
Efficient Load Balancing Technique for
Parallel Ray Tracing Using a Reservoir

Joy Alinda Madamba and Francis Joseph Seriña

Abstract—Imitating the real world in emulations,
such as the effect of light, is an important research
area in software applications. However, a computing
machine cannot precisely imitate all the aspects of light
in short processing periods. Ray tracing is a technique
that renders and accurately depicts light with a high
time delay. Parallelizing the computers that run the
rendering is not enough to reduce its running time.
To further increase computing efficiency and improve
ray tracing’s applicability for mainstream purposes,
load balancing must be performed. In this study, a
proposed alternative load balancing technique that
uses a reservoir was implemented to tackle the issue
of using heterogeneous computers in the network and
to minimize the communication overhead introduced
by parallel applications. Results show that when using
a reservoir, high speed-up is achieved at 80% initial
task distribution while high efficiency is achieved
between 20–75% initial task distribution. With speed-
up as the priority, reservoir achieves at most 87%
better speed-up than the scatter decomposition and
36% than the hybrid technique. It also has at most
28% better efficiency than the scatter decomposition.
Finally, the reservoir algorithm achieved at most
25% better achieved speed-up (ASU) than the scatter
decomposition and 10% than the hybrid.

Index Terms—Computer Graphics, Load Balancing,
Parallel Programming, Ray Tracing, Rendering

I. Introduction

THE recent trend in computer development has
been towards shorter execution times for complex

applications. However, these applications have
developed faster than the advances done in computer
architectures. Single-core processors have thus given
way to multi-processors, paving the way for parallel

solutions to these complex problems. An example of
this complex application is ray tracing. Many people
consider ray tracing to be the best image synthesizing
technique to date [1]. Ray tracing naturally shows
precise reflections, shadows, and transmissions by
following the path of light and applying the laws of
geometric optics. Unfortunately, high quality images can
only be produced at a large amount of time. Ray tracing
has not been used in mainstream graphics yet, aside from
the film industry, because no computing machine can
single-handedly render large images in a relatively small
useful amount of time [2]. Thus, ray tracing is a good
candidate for implementation in a network of computers
that would execute that application in parallel.

The use of parallelization has its own set of areas
that need improvement when it comes to efficiency. One
such issue is load balancing. The workloads assigned to
different computers are not always equal and a balancing
scheme must be applied in such a way that the computers
complete their task at the same time [3]. Load balancing
techniques are classified as static and dynamic. Static
load balancing distributes tasks before processing, taking
into account certain assumptions such as tasks with equal
workload unless otherwise stated. Static load balancing
techniques are based on the partitioning of the image plane
(screen). One static technique found to be effective for
network systems with less than 128 computers is Scatter
Decomposition [4], [5]. In this algorithm, the tasks are
alternately distributed to increase the probability that
machines get equal workload amounts. It distributes the
pixels in an alternating sequence (i mod p) where the p is
the number of computers and i is the pixel to be rendered.
The result of the alternating sequence formula is the
computer, which renders that pixel. For example, Figure 1
shows how scatter decomposition is applied unto a picture
with 100 pixels per row. Given that there are 3 computers
within the network, the 1st, 4th, 103rd, 106th, etc. pixel
is assigned to the first computer while the 2nd, 5th, 101st,
104th, etc pixel is given to the second computer and finally,
the 3rd, 6th, 102nd, 105th, etc. pixel is given to the third
computer.

J. A. Madamba is with the Electrical and Electronics
Engineering Insitute, University of the Philippines, Diliman
(e-mail: joyarmadamba@gmail.com)

F. J. Seriña is with Autodesk Inc., at Pittsburgh, Pennsylvania

Journal of Computational Innovations and Engineering Applications 1(2) 2017: 22–32

