
Abstract—The design of most modern cameras 
utilizes a color filter array that downsamples and 
interleaves the red, green, and blue pixels of an image 
into a single mosaiced image. Such a design makes it 
necessary to interpolate the missing pixels for each color 
channel using a process known as demosaicing. While 
it is possible to fill in these pixels, the resulting images 
are inexact estimates of the true image, with different 
algorithms offering various levels of success. However, 
this degree of success cannot be directly quantified in 
the absence of the true image, making it difficult to 
design adaptive algorithms for demosaicing. This paper 
explores a no-reference simple metric for inferring 
the quality of the estimated image by measuring the 
sparsity of chroma gradients along four directions 
(SCG4). The said measure is shown to be significantly 
correlated with respect to the PSNR in simulations 
using the Kodak image database.

Index Terms—demosaicing, color filter array, 
gradient, sparsity.

I.  IntroductIon

WITH the growing presence of imaging systems in the 
modern world, it is not surprising that the underlying 

technology behind such imaging devices have received 
a proportional amount of attention. In particular, digital 
imaging sensors have continuously been developed through 
the years. One of the most apparent aspects of this growth is
seen in the resolution of the imaging sensors. As consumer 
video is pushing for 4K video resolutions and higher, 
sensor technology has to cope with the market demand. 
Alongside the increasing resolution [1], [2], [3], there is 
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also a growing commercial interest in high speed video 
captures [4], [5], [6].

Fig. 1. Bayer color filter array (CFA). Each color site 
is comprised of a color filter (typically a chemical dye) 
placed in from of a photodetector.

Driven by the progressively rising requirements, 
researchers have come up with ways to improve sensor 
technologies. For instance, the construction of smaller 
sensors have enabled consumer devices such as mobile 
phones to capture high-resolution images and video [1], 
[2], [3]. Sensors with fast readout capabilities can now be 
utilized to capture high framerate videos (e.g. 1500 fps [6], 
10000 fps [5], etc). Improving sensitivities have allowed 
images and videos to be captured under poor lighting 
conditions [7], [8]. In a similar manner, developments in 
sensitivity have also allowed for the lower levels of noise 
in captured images. 

Despite the changes in sensor design throughout the 
years, one aspect of imaging sensors has remained vastly 
unchanged since the 1970s—the manner by which color 
is captured. At the very core of most imaging sensors is an 
array of photosensitive devices designed to capture incident 
light and translate the intensity into electronic signals [9]. 
However, these devices can only describe the intensity of 
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light captured over a broad spectrum and not for specific 
wavelengths, thus making them incapable of quantifying 
the intensity of different colors. 

To address this limitation, wavelength-specific filters 
are placed in front of the individual sensor cells to allow 
them to capture color-specific intensities. Collectively, these 
filters form what is known as a color filter array (CFA).  
A prominent example of this is the Bayer CFA [9] (shown 
in Figure 1), which is still used in many imaging sensors 
today. The downside to such an approach is that each cell in 
the array can only measure one particular color, effectively 
downsampling the individual color channels. The resulting 
captured image appears to be monochromatic (see Figure 2) as 
only a single flat image is obtained from the sensor. However, 
this flat image actually represents the interleaving of the 
intensities of three color channels.

As a result of the interleaving of color channels, the 
resulting image is often not in a usable form and has to be 
deinterleaved to form the individual color channels. This 
leaves missing pixels for each color channel which has 
to be interpolated to reconstruct the colored image. The 
interpolation process for images obtained through a CFA 
is specifically known as demosaicing and is generally a 
non-trivial reconstruction task as information is readily 
lost during the downsampling process. For this reason, 
demosaicing has been a subject of interest to many 
researchers since the conception of the CFA [11].

As with almost any reconstruction task, the true image, 
and subsequently the quality of the reconstruction, is 
unknown to the process. If such quality information were 
made available, an “oracle” process would be able to make 
optimal decisions during the reconstruction. Using this 
premise, this work proposes a no-reference metric that 
predicts the quality of demosaicing in the absence of the 
true image. By utilizing such a measure, more effective 
demosaicing algorithms can be designed. To understand how 
such a metric can be developed, we first introduce Bayer CFA 
along with some technical aspects of this array in Section II. 
An overview of some demosaicing paradigms is provided in 
Section III. Following this, the proposed metric is discussed 
in Section IV along with some experiments in Section V.

II. the Bayer cFa
While there have been many color filter array (CFA) 

designs proposed, the Bayer CFA is still one of the most 
widely used patterns today [9], [11] This CFA (as illustrated 
in Figure 1) creates a repeated array of red, green, and blue 
filters in such a way that every 2×2 pixel area of the entire 
array contains exactly two green pixels and one each of the 
red and blue pixels. This construction is consistent with 
the observation that the human eyes are generally more 

sensitive to green wavelengths thus making the spatial 
resolution of the green channel more significant towards 
our perception of visual quality. To describe the Bayer CFA, 
we begin by defining the intensities of the red, green, and 
blue color channels of an image as 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

, 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =
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1, x+ y is even
0, otherwise

(3)

mB(x, y) =
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1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
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(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:
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1

4
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fB (10)
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

, and  
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =
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1

4
fR +

1
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fG +

1
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fB

]
+

[
−1
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1

2
fG − 1

4
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]
(−1)x+y +

[
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1

4
fB

]
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(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

, respectively for a given pixel coordinate 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:
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[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1
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1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
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1 + (−1)x+y

]
+

1

4
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(8)

which can subsequently be expanded and regrouped
to form:
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The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

. Using 
this notation, any CFA can be described using three masks 
corresponding to the color channels—
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the spatial resolution of the green channel more
significant towards our perception of visual quality.
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(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
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fG(x, y)mG(x, y) +
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(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.
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essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
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mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.
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Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
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niques can be applied to restore the resolution. The
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quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
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quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:
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With slight abuse of notation, we omit the coordi-
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discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.
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are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
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and define the masks as:
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cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:
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The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

 instead. 
In the specific case of the Bayer CFA, these masks  

are position dependent and repeat for every 2 × 2 region of 

Fig. 2. A mosaiced image of the Lighthouse image from  
the Kodak color image database [10] passed through  
a simulated Bayer CFA.



3Predicting the Quality of demosaiced images  ochotorena et al.

the grid. While there are variations in the phase convention 
for the Bayer array, in this work, we followed the convention 
defined in [12] and define the masks as:

 

PREDICTING THE QUALITY OF DEMOSAICED IMAGES OCHOTORENA ET AL. 3

the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)
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1, x is even and y is odd
0, otherwise

(4)
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The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:
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1, x is odd and y is even
0, otherwise
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0, otherwise
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The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:
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The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:
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0, otherwise

(2)

mG(x, y) =
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1, x+ y is even
0, otherwise

(3)
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(4)
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.
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scribed using three masks corresponding to the color
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fCFA, fR, fG, and fB instead.
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0, otherwise
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The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
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If the chroma components are fully known, the
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ponents play a pivotal role in our proposed metric.
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:
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2
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+
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(8)

which can subsequently be expanded and regrouped
to form:
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+
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]
(−1)x+y +
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]
[(−1)x − (−1)y]
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The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1
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fB (10)

fC1 = −1
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2
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fC2 = −1
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This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

 (12)

This formulation implies that the mosaiced image 
is essentially a grayscale image (i.e., luma component) 
corrupted by “noise” from the chroma components. If the 
chroma components are fully known, the original image 
can easily be reconstructed from the mosaiced image. For 
this reason, the chroma components play a pivotal role in 
our proposed metric.

