
3 PRT implementations. It can be seen in the results that 
the PRT with reservoir is better in most cases. The hybrid 
implementation is similarly high for the more difficult 
cases, approximately at 292% speed up. As expected, the 
PRT with scatter decomposition alone is the slowest of all 
implementations.

The speed up test is valid since the hardware environment 
is the same for all the different PRTs.

 Fig. 19. Speed Up Comparison

Figure 20 shows the comparison of efficiencies. It 
can be seen in the figure that the hybrid implementation 
is consistently performing at around 99.9%, better 
compared to all three PRTs. However, the difference 
with the reservoir implementation is small, at less than 
10%. This difference can be attributed to the initial task 
distribution percentage, which was not chosen for its 
maximum efficiency.

Fig. 20. Efficiency Comparison

Figure 21 shows the ASU of each PRT implementation. 
As seen in Figure 14, the reservoir implementation is better 
in most cases.  This means that the algorithm was more able 
to maximize the hardware environment compared to the 
other implementations.
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Fig. 21. Achieved Speed Up Comparison

IV.  Conclusion and Recommendations

The results have shown that when using a reservoir, high 
speed-up is achieved at 80% initial task distribution while 
high efficiency is achieved between 20–75% initial task 
distribution. With speed-up as the priority, reservoir achieves 
at most 87% better speed-up than the scatter decomposition 
and 36% than the hybrid technique. It also has at most 
28% better efficiency than the scatter decomposition. The 
reservoir algorithm achieved at most 25% better achieved 
speed-up (ASU) than the scatter decomposition and 10% 
than the hybrid. Thus, in conclusion, under the scenarios 
tested and the methodologies used, the load balancing 
technique that uses a reservoir is a good alternative technique 
for load balancing in parallel ray tracing. This technique has 
a simpler implementation than diffusion since assignment 
of tasks is only done once and no tasks are moved between 
slaves.

Even if complex scenes were used in testing, we 
recommend that real practical scenes be used as benchmarks. 
Personal evaluation of these scenes can be used as an 
additional test to determine the realism of the images. The 
concept of applying a bias to the distribution using the 
speed index can also be applied for other load balancing 
techniques that use heterogeneous computers. With this type 
of implementation, a possible increase to the speed up, ASU 
and the efficiency may be seen. Also, the current hardware 
environment is limited to a single master and four slaves.  
It is possible that the algorithm may perform differently 
with varying number of slaves. In this case, the ASU can 
be used as the primary measurement of comparison as the 
heterogeneity of the system will be more prominent.
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