Copyright © 2017 by De La Salle University

Efficient Load Balancing Technique	 Madamba and Seriña 23

Dynamic load balancing redistributes the tasks during
processing. Techniques that use this type of load balancing
can be further subdivided into two approaches: centralized
and decentralized [6]. The centralized approach uses one
machine as the controller (or master) of the system. It
is responsible for task allocation and assignment. The
decentralized approach uses all the machines in deciding
where the next tasks will be given, with or without
cooperation between machines. We focused on the
centralized techniques as these would be more suitable
for ray tracing. Some centralized techniques include the
algorithm by Wang, et al. [7] that assigns tasks based on
whether it is an I/O consuming task or a CPU compute
task and the algorithm by Sidhu et al. [8] that uses particle
swarm optimization. However, the first algorithm mentioned
was not used as the assignment of tasks would introduce
more variables in a heterogeneous system and the second
is more suitable to a large-scale network. A third highly
scalable centralized dynamic technique is Diffusion, which
redistributes the tasks evenly when one of the slaves have
completed earlier than the others [4]. Diffusion is started
when a slave completes its task queue by sending a request
signal to its neighboring machines. The neighbors reply
with the number of tasks left in their queue. The average
number of the remaining tasks is determined and the
machines with a higher average give their excess tasks to
the machines with a smaller queue. It has been shown that
a hybrid technique (scatter decomposition with diffusion)
resulted in greater efficiencies and speed up compared to
them working alone [4]. However, scatter decomposition
and diffusion only used homogenous computer architectures
in their networks.

In order to normalize the performance of networks
that use computers with heterogeneous architectures, an
additional parameter is taken into consideration: speed index
[5]. This determines the relative speed of one machine over
another within the system. It is measured by determining
the execution time of running a recursive function. Thus,
distribution of tasks took advantage of which computer is
faster by possibly assigning more tasks to these computers.

The goal of the study was to implement a new load
balancing technique that uses a reservoir and compare its
performance against existing load balancing algorithms.
The study was implemented on a fully connected network
with different computer hardware architectures. Figure 2
shows the hardware environment and the communications
involved in the system. The hardware environment used
heterogeneous commercial desktop computers with 1
designated as the master and the rest as slaves. It used the
distributed memory architecture and communicated over a
fully connected network.

Fig 2. Implementation environment

The master was responsible for initializing the scene and
distributing the tasks. It shall accept a ‘request for more’
signal from any slave and give it more tasks to do unless
there’s none left. The master accepts all the partial images
from the slaves and compiles them as a single image. The
slaves performed the ray tracing and requested for more
tasks once its queue is empty.

II. Methodology

A.	 Reservoir Algorithm

The diffusion algorithm has a high communication
overhead especially when the computers are in a fully
connected network. When a slave requests for more rays,
the master will ask each slave to send their task queue. The
master averages the number of tasks and calls the slaves with
task queue higher than the average to distribute their tasks to
those who have less. Meaning, it redistributes tasks that were
initially assigned already. This overhead is neglected since
the amount of time it takes to send and receive data is much
smaller than the rendering process. The reservoir algorithm
will reduce the communication overhead by preventing any
redistribution needed in the middle of the process. It does
this by making the initial task distribution biased in such a
way that faster computers receive more. Also, it does not
distribute all the tasks during initial assignment. It keeps a
certain number of tasks in a reservoir which will only be
assigned when a slave requests for more.

Fig 1. Scatter decomposition

Journal of Computational Innovations and Engineering Applications 	 Vol. 1 No. 2 (2017)24

There are three (3) major blocks in the Reservoir
algorithm, as shown in Figure 3. The Reservoir Preparation
uses the speed index of each slave to calculate the division
of labor when biasing the task distribution. The steps for
this procedure are shown next.

Fig. 3. Reservoir block diagram

Input:	 speed indices (speed1, speed2, …, speedc) and the
number (c) of slaves

Output:	 sequence of percentage division of labor per slave
(div1, div2, …, divc)

1.		 procedure reservoir_preparation (speed, c)
2.			 slowest : = speed1
3.			 for i : = 2 to c do
4.				 if speedi > slowest then
5.					 slowest : = speedi
6.			 ratio_total : = 0
7.			 for i : = 1 to c do
8.				 begin
9.				 ratioi : = slowest / speedi

10.				 ratio_total : = ratio_total + ratioi
11.				 end
12.			 for i : = 1 to c do
13.				 divi : = ratioi / ratio_total
14.			 return (div)
15.		 end reservoir_preparation

The variable slowest is the speed index of the slowest
computer within the network. This is searched for linearly in
lines 2–5. In the sequence, ratioi is the theoretical equivalent
amount of work that can be completed by slavei in the same
time that the slowest slave completes 1 task—assuming
that all tasks are equal. The sum of all ratio’s are stored in
ratio_total (lines 6–11) to be used as divisor in lines 12–13
to determine the division of labor.