III.  demosaIcIng overvIew

Equipped with a fair understanding on the design of 
the Bayer CFA, the next task is to design a system for 
reconstructing the original image from the mosaiced 
samples. The most trivial approach to this problem is to 
simply interpolate the missing pixels of each channel 
given the known pixels. Since the red and blue channels 
are effectively downsampled to half of their resolution, 
image interpolation techniques can be applied to restore the 
resolution. The green channel, on the other hand, is sampled 
in a quincunx pattern and has more samples available, thus 
making interpolation more effective. A clear downside to 
naïve interpolation is that the high frequency components 
of the red and blue channels that were discarded during the 
downsampling process cannot be restored upon doubling 
[11]. 

Beyond simply the loss of information, handling each 
color channel independently leads to more problematic 
artifacts in the image. Take, for instance, the well-known 
Lighthouse image from the Kodak database (see Figure 3). 
After mosaicing this image and subsequently applying a 
bicubic interpolant to each color channel, some visible color 
bands become apparent in the reconstructed image. These 
bands, often referred to as color moiŕe, result from incorrect 
and out-of-phase interpolation decisions. An early attempt to 

Fig .  3 .  Reconstruct ion of  a  mosaiced image us ing  
bicubic interpolation. Naive interpolation can lead to color 
artifacts in the reconstructed image (right) that are not  
present in the original image (left).



4 Journal of Computational innovations and EnginEEring appliCations  vol. 1 no. 2 (2017)

address such artifacts is to adaptively alter the interpolation 
direction based on horizontal and vertical gradients of the 
color channels [11]. This allows the interpolation to adapt 
to edges in the underlying image to achieve better results. 
Similar approaches can adapt the weights of neighboring 
pixels to avoid edge discontinuities [13]. 

Another demosaicing paradigm is to exploit the 
relationship between color channels. Since color channels 
in images are naturally correlated with one another, 
many demosaicing techniques utilize this relationship 
to obtain better interpolation results [13], [14], [15], 
[16], [11], [17], [18]. For instance, many approaches 
operate under the assumption that hues in an image are 
relatively slow-changing allowing the differences or 
ratios between color channels to be utilized for prediction 
[13], [14], [15], [11]. Other approaches interpolate the 
green channel independently and use it to guide the red 
and blue interpolation [16], [17], [18]. A state-of-the-art, 
Minimized-Laplacian Residual Interpolation (MLRI), 
tackles the problem using a similar perspective by using 
guided upsampling process with the interpolated green 
channel to generate an initial estimate for the red and 
blue channels [17]. This estimate is then updated using an 
approximate Laplacian minimization criteria to arrive at 
a refined solution.

Aside from relying on color differences, some techniques 
also use adaptive fusion of different estimates of the image. 
A popular algorithm, known as Adaptive Homogeneity-
Directed (AHD) demosaicing [19], performs both horizontal 
and vertical interpolations of the color channels and merges 
the two estimates based on a homogeneity metric designed to 
indicate the presence of color artifacts. Using a very different 
approach, the frequency-domain approach [12] models the 
chroma modulation process (discussed in Section II) in 
the Fourier domain. In this domain, it becomes apparent 
that color artifacts appear from crosstalk between the luma 
channel 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

 and the second chroma channel 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

. The authors 
of the said work proposed using a non-adaptive least-squares 
(LS) filter to extract the first chroma component 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

 and 
two non-adaptive LS filters to estimate 
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the spatial resolution of the green channel more
significant towards our perception of visual quality.

To describe the Bayer CFA, we begin by defining
the intensities of the red, green, and blue color
channels of an image as fR(x, y), fG(x, y), and
fB(x, y), respectively for a given pixel coordinate
(x, y). Using this notation, any CFA can be de-
scribed using three masks corresponding to the color
channels—mR(x, y), mG(x, y), and mB(x, y). Using
these masks, the mosaiced image obtained by the
sensor is described as:

fCFA(x, y) =fR(x, y)mR(x, y) +

fG(x, y)mG(x, y) +

fB(x, y)mB(x, y)

(1)

With slight abuse of notation, we omit the coordi-
nates for the individual channels in the succeeding
discussion for brevity thus using the expressions
fCFA, fR, fG, and fB instead.

In the specific case of the Bayer CFA, these masks
are position dependent and repeat for every 2 × 2
region of the grid. While there are variations in
the phase convention for the Bayer array, in this
work, we followed the convention defined in [12]
and define the masks as:

mR(x, y) =

{
1, x is odd and y is even
0, otherwise

(2)

mG(x, y) =

{
1, x+ y is even
0, otherwise

(3)

mB(x, y) =

{
1, x is even and y is odd
0, otherwise

(4)

A more mathematical way of expressing (2) – (4)
is described by [12] in the form:

mR(x, y) =
1

4
[1− (−1)x] [1 + (−1)y] (5)

mG(x, y) =
1

2

[
1 + (−1)x+y

]
(6)

mB(x, y) =
1

4
[1 + (−1)x] [1− (−1)y] (7)

Combining (1) with (5) – (7) leads to the expres-
sion:

f(x, y) =
1

4
fR [1− (−1)x] [1 + (−1)y] +

1

2
fG

[
1 + (−1)x+y

]
+

1

4
fB [1 + (−1)x] [1− (−1)y]

(8)

which can subsequently be expanded and regrouped
to form:

f(x, y) =

[
1

4
fR +

1

2
fG +

1

4
fB

]
+

[
−1

4
fR +

1

2
fG − 1

4
fB

]
(−1)x+y +

[
−1

4
fR +

1

4
fB

]
[(−1)x − (−1)y]

(9)

The first term in the above expression is roughly
analogous to a luma channel, fL, while the remaining
two terms can be interpreted as chroma channels,
fC1 and fC2, multiplied by distinct modulation func-
tions. These individual components can be described
as:

fL =
1

4
fR +

1

2
fG +

1

4
fB (10)

fC1 = −1

4
fR +

1

2
fG − 1

4
fB (11)

fC2 = −1

4
fR +

1

4
fB (12)

This formulation implies that the mosaiced image is
essentially a grayscale image (i.e. luma component)
corrupted by “noise” from the chroma components.
If the chroma components are fully known, the
original image can easily be reconstructed from the
mosaiced image. For this reason, the chroma com-
ponents play a pivotal role in our proposed metric.

III. DEMOSAICING OVERVIEW

Equipped with a fair understanding on the design
of the Bayer CFA, the next task is to design a
system for reconstructing the original image from the
mosaiced samples. The most trivial approach to this
problem is to simply interpolate the missing pixels
of each channel given the known pixels. Since the
red and blue channels are effectively downsampled
to half of their resolution, image interpolation tech-
niques can be applied to restore the resolution. The
green channel, on the other hand, is sampled in a
quincunx pattern and has more samples available,
thus making interpolation more effective. A clear
downside to naive interpolation is that the high fre-
quency components of the red and blue channels that
were discarded during the downsampling process
cannot be restored upon doubling [11].

Beyond simply the loss of information, handling
each color channel independently leads to more

 based on the 
horizontally and vertically modulated contributions to the 
image. This results in two images which, similar to AHD, 
are adaptively merged to form the final image. 

Despite the wide variations in approach of these different 
works, a common feature for many of them is that the 
optimization criteria is often carried out in the 2 domain. 
While this offers a simplistic solution to the problem, many 
properties of natural images are inherently sparse and not 
sufficiently served by the 2 domain. In the succeeding 
section, we highlight some of the said properties and propose 
a potential improvement to this criteria by exploiting such 
sparsity.

Iv. gradIent sparsIty

A. Properties of Natural Images

In order to develop our metric, it is first useful to 
characterize certain properties of natural images. However, 
as the term “chroma” is used in an ambiguous manner in 
literature and may refer to different mixtures of the color 
channels, we explicitly present a series of experiments 
carried out using the 24 images of the Kodak color image 
database. This allows us to disambiguate the chroma 
definition and focus on the properties of the specific variant 
of chroma defined in equations (11) and (12). For these 
experiments, each of the 24 images are mapped into their 
respective luma and chroma components, thus generating a 
set of ground truths which are then characterized.

1) Sparsity of Gradients: One of the central features of 
our proposed metric is the use of gradients of components. 
To be specific, we define the gradient in four directions of 
an arbitrary component f as follows:
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allows us to disambiguate the chroma definition and
focus on the properties of the specific variant of
chroma defined in equations (11) and (12). For these
experiments, each of the 24 images are mapped into
their respective luma and chroma components, thus
generating a set of ground truths which are then
characterized.

1) Sparsity of Gradients: One of the central fea-
tures of our proposed metric is the use of gradients of
components. To be specific, we define the gradient
in four directions of an arbitrary component f as
follows:

∇−xf ≡ f(x, y)− f(x− 1, y) (13)

∇+xf ≡ f(x, y)− f(x+ 1, y) (14)

∇−yf ≡ f(x, y)− f(x, y − 1) (15)

∇+yf ≡ f(x, y)− f(x, y + 1) (16)

Using the above definitions, we calculate the gradi-
ents in four directions for all pixels in the Kodak
database. To make these measures more meaningful,
we obtain the histograms of each gradient direction
and each component with a bin size of 1. The
resulting plots, as seen in Figure 4, make it apparent
that the majority of chroma gradients take on a
zero value. The remaining non-zero gradients are
still highly likely to be close to zero. On the other
hand, the luma component does not exhibit the same
behavior. Here, many of the gradients take non-
zero values. This test demonstrates how the chroma
components of natural images are approximately
sparse (i.e. contain few large values).

2) Sparsity of Gradients in Four Directions:
While the assertion that the gradient of chroma
components are sparse, is useful in itself, we delve
further into the properties of this sparsity. The previ-
ous experiment focused primarily on the individual
gradient components without considering how these
interact. Looking back at our definition of the four
gradients (equations (13) – (16)), we find that these
gradients are centered around a given pixel. We make
use of this by counting the number of significant
gradients around that pixel.

In this second experiment, we consider that every
pixel can have between 0 to 4 non-zero gradients as-
sociated with it. Previously, we have established that
the chroma components are approximately sparse
due to factors such as noise. As such, a simple crite-

ria such as dividing gradients between zeros and non-
zeros is not necessarily reliable. Instead of applying
a fixed threshold of 1, we model the probabilistic
occurrence around a certain threshold. For each pixel
center, the number of gradient magnitudes above or
equal to the threshold is recorded. The probabilities
of each number (from 0 to 4) are computed from all
pixels accumulated from the Kodak database. The
stacked bar graph in Figure 5 illustrates the trend at
various threshold levels.

This test demonstrates how likely the gradients
in four directions around a pixel are significant. In
either chroma component, it is again apparent that
most pixels have insignificant (i.e. below a given
threshold) gradients. More importantly, this makes it
clear that for a given pixel, there is a high probability
that only one of the four gradients are of significant
magnitude.

3) Correlating Gradients between Chroma Com-
ponents: Having established a sparsity trend for each
pixel, it is possible to apply the said observation
towards developing our metric. However, there is
one more property of natural images that is of
some interest. An intuitive notion for images is
that an edge occurring inside a given region often
accompanies a change in color. If this were to hold
true, such an edge would present itself in all three
components of an image. To verify this, we consider
the gradient magnitude at each direction. For each
discretized magnitude in the first chroma component,
we find the resulting distribution on the second
chroma component. This can be visualized using the
box plot in Figure 6.

If there exists no correlation between the gradients
in two chroma components, we would expect the
entire plot to remain close to zero (based on the
observations from the previous experiment). The box
plots obtained from the sample data, however, clearly
demonstrate rising median and quartile levels as
the chroma 1 gradient magnitude increases. Such a
trend is consistent regardless of the gradient direction
being studied. This test establishes that there is,
indeed, some form of structural correlation between
the two chroma components.

4) Summary: Given the results of the three exper-
iments conducted on natural images, we have arrived
at several key observations as summarized below:

1) Gradients of the chroma components are ap-

 (13)
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allows us to disambiguate the chroma definition and
focus on the properties of the specific variant of
chroma defined in equations (11) and (12). For these
experiments, each of the 24 images are mapped into
their respective luma and chroma components, thus
generating a set of ground truths which are then
characterized.

1) Sparsity of Gradients: One of the central fea-
tures of our proposed metric is the use of gradients of
components. To be specific, we define the gradient
in four directions of an arbitrary component f as
follows:

∇−xf ≡ f(x, y)− f(x− 1, y) (13)

∇+xf ≡ f(x, y)− f(x+ 1, y) (14)

∇−yf ≡ f(x, y)− f(x, y − 1) (15)

∇+yf ≡ f(x, y)− f(x, y + 1) (16)

Using the above definitions, we calculate the gradi-
ents in four directions for all pixels in the Kodak
database. To make these measures more meaningful,
we obtain the histograms of each gradient direction
and each component with a bin size of 1. The
resulting plots, as seen in Figure 4, make it apparent
that the majority of chroma gradients take on a
zero value. The remaining non-zero gradients are
still highly likely to be close to zero. On the other
hand, the luma component does not exhibit the same
behavior. Here, many of the gradients take non-
zero values. This test demonstrates how the chroma
components of natural images are approximately
sparse (i.e. contain few large values).

2) Sparsity of Gradients in Four Directions:
While the assertion that the gradient of chroma
components are sparse, is useful in itself, we delve
further into the properties of this sparsity. The previ-
ous experiment focused primarily on the individual
gradient components without considering how these
interact. Looking back at our definition of the four
gradients (equations (13) – (16)), we find that these
gradients are centered around a given pixel. We make
use of this by counting the number of significant
gradients around that pixel.

In this second experiment, we consider that every
pixel can have between 0 to 4 non-zero gradients as-
sociated with it. Previously, we have established that
the chroma components are approximately sparse
due to factors such as noise. As such, a simple crite-

ria such as dividing gradients between zeros and non-
zeros is not necessarily reliable. Instead of applying
a fixed threshold of 1, we model the probabilistic
occurrence around a certain threshold. For each pixel
center, the number of gradient magnitudes above or
equal to the threshold is recorded. The probabilities
of each number (from 0 to 4) are computed from all
pixels accumulated from the Kodak database. The
stacked bar graph in Figure 5 illustrates the trend at
various threshold levels.

This test demonstrates how likely the gradients
in four directions around a pixel are significant. In
either chroma component, it is again apparent that
most pixels have insignificant (i.e. below a given
threshold) gradients. More importantly, this makes it
clear that for a given pixel, there is a high probability
that only one of the four gradients are of significant
magnitude.

3) Correlating Gradients between Chroma Com-
ponents: Having established a sparsity trend for each
pixel, it is possible to apply the said observation
towards developing our metric. However, there is
one more property of natural images that is of
some interest. An intuitive notion for images is
that an edge occurring inside a given region often
accompanies a change in color. If this were to hold
true, such an edge would present itself in all three
components of an image. To verify this, we consider
the gradient magnitude at each direction. For each
discretized magnitude in the first chroma component,
we find the resulting distribution on the second
chroma component. This can be visualized using the
box plot in Figure 6.