The Initial Distribution block initially allocates specific
amounts of the total tasks to the slaves. This initial number

of tasks is determined by a quantity specified by the user
called the initial task distribution percentage or initial
percentage. Subsequently, a sequence of pixels is computed
by multiplying the division of labor, initial percentage,
and total number of tasks. These pixels are then given in
a sequential manner. The first sequence of pixels is given
to the first slave, the second sequence to the second slave,
etc. The remaining unassigned tasks will be placed in the
last block as reserved tasks. The steps for this procedure
are shown next.

Input:	 initial task distribution percentage (p)
sequence (ray1, ray2, …, rayn) and number (n) of
tasks
sequence (slave1, slave2, …, slavec) and number
(c) of slaves
division of labor (div1, div2, ..., divc) per slave

Output:	 undistributed tasks (reserve)

1.		 procedure initial_distribution (p, ray, n, slave, c, div)
2.		 limit : = p * n
3.		 prev_limit : = 0
4.		 for s : = 1 to c do
5.			 begin
6.			 next_limit : = prev_limit + (limit * divs)
7.			 for i : = prev_limit to next_limit do
8.				 begin
9.		 AssignTask (rayi, slaves)

10.				 end
11.			 prev_limit : = next_limit + 1;
12.			 end
13.		 reserve : = raylimit+1, raylimit+2, … rayn
14.			 return (reserve)
end initial_distribution

When a slave finishes its assigned tasks, it will ask for
more from the reservoir. In the final block of the algorithm,
a fraction of the reserved tasks is given to the requesting
slave based on the division of labor. The algorithm ends
when there are no more reserved tasks, as shown below.

Input:	 requesting slave (slave)
division of labor of requesting slave (div)
sequence (ray1, ray2, …, rayn) and number (n) of
undistributed tasks

Output:	 remaining undistributed tasks (reserve)

1.		 procedure Reservoir (slave, div, ray, n)
2.			 limit : = div * n
3.			 for i : = 1 to limit do
4.				 AssignTask (rayi, slave)
5.			 reserve : = raylimit+1, raylimit+2, …, rayn
6.			 return (reserve)
end Reservoir

Efficient Load Balancing Technique	 Madamba and Seriña 25

All arithmetic operations are rounded up for the
algorithm to converge. A test simulation is shown in
Table 1. Slave 3 is determined to be the slowest with speed
index 12. Ratio is the slowest speed index divided by the
speed index of the slave under consideration. It represents
how many tasks that computer can accomplish compared to
the slowest assuming that all tasks are equal. For example,
since slave 1 is 12 times faster compared to the slave 3,
it could theoretically complete 12 tasks when slave 3
completes 1. The sum of these ratios will be used as a divisor
to acquire the percent division of labor. The division of labor
must be rounded up for the algorithm to converge.

On the last column, we assume slave 1 finished its tasks
and there are 100 tasks in the reserve. Since the percent
division of labor of slave 1 is 65%, 65 tasks will be given
to it and the rest will remain as reserve until another slave
completes its queue.

B.	 Phase I – Serial Ray Tracer (SRT)

In the first phase of the study, a functional serial ray tracer
was built, which was used as the basis for the succeeding
tracers. Ray tracing is a pixel by pixel type of rendering.
Each pixel in the final image is calculated independently
from those beside it. Looking at Figure 4, E refers to the
viewer’s eye which is looking at object 6. Objects 6 and
4 are opaque spheres. Objects 3 and 9 are translucent
planes and LA and LB are light sources. The different rays
will be described later. A primary ray (from E to 3) from
the viewport travels in a straight line towards a pixel on
the screen. This ray continues to the scene until it hits a
surface. The algorithm that finds any intersection is called
visible surface determination or intersection tests. Different
algorithms were developed to find the most efficient visible
surface determination algorithm. This is often a bottleneck
in ray tracing algorithms as well as trying to parallelize it.
Characteristics of the surface are taken into consideration
to determine the reflection and refraction properties as well
as its color at the point of intersection.

Shown in Figure 5 is the serial ray trace flowchart. The
shading model used in the flowchart is a simplified hall
shading model which consists of 4 terms. The first term is

the low-level ambient light. The second term is a modified
Phong Shading model which combines diffuse and specular
term. The ambient term is neglected because the simplified
hall shading model already considers it. The third term
is the perfect specular reflection and the fourth is perfect
specular transmission. The third and fourth terms are subject
to recursion.

Fig. 4. Ray tracing paths

Fig. 5. Serial ray tracer

TABLE I
Sample Simulation

Slave Speed Index Slowest Ratio Sum of
Ratios

Percent division of
labor Ex 100 Tasks

1 1
Slave 3 with
speed index

12

12

18.714

64.12% (65%) 65
2 3 4 21.37% (22%)
3 12 1 9.16% (10%)
4 7 1.714 5.34% (6%)

Journal of Computational Innovations and Engineering Applications 	 Vol. 1 No. 2 (2017)26

To make ray tracing faster, effort was given to the
intersection test algorithm. The bulk of the running time of
any ray tracer is devoted in finding the intersection between
each ray and scene objects. To reduce the calculations, each
object is assigned a bounding box—it is a box that tightly
covers the space occupied by each object. The minimum and
maximum x, y, and z coordinates of the object will be used
as the dimensions of the bounding box. The 6 coordinates
will correspond to the 6 faces of the box. When testing for
the intersection between a ray and an object, the ray is tested
against one face at a time.

The ray tracer could read the scene details from an
external text file. The details include camera information,
output image information, light sources, object (with
surface) properties and environment variables. The output
image information includes the width and height in pixels
and the output file name, which has the extension of the
output image type. The light sources are defined using
its location and color. The object properties are defined
differently. Surface properties have the same syntax for
all types of primitives and are defined together with the
object. The environment variables include the background
color, ambient color and the maximum levels of reflection/
transmission rays.

The serial ray tracer, using the minimum set of features,
was able to render images with a single machine. It was
able to render three (3) different types of primitive objects,
namely spheres, boxes and one-sided planes, shown in
Figure 6. Its resulting images have shown reflections,
transmissions and shadows, similar to Figure 7.

Additional features such as super sampling and
distributed ray tracing were also implemented to improve
the quality of the pictures and increase the weight of the
tasks. Super sampling is an anti-aliasing technique by
shooting more rays per pixel. Distributed ray tracing slightly
changes the angle of produced reflection, refraction and

shadow rays to apply blurry phenomena such as gloss, blurry
transparency, and penumbras. Shown in Figure 8 is a sample
scene that shows all the basic features. A transparent sphere
with properties similar to glass is included in the figure.
Below it is a plane that reflects everything on top of it. There
are multiple opaque left objects, 3 smaller blue spheres and
a yellow box behind the transparent sphere. Two point-light
sources are used, one behind the camera and another to the
left of the box. Super sampling and distributed ray tracing
were also implemented. The functionality of the SRT was
then tested and verified.

Fig. 8. Image created by SRT with basic features

C.	 Phase II – Parallel Ray Tracer

The next phase involved implementing the first of the
three (3) parallel ray tracers (PRT). This PRT implemented
only the scatter decomposition as a load balancing technique.

Fig. 7. Shiny sphere over a mirror

Fig. 6. Basic primitives

Efficient Load Balancing Technique	 Madamba and Seriña 27

A master and slave side was created to distribute the tasks
of the PRT. Additional modules were created for the master
to pass the scene details to the slaves and for the slaves to
compile the partial images for the master. The flowchart
and points of communication are shown in Figure 9.
Initialization is executed by the master while the slave
executes ray tracing. The distribution of rays amongst
the slaves, third block in the master side, is the static load
balancing.