If there exists no correlation between the gradients
in two chroma components, we would expect the
entire plot to remain close to zero (based on the
observations from the previous experiment). The box
plots obtained from the sample data, however, clearly
demonstrate rising median and quartile levels as
the chroma 1 gradient magnitude increases. Such a
trend is consistent regardless of the gradient direction
being studied. This test establishes that there is,
indeed, some form of structural correlation between
the two chroma components.

4) Summary: Given the results of the three exper-
iments conducted on natural images, we have arrived
at several key observations as summarized below:

1) Gradients of the chroma components are ap-

 (14)
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allows us to disambiguate the chroma definition and
focus on the properties of the specific variant of
chroma defined in equations (11) and (12). For these
experiments, each of the 24 images are mapped into
their respective luma and chroma components, thus
generating a set of ground truths which are then
characterized.

1) Sparsity of Gradients: One of the central fea-
tures of our proposed metric is the use of gradients of
components. To be specific, we define the gradient
in four directions of an arbitrary component f as
follows:

∇−xf ≡ f(x, y)− f(x− 1, y) (13)

∇+xf ≡ f(x, y)− f(x+ 1, y) (14)

∇−yf ≡ f(x, y)− f(x, y − 1) (15)

∇+yf ≡ f(x, y)− f(x, y + 1) (16)

Using the above definitions, we calculate the gradi-
ents in four directions for all pixels in the Kodak
database. To make these measures more meaningful,
we obtain the histograms of each gradient direction
and each component with a bin size of 1. The
resulting plots, as seen in Figure 4, make it apparent
that the majority of chroma gradients take on a
zero value. The remaining non-zero gradients are
still highly likely to be close to zero. On the other
hand, the luma component does not exhibit the same
behavior. Here, many of the gradients take non-
zero values. This test demonstrates how the chroma
components of natural images are approximately
sparse (i.e. contain few large values).

2) Sparsity of Gradients in Four Directions:
While the assertion that the gradient of chroma
components are sparse, is useful in itself, we delve
further into the properties of this sparsity. The previ-
ous experiment focused primarily on the individual
gradient components without considering how these
interact. Looking back at our definition of the four
gradients (equations (13) – (16)), we find that these
gradients are centered around a given pixel. We make
use of this by counting the number of significant
gradients around that pixel.

In this second experiment, we consider that every
pixel can have between 0 to 4 non-zero gradients as-
sociated with it. Previously, we have established that
the chroma components are approximately sparse
due to factors such as noise. As such, a simple crite-

ria such as dividing gradients between zeros and non-
zeros is not necessarily reliable. Instead of applying
a fixed threshold of 1, we model the probabilistic
occurrence around a certain threshold. For each pixel
center, the number of gradient magnitudes above or
equal to the threshold is recorded. The probabilities
of each number (from 0 to 4) are computed from all
pixels accumulated from the Kodak database. The
stacked bar graph in Figure 5 illustrates the trend at
various threshold levels.

This test demonstrates how likely the gradients
in four directions around a pixel are significant. In
either chroma component, it is again apparent that
most pixels have insignificant (i.e. below a given
threshold) gradients. More importantly, this makes it
clear that for a given pixel, there is a high probability
that only one of the four gradients are of significant
magnitude.

3) Correlating Gradients between Chroma Com-
ponents: Having established a sparsity trend for each
pixel, it is possible to apply the said observation
towards developing our metric. However, there is
one more property of natural images that is of
some interest. An intuitive notion for images is
that an edge occurring inside a given region often
accompanies a change in color. If this were to hold
true, such an edge would present itself in all three
components of an image. To verify this, we consider
the gradient magnitude at each direction. For each
discretized magnitude in the first chroma component,
we find the resulting distribution on the second
chroma component. This can be visualized using the
box plot in Figure 6.

If there exists no correlation between the gradients
in two chroma components, we would expect the
entire plot to remain close to zero (based on the
observations from the previous experiment). The box
plots obtained from the sample data, however, clearly
demonstrate rising median and quartile levels as
the chroma 1 gradient magnitude increases. Such a
trend is consistent regardless of the gradient direction
being studied. This test establishes that there is,
indeed, some form of structural correlation between
the two chroma components.

4) Summary: Given the results of the three exper-
iments conducted on natural images, we have arrived
at several key observations as summarized below:

1) Gradients of the chroma components are ap-

 (15)
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allows us to disambiguate the chroma definition and
focus on the properties of the specific variant of
chroma defined in equations (11) and (12). For these
experiments, each of the 24 images are mapped into
their respective luma and chroma components, thus
generating a set of ground truths which are then
characterized.

1) Sparsity of Gradients: One of the central fea-
tures of our proposed metric is the use of gradients of
components. To be specific, we define the gradient
in four directions of an arbitrary component f as
follows:

∇−xf ≡ f(x, y)− f(x− 1, y) (13)

∇+xf ≡ f(x, y)− f(x+ 1, y) (14)

∇−yf ≡ f(x, y)− f(x, y − 1) (15)

∇+yf ≡ f(x, y)− f(x, y + 1) (16)

Using the above definitions, we calculate the gradi-
ents in four directions for all pixels in the Kodak
database. To make these measures more meaningful,
we obtain the histograms of each gradient direction
and each component with a bin size of 1. The
resulting plots, as seen in Figure 4, make it apparent
that the majority of chroma gradients take on a
zero value. The remaining non-zero gradients are
still highly likely to be close to zero. On the other
hand, the luma component does not exhibit the same
behavior. Here, many of the gradients take non-
zero values. This test demonstrates how the chroma
components of natural images are approximately
sparse (i.e. contain few large values).

2) Sparsity of Gradients in Four Directions:
While the assertion that the gradient of chroma
components are sparse, is useful in itself, we delve
further into the properties of this sparsity. The previ-
ous experiment focused primarily on the individual
gradient components without considering how these
interact. Looking back at our definition of the four
gradients (equations (13) – (16)), we find that these
gradients are centered around a given pixel. We make
use of this by counting the number of significant
gradients around that pixel.

In this second experiment, we consider that every
pixel can have between 0 to 4 non-zero gradients as-
sociated with it. Previously, we have established that
the chroma components are approximately sparse
due to factors such as noise. As such, a simple crite-

ria such as dividing gradients between zeros and non-
zeros is not necessarily reliable. Instead of applying
a fixed threshold of 1, we model the probabilistic
occurrence around a certain threshold. For each pixel
center, the number of gradient magnitudes above or
equal to the threshold is recorded. The probabilities
of each number (from 0 to 4) are computed from all
pixels accumulated from the Kodak database. The
stacked bar graph in Figure 5 illustrates the trend at
various threshold levels.

This test demonstrates how likely the gradients
in four directions around a pixel are significant. In
either chroma component, it is again apparent that
most pixels have insignificant (i.e. below a given
threshold) gradients. More importantly, this makes it
clear that for a given pixel, there is a high probability
that only one of the four gradients are of significant
magnitude.

3) Correlating Gradients between Chroma Com-
ponents: Having established a sparsity trend for each
pixel, it is possible to apply the said observation
towards developing our metric. However, there is
one more property of natural images that is of
some interest. An intuitive notion for images is
that an edge occurring inside a given region often
accompanies a change in color. If this were to hold
true, such an edge would present itself in all three
components of an image. To verify this, we consider
the gradient magnitude at each direction. For each
discretized magnitude in the first chroma component,
we find the resulting distribution on the second
chroma component. This can be visualized using the
box plot in Figure 6.

If there exists no correlation between the gradients
in two chroma components, we would expect the
entire plot to remain close to zero (based on the
observations from the previous experiment). The box
plots obtained from the sample data, however, clearly
demonstrate rising median and quartile levels as
the chroma 1 gradient magnitude increases. Such a
trend is consistent regardless of the gradient direction
being studied. This test establishes that there is,
indeed, some form of structural correlation between
the two chroma components.

4) Summary: Given the results of the three exper-
iments conducted on natural images, we have arrived
at several key observations as summarized below:

1) Gradients of the chroma components are ap-

 (16)

Using the above definitions, we calculate the gradients in 
four directions for all pixels in the Kodak database. To make 
these measures more meaningful, we obtain the histograms 
of each gradient direction and each component with a bin 
size of 1. The resulting plots, as seen in Figure 4, make 
it apparent that the majority of chroma gradients take 
on a zero value. The remaining non-zero gradients are 
still highly likely to be close to zero. On the other hand, 
the luma component does not exhibit the same behavior. 
Here, many of the gradients take nonzero values. This 
test demonstrates how the chroma components of natural 
images are approximately sparse (i.e., contain few large 
values).

2) Sparsity of Gradients in Four Directions: While the 
assertion that the gradient of chroma components are sparse, 
is useful in itself, we delve further into the properties of this 
sparsity. The previous experiment focused primarily on the 
individual gradient components without considering how 
these interact. Looking back at our definition of the four 
gradients (equations (13)–(16)), we find that these gradients 
are centered around a given pixel. We make use of this by 
counting the number of significant gradients around that 
pixel.

In this second experiment, we consider that every pixel 
can have between 0 to 4 non-zero gradients associated 
with it. Previously, we have established that the chroma 
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components are approximately sparse due to factors such as 
noise. As such, a simple criteria such as dividing gradients 
between zeros and nonzeros is not necessarily reliable. 
Instead of applying a fixed threshold of 1, we model 
the probabilistic occurrence around a certain threshold.  
For each pixel center, the number of gradient magnitudes 
above or equal to the threshold is recorded. The  
probabilities of each number (from 0 to 4) are computed 
from all pixels accumulated from the Kodak database. The 
stacked bar graph in Figure 5 illustrates the trend at various 
threshold levels.

This test demonstrates how likely the gradients in four 
directions around a pixel are significant. In either chroma 
component, it is again apparent that most pixels have 
insignificant (i.e., below a given threshold) gradients. More 
importantly, this makes it clear that for a given pixel, there 
is a high probability that only one of the four gradients are 
of significant magnitude.

3)  Correlating Gradients between Chroma Components: 
Having established a sparsity trend for each pixel, it is 
possible to apply the said observation towards developing 
our metric. However, there is one more property of natural 
images that is of some interest. An intuitive notion for 
images is that an edge occurring inside a given region often 
accompanies a change in color. If this were to hold true, such 
an edge would present itself in all three components of an 
image. To verify this, we consider the gradient magnitude 
at each direction. For each discretized magnitude in the first 
chroma component, we find the resulting distribution on the 
second chroma component. This can be visualized using the 
box plot in Figure 6.

If there exists no correlation between the gradients in 
two chroma components, we would expect the entire plot 
to remain close to zero (based on the observations from 
the previous experiment). The box plots obtained from the 
sample data, however, clearly demonstrate rising median and 
quartile levels as the chroma 1 gradient magnitude increases. 
Such a trend is consistent regardless of the gradient direction 
being studied. This test establishes that there is, indeed, 
some form of structural correlation between the two chroma 
components.

4)  Summary: Given the results of the three experiments 
conducted on natural images, we have arrived at several key 
observations as summarized below:

1) Gradients of the chroma components are approximately 
sparse;

2) For a given pixel, there is a high probability that, 
at most, one of the four gradient directions are 
significant;

3) When a gradient in one of the four directions is 
significant in one chroma component, there is a non-
negligible chance that it is also significant in the other.

B. The Proposed Metric

1)  Reconstruct ion Quali ty  of  Luma-Chroma 
Components: For a predictive metric to be useful, it should 
not be dependent on any knowledge of the target image. This 
premise runs contradictory to the properties discussed in the 
previous section as these are dependent on the complete luma 
and chroma components. Furthermore, the use of the Bayer 
array prevents the calculation of any single gradient quantity 
from the mosaiced image. In order to tackle this limitation, 
in this work, we reconstruct one of the components and use 
it as a priori information for measuring the quality of the 
reconstruction. 

As there are several components for a given image, 
a natural question that arises is: which one is suitable 
for use a priori? To answer this we characterize the 
reconstruction quality of each of the three components 
over different demosaicing methods. In particular, 
we use bilinear interpolation, bicubic interpolation, 
adaptive homogeneity directed (AHD) demosaicing [19],  
alternating projections (AP) [16], [20], Contour Stencils 
(CS) [21], [22], Directional Linear Minimum Mean 
Square-Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-Cutler 
(MHC) demosaicing [25], [26], Minimized-Laplacian 
Residual Interpolation (MLRI) [17], and Successive 
Approximation (SA) [27]. Running each of these 
demosaicing algorithms across all the Kodak images, we 
arrive at various PSNR measures for the luma and chroma 
components. The medians of these measures can be seen 
in Figure 7.

An apparent observation from this test is that the 
chroma channels are better preserved in the reconstruction. 
Furthermore, the first chroma channel is typically 
reconstructed with higher fidelity. This is consistent with the 
assertion in [12] that this particular component suffers from 
minimal crosstalk by being modulated at a high frequency 
for both the horizontal and vertical axis. This choice of 
component is also convenient as the first chroma component 
can easily be approximated using the least-squares filters 
developed in [12] which can be applied through simple 
convolution. 

2) Sparsity of Chroma Gradients: Having chosen a 
component to use a priori, we proceed to developing our 
proposed metric, the Sparsity of Chroma Gradients in Four 
Directions (SCG4). In the previous section, we assert that 
there exists a correlation between the occurrence of gradients 
of the two chroma components. This would intuitively lead to 
the notion that we can model the probability of significance 
of one component with respect to the significance of the 
other. However, doing so will enforce a strict measure along 
each gradient direction. We relax this criteria by, instead, 
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Fig. 6. Probability distribution of the gradients of the second chroma component at different magnitudes of the first  
chroma component. This box plot demonstrates that, regardless of the gradient direction, there exists a notable correlation 
between the gradients of the two chroma components for the medians (red line) and quartiles (blue box). It should also 
be noted that when the first chroma component has a magnitude of 1, the corresponding second chroma component has a  
very high probability of being zero resulting in a box plot with no visible quartiles and limits.
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Fig. 5. Probability distribution of gradient magnitudes for each chroma channel above or equal to a given threshold. 
Since there are four gradient directions, each pixel in a given chroma component can have 0 (shown in blue) to  
4 (shown in yellow) significant gradients occuring at different probabilities.
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measuring the number of significant gradients in each 
component defined as:
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Fig. 7. Median PSNR of the luma and chroma components for
the Kodak color image database.

3) When a gradient in one of the four directions is
significant in one chroma component, there is a
non-negligible chance that it is also significant
in the other.

B. The Proposed Metric

1) Reconstruction Quality of Luma-Chroma Com-
ponents: For a predictive metric to be useful, it
should not be dependent on any knowledge of the
target image. This premise runs contradictory to the
properties discussed in the previous section as these
are dependent on the complete luma and chroma
components. Furthermore, the use of the Bayer array
prevents the calculation of any single gradient quan-
tity from the mosaiced image. In order to tackle this
limitation, in this work, we reconstruct one of the
components and use it as a priori information for
measuring the quality of the reconstruction.