Different computers were used to test the parallelized ray
tracer. The execution and idle time of each slave are noted
in order to calculate efficiency and speed up. The results are
tested against the results of phase III. The overall efficiency
of the program is the sum of the execution times of each
slave over the total elapsed time (execution and idle time)
of all the slaves.

D.	 Phase III – Parallel Ray Tracer with Dynamic
	 Load Balancing

The last two PRTs were implemented in this phase. The
first PRT used the hybrid load balancing technique which
combines scatter decomposition and diffusion. The second
PRT implemented used the reservoir algorithm. Additional
modules were also created, such as the module that computes
the speed index and the module that commands slaves to
receive/send tasks from/to other slaves. Figure 10 shows
the block diagram of the PRT with dynamic load balancing.

E.	 Testing and Benchmarking

For the testing of the SRT, a series of test scenes were
created that focused on the specific features of the ray tracer.
This set of scenes was also rendered using an older version

of a commercial ray tracer originally developed by Mental
Images, the Mental Ray tracer. The resulting images were
compared against those created by the SRT.

The test scenes created focused on the following features:
shading, reflections, shadows, transmissions, and their
combinations. Figure 11 shows one image that combines
all of the features.

Fig. 11. Test scene that combined features

To compare the three (3) PRTs with the SRT, a complex
scene (Figure 12) was rendered with varying parameters by
all four ray tracers. This test scene approximated practical
scenes since it has varying workloads throughout the image.
The SRT was modified to calculate its speed index even if it
was not used during its image processing. It was used later as
a reference for comparison. For the PRTs, the total program
execution times and slave speed index were recorded. The
speed-up was computed by dividing the execution time of

Fig. 9. Parallel ray tracer Fig. 10. Parallel ray tracer that uses dynamic load balancing

Journal of Computational Innovations and Engineering Applications 	 Vol. 1 No. 2 (2017)28

the PRT over the execution time of the SRT that rendered
the image with the same parameters. It was assumed that
since the hardware environment used was exactly the same
for all the tests, the speed indices of the machines within
the network would be the same for all tracers.

The efficiency is computed as follows:

	 S T(ET) /(ET n)η = ∑ × 	 (1)

where ETT is total elapsed time of the program, n is the
number of slaves, and ΣETS is a summation of the execution
times of all slaves.

Fig. 12. Complex scene used as a benchmark.

Since the computers within the network do not have
equal speeds, a new unit of measurement was used. This is
the achieved speed-up (ASU) which relies on the validity

of the speed index. The ASU is the ratio of the computed
speed up compared to the maximum achievable speed up
(MASU). Table 2 shows an example on how to compute
the MASU and ASU. The theoretical speed-up is computed
by dividing the speed index of the SRT over the speed
index of the machine under consideration. The sum of all
these theoretical speed ups would account for the MASU.
If all the machines are homogenous, including the SRT,
then the MASU is equal to the number of the slaves (ex. 4
homogenous slaves have 400% MASU). For the example
below, the MASU is 341.79%. The ASU is then computed
by dividing the speed up over the MASU.

TABLE 2
Sample Computation of ASU

Machine Speed Index
(seconds)

Theoretical
Speed Up (%)

Achievable
Speed Up (%)

SRT 0.3 100 –

Slave 1 0.30525 98.28 28.75

Slave 2 0.644833 46.52 13.61

Slave 3 0.301333 99.56 29.13

Slave 4 0.307917 97.43 28.51

III. Results and Analysis

A.	 Validity of Features

The SRT built from phase I was compared with another
ray tracer using special scenes that were customized in order
to exclude other features that the serial ray tracers could not
perform. The following are a series of images of the different
scenes rendered in both the SRT and Mental Ray Renderer.

As can be seen, Figure 13 has a significant difference—
mainly, the hue of green visible in the whole scene. This is

Fig. 13. Shading equation and reflections

a. Mental Ray Render b. Serial Ray Tracer

Efficient Load Balancing Technique	 Madamba and Seriña 29

due to the set ambient light and the shading equation used.
The Mental Ray Renderer applies a bigger weight to the
ambient color compared to the serial ray tracer. Looking
at the reflection and the color of the objects in the scene, it
can be shown that other elements of the shading equation
between the Mental Ray Renderer and the serial ray tracer
is the same for the surface properties present.

In Figures 14 and 15, we can clearly see that the images
produced are identical, showing the accuracy of the serial
ray tracer in depicting shadows and transmissions.

Figure 16 shows that when the scene gets more
complicated, the difference between the serial ray
tracer and that of the Mental Ray Renderer becomes
unnoticeable.

Fig. 14. Shadows

b. Serial Ray Tracera. Mental Ray Render

Fig. 15. Transmissions

a. Mental Ray Render b. Serial Ray Tracer

Journal of Computational Innovations and Engineering Applications 	 Vol. 1 No. 2 (2017)30

Fig. 16. Lights, reflections and shadows

a. Mental Ray Render

b. Serial Ray Tracer

B.	 Serial Ray Tracer Execution Times

One objective of this study was to build a PRT and
compare the performance of the proposed algorithm with
the existing load balancing techniques. Using the complex
scene at Figure 12, Table 3 shows the execution time of the
serial ray tracer, with an average speed index of 0.3, with
different parameters. DRT refers to distributed ray tracing
rate, SS is the super sampling rate, ET is the execution
time in seconds. Since these four test cases were used all
throughout the testing, they will be referenced as shown.
The execution time is shown in HH:MM:SS. The four test
cases do not have a constant increase in complexity of
rendering with these parameters but as the execution time
shows, test case C and D are much more difficult compared
to A and B. This table will also serve as a reference for the
speed up later on.

TABLE III
Serial Ray Tracer Results

Test Case DRT SS ET
A 1 8 4:14.51
B 1 16 8:34.16
C 2 8 5:22:5
D 2 16 10:46:12

C.	 Validity of Computing Speed Index

To measure the speed indices of the machines used in the
network, a recursive function, the classic Towers of Hanoi,
was executed. This function was chosen due to its size. It is
small enough to minimize the overhead for its computation
and reliable enough to imitate the execution of ray tracing
while measuring the speed index. To verify this assumption,
the two algorithms were executed and compared using the
speed up, MASU, and ASU. Reservoir was used as the load
balancing technique with an initial percentage set to 80%.

It can be seen in Figure 17 that the difference of values
in the MASU and ASU is at 23.81% and 3.14% respectively.
This means that these speed index-based values for the two
functions differ by less than 10% of the higher value (42.38
for the MASU and 5.31 for the ASU). Therefore, the method
used to approximate the speed index is relatively accurate.

Fig. 17. Speed Indices of Algorithms

D.	 Maximum Speed Up for Reservoir

One difference of the reservoir algorithm over other load
balancing techniques is the use of an additional parameter
—initial task distribution percentage. In this test, the most
effective initial percentage is determined for later use. The
complex scene is rendered using test case C from Table
3 while varying the initial percentage. The speed up and
efficiency of the PRT are shown in Figure 18.

Efficient Load Balancing Technique	 Madamba and Seriña 31

Fig. 18. Comparison of Efficiency and Speed Up of PRT Using
Reservoir

Since the objective of parallelizing applications is to
increase speed up, it can be shown that the best initial task
distribution percentage for this environment is at 80%.
Beyond 80%, the speed up decreases and it performs more
similar to scatter decomposition both in efficiency and speed
up. Below 80%, fewer tasks are initially distributed. These
will make the slaves ask for more tasks earlier during the
execution of the program. It is possible that the slaves tend
to wait in line when requesting for additional tasks.

The efficiency, on the other hand, is consistently at
99% until the initial percentage is at 75%. Beyond that, it
decreases. This is because the algorithm approaches the
performance of the scatter decomposition implementation
when using higher initial percentages. In these cases, a
large number of tasks remain on the slaves and do not get
redistributed even when the reservoir is empty and other
slaves have completed their task queues.

The objective of parallelizing ray tracing is to shorten
the execution time. It does not necessarily mean achieving
the maximum efficiency. Thus, all PRT using reservoir used
80% as the initial task distribution percentage.