As there are several components for a given im-
age, a natural question that arises is: which one
is suitable for use a priori? To answer this we
characterize the reconstruction quality of each of
the three components over different demosaicing
methods. In particular, we use bilinear interpola-
tion, bicubic interpolation, adaptive homogeneity-
directed (AHD) demosaicing [19], alternating pro-
jections (AP) [16], [20], Contour Stencils (CS) [21],

[22], Directional Linear Minimum Mean Square-
Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-
Cutler (MHC) demosaicing [25], [26], Minimized-
Laplacian Residual Interpolation (MLRI) [17], and
Successive Approximation (SA) [27]. Running each
of these demosaicing algorithms across all the Kodak
images, we arrive at various PSNR measures for the
luma and chroma components. The medians of these
measures can be seen in Figure 7.

An apparent observation from this test is that
the chroma channels are better preserved in the
reconstruction. Furthermore, the first chroma channel
is typically reconstructed with higher fidelity. This
is consistent with the assertion in [12] that this
particular component suffers from minimal crosstalk
by being modulated at a high frequency for both
the horizontal and vertical axis. This choice of
component is also convenient as the first chroma
component can easily be approximated using the
least-squares filters developed in [12] which can be
applied through simple convolution.

2) Sparsity of Chroma Gradients: Having chosen
a component to use a priori, we proceed to devel-
oping our proposed metric, the Sparsity of Chroma
Gradients in Four Directions (SCG4). In the previous
section, we assert that there exists a correlation be-
tween the occurrence of gradients of the two chroma
components. This would intuitively lead to the notion
that we can model the probability of significance of
one component with respect to the significance of
the other. However, doing so will enforce a strict
measure along each gradient direction. We relax
this criteria by, instead, measuring the number of
significant gradients in each component defined as:

Nt(x, y) = Tt (|∇−xf |) + Tt (|∇+xf |) +

Tt (|∇−yf |) + Tt (|∇+yf |)
(17)

where the thresholding function Tt(x) is defined as:

Tt(x) =
{

0, x < t
1, x ≥ t

(18)

for an arbitrary threshold t. Using this measure, we
can probabilistically model the relationship between
two components. Since we use the first chroma
as a priori information, we reconstruct it directly
from the CFA by filtering and count the number
of significant gradients for each pixel. We can then

 (17)

where the thresholding function 
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significant in one chroma component, there is a
non-negligible chance that it is also significant
in the other.

B. The Proposed Metric

1) Reconstruction Quality of Luma-Chroma Com-
ponents: For a predictive metric to be useful, it
should not be dependent on any knowledge of the
target image. This premise runs contradictory to the
properties discussed in the previous section as these
are dependent on the complete luma and chroma
components. Furthermore, the use of the Bayer array
prevents the calculation of any single gradient quan-
tity from the mosaiced image. In order to tackle this
limitation, in this work, we reconstruct one of the
components and use it as a priori information for
measuring the quality of the reconstruction.

As there are several components for a given im-
age, a natural question that arises is: which one
is suitable for use a priori? To answer this we
characterize the reconstruction quality of each of
the three components over different demosaicing
methods. In particular, we use bilinear interpola-
tion, bicubic interpolation, adaptive homogeneity-
directed (AHD) demosaicing [19], alternating pro-
jections (AP) [16], [20], Contour Stencils (CS) [21],

[22], Directional Linear Minimum Mean Square-
Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-
Cutler (MHC) demosaicing [25], [26], Minimized-
Laplacian Residual Interpolation (MLRI) [17], and
Successive Approximation (SA) [27]. Running each
of these demosaicing algorithms across all the Kodak
images, we arrive at various PSNR measures for the
luma and chroma components. The medians of these
measures can be seen in Figure 7.

An apparent observation from this test is that
the chroma channels are better preserved in the
reconstruction. Furthermore, the first chroma channel
is typically reconstructed with higher fidelity. This
is consistent with the assertion in [12] that this
particular component suffers from minimal crosstalk
by being modulated at a high frequency for both
the horizontal and vertical axis. This choice of
component is also convenient as the first chroma
component can easily be approximated using the
least-squares filters developed in [12] which can be
applied through simple convolution.

2) Sparsity of Chroma Gradients: Having chosen
a component to use a priori, we proceed to devel-
oping our proposed metric, the Sparsity of Chroma
Gradients in Four Directions (SCG4). In the previous
section, we assert that there exists a correlation be-
tween the occurrence of gradients of the two chroma
components. This would intuitively lead to the notion
that we can model the probability of significance of
one component with respect to the significance of
the other. However, doing so will enforce a strict
measure along each gradient direction. We relax
this criteria by, instead, measuring the number of
significant gradients in each component defined as:

Nt(x, y) = Tt (|∇−xf |) + Tt (|∇+xf |) +

Tt (|∇−yf |) + Tt (|∇+yf |)
(17)

where the thresholding function Tt(x) is defined as:

Tt(x) =
{

0, x < t
1, x ≥ t

(18)

for an arbitrary threshold t. Using this measure, we
can probabilistically model the relationship between
two components. Since we use the first chroma
as a priori information, we reconstruct it directly
from the CFA by filtering and count the number
of significant gradients for each pixel. We can then

 is defined as:
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3) When a gradient in one of the four directions is
significant in one chroma component, there is a
non-negligible chance that it is also significant
in the other.

B. The Proposed Metric

1) Reconstruction Quality of Luma-Chroma Com-
ponents: For a predictive metric to be useful, it
should not be dependent on any knowledge of the
target image. This premise runs contradictory to the
properties discussed in the previous section as these
are dependent on the complete luma and chroma
components. Furthermore, the use of the Bayer array
prevents the calculation of any single gradient quan-
tity from the mosaiced image. In order to tackle this
limitation, in this work, we reconstruct one of the
components and use it as a priori information for
measuring the quality of the reconstruction.

As there are several components for a given im-
age, a natural question that arises is: which one
is suitable for use a priori? To answer this we
characterize the reconstruction quality of each of
the three components over different demosaicing
methods. In particular, we use bilinear interpola-
tion, bicubic interpolation, adaptive homogeneity-
directed (AHD) demosaicing [19], alternating pro-
jections (AP) [16], [20], Contour Stencils (CS) [21],

[22], Directional Linear Minimum Mean Square-
Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-
Cutler (MHC) demosaicing [25], [26], Minimized-
Laplacian Residual Interpolation (MLRI) [17], and
Successive Approximation (SA) [27]. Running each
of these demosaicing algorithms across all the Kodak
images, we arrive at various PSNR measures for the
luma and chroma components. The medians of these
measures can be seen in Figure 7.

An apparent observation from this test is that
the chroma channels are better preserved in the
reconstruction. Furthermore, the first chroma channel
is typically reconstructed with higher fidelity. This
is consistent with the assertion in [12] that this
particular component suffers from minimal crosstalk
by being modulated at a high frequency for both
the horizontal and vertical axis. This choice of
component is also convenient as the first chroma
component can easily be approximated using the
least-squares filters developed in [12] which can be
applied through simple convolution.

2) Sparsity of Chroma Gradients: Having chosen
a component to use a priori, we proceed to devel-
oping our proposed metric, the Sparsity of Chroma
Gradients in Four Directions (SCG4). In the previous
section, we assert that there exists a correlation be-
tween the occurrence of gradients of the two chroma
components. This would intuitively lead to the notion
that we can model the probability of significance of
one component with respect to the significance of
the other. However, doing so will enforce a strict
measure along each gradient direction. We relax
this criteria by, instead, measuring the number of
significant gradients in each component defined as:

Nt(x, y) = Tt (|∇−xf |) + Tt (|∇+xf |) +

Tt (|∇−yf |) + Tt (|∇+yf |)
(17)

where the thresholding function Tt(x) is defined as:

Tt(x) =
{

0, x < t
1, x ≥ t

(18)

for an arbitrary threshold t. Using this measure, we
can probabilistically model the relationship between
two components. Since we use the first chroma
as a priori information, we reconstruct it directly
from the CFA by filtering and count the number
of significant gradients for each pixel. We can then

 (18)

for an arbitrary threshold 
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3) When a gradient in one of the four directions is
significant in one chroma component, there is a
non-negligible chance that it is also significant
in the other.