E.	 Comparison of Parallel Ray Tracers

Figure 19 shows the comparison of speed ups of the
3 PRT implementations. It can be seen in the results that
the PRT with reservoir is better in most cases. The hybrid
implementation is similarly high for the more difficult
cases, approximately at 292% speed up. As expected, the
PRT with scatter decomposition alone is the slowest of all
implementations.

The speed up test is valid since the hardware environment
is the same for all the different PRTs.

 Fig. 19. Speed Up Comparison

Figure 20 shows the comparison of efficiencies. It
can be seen in the figure that the hybrid implementation
is consistently performing at around 99.9%, better
compared to all three PRTs. However, the difference
with the reservoir implementation is small, at less than
10%. This difference can be attributed to the initial task
distribution percentage, which was not chosen for its
maximum efficiency.

Fig. 20. Efficiency Comparison

Figure 21 shows the ASU of each PRT implementation.
As seen in Figure 14, the reservoir implementation is better
in most cases. This means that the algorithm was more able
to maximize the hardware environment compared to the
other implementations.

Journal of Computational Innovations and Engineering Applications 	 Vol. 1 No. 2 (2017)32

Fig. 21. Achieved Speed Up Comparison

IV. Conclusion and Recommendations

The results have shown that when using a reservoir, high
speed-up is achieved at 80% initial task distribution while
high efficiency is achieved between 20–75% initial task
distribution. With speed-up as the priority, reservoir achieves
at most 87% better speed-up than the scatter decomposition
and 36% than the hybrid technique. It also has at most
28% better efficiency than the scatter decomposition. The
reservoir algorithm achieved at most 25% better achieved
speed-up (ASU) than the scatter decomposition and 10%
than the hybrid. Thus, in conclusion, under the scenarios
tested and the methodologies used, the load balancing
technique that uses a reservoir is a good alternative technique
for load balancing in parallel ray tracing. This technique has
a simpler implementation than diffusion since assignment
of tasks is only done once and no tasks are moved between
slaves.

Even if complex scenes were used in testing, we
recommend that real practical scenes be used as benchmarks.
Personal evaluation of these scenes can be used as an
additional test to determine the realism of the images. The
concept of applying a bias to the distribution using the
speed index can also be applied for other load balancing
techniques that use heterogeneous computers. With this type
of implementation, a possible increase to the speed up, ASU
and the efficiency may be seen. Also, the current hardware
environment is limited to a single master and four slaves.
It is possible that the algorithm may perform differently
with varying number of slaves. In this case, the ASU can
be used as the primary measurement of comparison as the
heterogeneity of the system will be more prominent.

References

[1]	 Glassner, A. Introduction to Ray Tracing. Morgan Kaufmann
Publishers, Inc., 1989.

[2]	 J. Hurley. “Ray Tracing Goes Mainstream,” Intel Technology
Journal. Volume 9, Issue 2, p. 107, May 19, 2005.

[3]	 Watts, J., Taylor, S. “A Practical Approach to Dynamic Load
Balancing,” IEEE Transactions on Parallel and Distributed
Systems, vol 9, no. 3, March 1998.

[4]	 Arvo, J. & Heirich, A. “A Competitive Analysis of Load
Balancing Strategies for Parallel Ray Tracing.” Kluwer
Academic Publishers, Boston. California Institute of
Technology, 1998.

[5]	 Fellner, D., Schafer, S., and Zens, M. “Photorealistic
Rendering in Heterogeneous Networks,” Advances in
Parallel Computing, vol. 12, pp. 113–120, 1998.

[6]	 Sahoo, B. “Dynamic Load Balancing Strategies in
Heterogeneous System (Doctoral dissertation),” Retrieved
from ethesis.nitrkl.ac.in/5642/1/dlbmain.pdf, 2013.

[7]	 Wang, H. et al. “An Innovate Dynamic Load Balancing
Algorithm Based on Task Classification,” IJACT: Inter-
national Journal of Advancements in Computing Technology,
vol. 4, no. 6, pp. 244–254, 2012.

[8]	 Sidhu, M., Thulasiraman, P., and Thulasiram, R. “A Load-
rebalance PSO Heuristic for Task Matching in Heterogeneous
Computing Systems,” IEEE Symposium on Swarm
Intelligence (SIS), pp. 180–187, 2013.