B. The Proposed Metric

1) Reconstruction Quality of Luma-Chroma Com-
ponents: For a predictive metric to be useful, it
should not be dependent on any knowledge of the
target image. This premise runs contradictory to the
properties discussed in the previous section as these
are dependent on the complete luma and chroma
components. Furthermore, the use of the Bayer array
prevents the calculation of any single gradient quan-
tity from the mosaiced image. In order to tackle this
limitation, in this work, we reconstruct one of the
components and use it as a priori information for
measuring the quality of the reconstruction.

As there are several components for a given im-
age, a natural question that arises is: which one
is suitable for use a priori? To answer this we
characterize the reconstruction quality of each of
the three components over different demosaicing
methods. In particular, we use bilinear interpola-
tion, bicubic interpolation, adaptive homogeneity-
directed (AHD) demosaicing [19], alternating pro-
jections (AP) [16], [20], Contour Stencils (CS) [21],

[22], Directional Linear Minimum Mean Square-
Error (DLMMSE) [23], [24], Least-squares Luma-
Chroma Demosaicing (LSLCD) [12], Malvar-He-
Cutler (MHC) demosaicing [25], [26], Minimized-
Laplacian Residual Interpolation (MLRI) [17], and
Successive Approximation (SA) [27]. Running each
of these demosaicing algorithms across all the Kodak
images, we arrive at various PSNR measures for the
luma and chroma components. The medians of these
measures can be seen in Figure 7.

An apparent observation from this test is that
the chroma channels are better preserved in the
reconstruction. Furthermore, the first chroma channel
is typically reconstructed with higher fidelity. This
is consistent with the assertion in [12] that this
particular component suffers from minimal crosstalk
by being modulated at a high frequency for both
the horizontal and vertical axis. This choice of
component is also convenient as the first chroma
component can easily be approximated using the
least-squares filters developed in [12] which can be
applied through simple convolution.

2) Sparsity of Chroma Gradients: Having chosen
a component to use a priori, we proceed to devel-
oping our proposed metric, the Sparsity of Chroma
Gradients in Four Directions (SCG4). In the previous
section, we assert that there exists a correlation be-
tween the occurrence of gradients of the two chroma
components. This would intuitively lead to the notion
that we can model the probability of significance of
one component with respect to the significance of
the other. However, doing so will enforce a strict
measure along each gradient direction. We relax
this criteria by, instead, measuring the number of
significant gradients in each component defined as:

Nt(x, y) = Tt (|∇−xf |) + Tt (|∇+xf |) +

Tt (|∇−yf |) + Tt (|∇+yf |)
(17)

where the thresholding function Tt(x) is defined as:

Tt(x) =
{

0, x < t
1, x ≥ t

(18)

for an arbitrary threshold t. Using this measure, we
can probabilistically model the relationship between
two components. Since we use the first chroma
as a priori information, we reconstruct it directly
from the CFA by filtering and count the number
of significant gradients for each pixel. We can then

. Using this measure, we can 
probabilistically model the relationship between two 
components. Since we use the first chroma as a priori 
information, we reconstruct it directly from the CFA by 
filtering and count the number of significant gradients for 
each pixel. We can then obtain the conditional probability 
of a certain number of significant gradients in the second 
chroma component exceeding that of the first:
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Fig. 8. A cropped region of the Lighthouse image sorted in descending order according to the SCG4 metric. Listed from left to
right are the demosaiced images obtained using LSLCD [12], DLMMSE [23], [24], AP [16], [20], RI [17], AHD [19], SA-Universal
and SA-Adaptive [27], CS [21], [22], MHC [25], [26], Bicubic interpolation, and Bilinear interpolation respectively.

obtain the conditional probability of a certain number
of significant gradients in the second chroma com-
ponent exceeding that of the first:

pC2(n) ≡ p (NC2(x, y) ≥ n | NC1(x, y) = n) (19)

Such a probability is of interest in this work due to
the correlation between the chroma components. If
the second chroma component has more significant
gradients than the first, we hypothesize that these
gradients are more likely to be caused by color
artifacts rather than actual image structures. We
enforce this idea using empirical testing in the next
section.

From a training perspective, these probabilities
can readily be obtained from observations made be-
tween the filter-reconstructed C1 component, and the
ground truth C2 component. Once the probabilities
are obtained from the training set, they can simply
be stored as a lookup-table for use in our metric. The
metric itself is based on observations using a filter-
reconstructed C1 and the C2 component derived
from the demosaiced image. This can be described
using the following steps:

1) Given the CFA, use the filter from [12] to
estimate the C1 component;

2) Given the demosaiced image, compute the C2
component using equation (12);

3) Calculate the four gradients at each pixel in
the C1 and C2 components;

4) Determine the number of significant gradients
around each pixel in each component;

5) Find the probability for each observed C2
count given the observed C1 count using equa-
tion (19);

6) The SCG4 metric is defined as the mean
probability across all pixels in the image.

By using mean probabilities, we ensure that the
final metric stays within the range of 0 to 1. A higher
mean probability indicates a stronger correlation

between the two chroma components and thus a
better estimated quality. Conversely, a metric closer
to zero indicates a C2 component that is inconsistent
with the observations from the C1 component. In
the succeeding section, we describe several tests that
were used to verify the proposed metric.

V. EXPERIMENTS

A. Subjective Quality

The first experiment conducted to verify the use-
fulness of the proposed metric is to evaluate it on a
particularly problematic region within the Lighthouse
image from the Kodak database. To accomplish this,
the probabilities were first obtained using the images
statistics of all the images that are part of the Ko-
dak database except for the Lighthouse image. This
avoids self-training and is intended to strengthen the
validity of the experiment.

Given the image statistics learned during the train-
ing process, we calculate the metric for the different
demosaicing methods discussed in the previous sec-
tion. In particular, the metric is only applied to a
localized region within the Lighthouse image where
a portion of the fence contains high-frequency infor-
mation that is known to result in severe color moiré.
These sub-images, sorted by the SCG4 metric, can
be seen in Figure 8. While there are some deviations
in the perceptual order, this figure shows that there
is a subjective correlation between the visual quality
and the proposed SCG4 metric.

B. Objective Quality with Cross-validation

Expanding on the methodology from the previous
test, we obtained objective results from the Kodak
color image database. Following a cross-validation
procedure, each of the 24 images in the database
are evaluated using statistics obtained from the other
23 images (excluding the image under test). Each of
the demosaiced images are then objectively evaluated

 (19)

Such a probability is of interest in this work due to the 
correlation between the chroma components. If the second 
chroma component has more significant gradients than the 
first, we hypothesize that these gradients are more likely to be 
caused by color artifacts rather than actual image structures. 
We enforce this idea using empirical testing in the next section.

From a training perspective, these probabilities can 
readily be obtained from observations made between the 
filter-reconstructed C1 component, and the ground truth C2 
component. Once the probabilities are obtained from the 
training set, they can simply be stored as a lookup-table for 
use in our metric. The metric itself is based on observations 
using a filter reconstructed C1 and the C2 component derived 
from the demosaiced image. This can be described using 
the following steps:

1) Given the CFA, use the filter from [12] to estimate 
the C1 component;

2) Given the demosaiced image, compute the C2 
component using equation (12);

3) Calculate the four gradients at each pixel in the C1 
and C2 components;

4) Determine the number of significant gradients around 
each pixel in each component;

5) Find the probability for each observed C2 count given 
the observed C1 count using equation (19);

6) The SCG4 metric is defined as the mean probability 
across all pixels in the image.

By using mean probabilities, we ensure that the final 
metric stays within the range of 0 to 1. A higher mean 
probability indicates a stronger correlation between the 
two chroma components and thus a better estimated 
quality. Conversely, a metric closer to zero indicates a C2 
component that is inconsistent with the observations from 
the C1 component. In the succeeding section, we describe 
several tests that were used to verify the proposed metric.

v.  eXperIments

A. Subjective Quality

The first experiment conducted to verify the usefulness 
of the proposed metric is to evaluate it on a particularly 

Fig. 8. A cropped region of the Lighthouse image sorted in descending order according to the SCG4 metric. Listed from left to right  
are the demosaiced images obtained using LSLCD [12], DLMMSE [23], [24], AP [16], [20], RI [17], AHD [19], SA-Universal  
and SA-Adaptive [27], CS [21], [22], MHC [25], [26], Bicubic interpolation, and Bilinear interpolation, respectively. 

Fig. 7. Median PSNR of the luma and  chroma components  
for the Kodak color image database.
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problematic region within the Lighthouse image from the 
Kodak database. To accomplish this, the probabilities were 
first obtained using the images statistics of all the images 
that are part of the Kodak database except for the Lighthouse 
image. This avoids self-training and is intended to strengthen 
the validity of the experiment.

Given the image statistics learned during the training 
process, we calculate the metric for the different demosaicing 
methods discussed in the previous section. In particular, 
the metric is only applied to a localized region within the 
Lighthouse image where a portion of the fence contains 
high-frequency information that is known to result in severe 
color moiŕe. These sub-images, sorted by the SCG4 metric, 
can be seen in Figure 8. While there are some deviations 

in the perceptual order, this figure shows that there is a 
subjective correlation between the visual quality and the 
proposed SCG4 metric.

B. Objective Quality with Cross-validation

Expanding on the methodology from the previous 
test, we obtained objective results from the Kodak color 
image database. Following a cross-validation procedure, 
each of the 24 images in the database are evaluated using 
statistics obtained from the other 23 images (excluding the 
image under test). Each of the demosaiced images are then 
objectively evaluated with respect to their original images 
using the peak signal-to-noise ratio (PSNR), a metric 

taBLe I
correLatIon coeFFIcIents oF the 24 KodaK Images at varIous threshoLds

Kodak Image 
Number

Significance Threshold (t)

1 2 3 4 5 6 7 8 9 10

1 0.468 0.940 0.961 0.971 0.970 0.959 0.945 0.930 0.920 0.920
2 -0.817 0.866 0.888 0.890 0.885 0.879 0.848 0.768 0.735 0.735
3 -0.902 0.915 0.925 0.928 0.923 0.920 0.920 0.920 0.918 0.918
4 -0.829 0.918 0.946 0.962 0.969 0.971 0.974 0.977 0.977 0.977
5 -0.705 0.931 0.953 0.969 0.977 0.981 0.981 0.979 0.975 0.975
6 -0.755 0.948 0.970 0.975 0.972 0.964 0.954 0.945 0.935 0.935
7 -0.920 0.918 0.946 0.953 0.958 0.960 0.955 0.950 0.945 0.945
8 0.002 0.943 0.957 0.966 0.972 0.972 0.967 0.960 0.952 0.952
9 -0.900 0.952 0.965 0.967 0.964 0.960 0.957 0.950 0.940 0.940
10 -0.883 0.961 0.974 0.976 0.976 0.975 0.975 0.975 0.974 0.974
11 -0.866 0.956 0.973 0.977 0.978 0.976 0.973 0.968 0.961 0.961
12 -0.923 0.969 0.970 0.972 0.970 0.961 0.955 0.945 0.931 0.931
13 0.930 0.923 0.947 0.959 0.964 0.966 0.966 0.965 0.963 0.963
14 -0.755 0.889 0.918 0.922 0.918 0.911 0.903 0.897 0.895 0.895
15 -0.890 0.936 0.951 0.957 0.961 0.963 0.964 0.963 0.961 0.961
16 -0.835 0.940 0.943 0.933 0.919 0.908 0.899 0.895 0.884 0.884
17 -0.916 0.969 0.979 0.982 0.980 0.976 0.971 0.968 0.968 0.968
18 -0.782 0.931 0.952 0.964 0.969 0.971 0.972 0.972 0.971 0.971
19 -0.915 0.951 0.973 0.980 0.979 0.975 0.966 0.952 0.940 0.940
20 -0.729 0.870 0.919 0.930 0.937 0.940 0.941 0.940 0.939 0.939
21 -0.903 0.940 0.963 0.975 0.978 0.976 0.970 0.962 0.953 0.953
22 -0.743 0.894 0.922 0.935 0.941 0.942 0.939 0.936 0.932 0.932
23 -0.885 0.923 0.934 0.938 0.945 0.951 0.956 0.958 0.954 0.954
24 -0.882 0.932 0.956 0.963 0.964 0.963 0.963 0.963 0.965 0.965

Median -0.851 0.934 0.952 0.963 0.966 0.963 0.960 0.955 0.949 0.944

Note: Entries in boldface are below the one-tailed critical value of 0.685
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commonly used for objective image quality. Alongside the 
PSNR, the SCG4 metric is also calculated for each of the 
demosaiced images. 

Given these two metrics, the goal is to establish a 
significant correlation between them. To accomplish this, 
the Pearson correlation coefficient is used to analyze the 
degree of correlation between the two variables (PSNR 
and SCG4 metric). The resulting correlation coefficients 
are shown in Table 1. As there are 11 methods used to 
evaluate the correlation, there are 9 degrees of freedom 
(DoF) corresponding to a critical value of 0.685 for a 
p-value of 0.01. Apart from the correlation values when 
the significance threshold is set to 1, the metric is shown 
to be statistically correlated to the PSNR value. Beyond 
simply establishing the correlation, we also show that a 
threshold value of 5 results in the best median correlation 
for the Kodak database.

vI.  concLusIon
In this work, we developed the Sparsity of Chroma 

Gradient in Four Directions (SCG4) metric that can be 
used to predict the quality of a demosaiced image obtained 
through a Bayer color filter array. We demonstrated certain 
properties of natural images particularly in relation to the 
chroma components and utilized these properties as a prior 
for our proposed metric. Experimental results show a strong 
correlation between SCG4 and both the subjective and 
objective quality of the resulting demosaiced image. 

An interesting aspect of our proposed metric is its highly 
localized nature. Each probability estimate utilizes only 
10 pixels—the central pixels for C1 and C2, and the four 
neighboring pixels for each of these components. This not 
only allows for efficient calculation but also increases the 
flexibility of the metric. While the smallest feasible area at 
which the metric can operate has yet to be investigated, it 
has been shown to operate with relatively small areas such 
as the cropped region from the Lighthouse image. 

The development of such a metric, in itself, is useful 
in further studies of demosaicing because it can enable 
adaptivity in many aspects. For instance, one may 
develop a compound demosaicing technique that switches 
between various demosaicing algorithms depending on 
the performance on a local region in an image. More 
importantly, it can be used as an optimization criteria for a 
single demosaicing technique. Further work is being done 
into developing such an adaptive algorithm.
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