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The COVID-19 pandemic has been causing unprecedented economic downturn worldwide. As it wreaks havoc on every 
aspect of global economic activities, stakeholders are wondering how its impact can be quantified to craft viable responses. 
In the exotic field of cryptocurrencies, prior to the pandemic, everyone was excited about Bitcoin and its multitude of 
potentials. However, a day after COVID-19 was officially announced by the World Health Organization as a pandemic, the 
rate of return to Bitcoin dropped by an unheard-of one-day decline of -46.5%, and people started to rethink the prospects of 
Bitcoin. A day after this steep decline, Bitcoin recovered and started a sustained bull run which lasted for almost a year and 
even posted an all-time high daily uptick of 59.6%. By the end of July 2021, the price reached its all-time high but lost more 
than half of it at the end of the sample period. This study aims to empirically analyze the risk-return profile and the market 
efficiency of Bitcoin utilizing a 1,306-day data set conveniently subdivided into pre-pandemic and pandemic periods. The 
general conclusion of the study is: During the pandemic, Bitcoin is extremely volatile and does not subscribe to the efficient 
market hypothesis. 
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The consecutive outbreaks of devastating financial 
disasters and the crushing economic harm triggered 
by the COVID-19 pandemic have prompted investors 
to explore exotic, non-traditional, profitable, but safe 
investment opportunities. The introduction of Bitcoin 
at the height of the 2009 financial crisis presented a 
much-needed alternative that harnessed the seemingly 
endless potentials of the high-technology era. It ushered 
in the age of the so-called “cryptocurrencies.” Being 
the pioneer, Bitcoin is the “King” of virtual currencies 

and has become a standard means of payment over 
the internet. Investors are attracted to Bitcoin as an 
investment vehicle due to its perceived desirable 
features: simplicity, transparency, exceptionally high 
average return, extreme volatility, accessibility even 
during weekends, and low correlation with traditional 
assets—features that offer significant diversification 
benefits (Briere et al., 2015)

This paper aims to empirically validate investors’ 
perception of the desirability of Bitcoin as an investment 
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alternative even during the devastation wrought by the 
COVID-19 pandemic. Employing the state-of-the-art 
variants of the generalized autoregressive conditional 
heteroscedasticity (GARCH) model and stylized facts 
statistical analyses and testing, the study attempts to 
provide stakeholders with empirically sound bases 
in examining Bitcoin as an attractive investment 
alternative by virtue of its extreme volatility. The 
analysis is also done to ascertain whether the Bitcoin 
market is informationally efficient, in other words, 
whether it subscribes to the principles of the efficient 
market hypothesis (EMH) before and during the 
pandemic.

Theoretical and Operational Framework

One important characteristic of financial assets 
that a lot of market players are attracted to is the 
immutable trade-off between the return from the asset 
and the associated risk in holding it. Mainstream 
financial and economic theories predict a positive 
but nonlinear relationship. In formulating sound 
investment strategies for Bitcoin, this trade-off must 
be taken into consideration. The following techniques 
are employed in the study to analyze the risk-return 
dynamics of Bitcoin:

Stylized Facts Analysis
Daily closing prices (P) and rate of returns (rr) 

of Bitcoin within the sample horizon are subjected 
to a battery of graphical and descriptive analyses of 
their first four moments (central tendency, variability, 
symmetry, and tail density). In quantifying the returns 
series, the following formula is used in this study:

		  rrt = 100*1n (Pt/Pt-1)		  (1)

To confirm the susceptibility of the return series to 
econometric modeling and to verify one requirement 
of market efficiency, a battery of unit root tests is 
implemented. These tests determine the order of 
integration of price series, and if its natural logarithm is 
shown to be I(1), the first difference (identical to rr per 
formula (1)), is deemed to be I(0). The following unit 
root tests are used: augmented Dickey-Fuller (ADF), 
Philips-Perron (PP), and the ERS (Elliot, Rothenberg, 
and Stock) point optimal tests. 

The ARCH/GARCH Models
The autoregressive conditional heteroscedasticity 

(ARCH) effect (Engle, 1982) is an almost unique 
phenomenon associated with modeling returns to 
financial assets. In classical regression analysis, the 
presence of ARCH is a complete anathema to all 
the classical model stands for. Hence, instead of just 
modeling the mean return equation (or the population 
regression function (PRF) of the return series), the 
conditional variance equation is likewise specified 
owing to the expected presence of the time-varying 
second moment. The basic ARCH(q) model is specified 
as follows:
Mean equation:
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Contrary to the standard ARMA model, the above structure allows the noise to be a function of 

its past values and the past values of the square of stochastic disturbance. Hence, the variance of 

the noise element is not homoscedastic but time-varying, and needs to be modeled as well as 

Equation (4). 
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Contrary to the standard ARMA model, the above 
structure allows the noise to be a function of its past 
values and the past values of the square of stochastic 
disturbance. Hence, the variance of the noise element 
is not homoscedastic but time-varying and needs to be 
modeled as well as Equation (4).

The GARCH Variants
To check for the presence of certain special 

volatility effects (e.g., leverage effect, asymmetric 
effects, etc.), two different families of GARCH 
models are introduced in the literature: the APARCH 
(asymmetric power ARCH) and the EGARCH 
(exponential GARCH) models. The former is specified 
in a straightforward manner, with the left-hand side of 
the equation as either the conditional variance or the 
conditional standard deviation, but the LHS of the latter 
is expressed as natural logarithms of the conditional 
variance (Francq & Zakoian, 2010).
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The APARCH Family (Ding et al., 1993)
The APARCH family of the GARCH model can 

accommodate various asymmetric effects and power 
transformations of the conditional variance. The 
general specification of the conditional volatility 
equation of the APARCH family is as follows 
(Lucchetti & Balietti, 2022):
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Thus, in analyzing an empirical model for Bitcoin daily return, three specifications should be 
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1. The mean equation (first-order autoregressive) 
2. The conditional variance equation (the GARCH variants), and 
3. The error distribution (chosen empirically from the distributions in Table 1) 

Table 1. Alternative Conditional Distributions of the Normalized Error
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The Autoregressive Mean Equation
Because what is being modeled in this study is the 

return series, which is basically mean reverting, the 
population regression function is assumed to follow a 
“first-order auto-regressive scheme.” Hence, the mean 
equation is modelled as an AR(1) equation, in contrast 
to many studies (e.g., Alberg et al., 2008; Zivot, 2008; 
Bolllerslev et al., 1992) where the mean equation is a 
constant. For all the variants of the GARCH model 
considered in this study, the first-order autoregressive 
mean equation is used.

The Conditional Error Distribution 
All the GARCH variants are invariably estimated 

using the maximum likelihood (or pseudo maximum 
likelihood) procedure, bringing to the fore the need to 
choose the most appropriate distribution of normalized 
error tε , see equation (7). In this study, five alternative 
error distributions are considered depending on the 
shape of the empirical distribution of the standardized 
residuals. These distributions are presented in Table 1 
(taken from Lucchetti & Balietti, 2022).

Thus, in analyzing an empirical model for Bitcoin 
daily return, three specifications should be formulated: 

1.	 The mean equation (first-order autoregressive)
2.	 The conditional variance equation (the GARCH 

variants), and

3.	 The error distribution (chosen empirically from 
the distributions in Table 1)

Data
Daily historical data on the closing price of Bitcoin 

in US$ per coin over the uninterrupted period of July 
26, 2018, to February 20, 2022, involving 1,306 daily 
observations, constitutes the database of the study. This 
data set is conveniently subdivided into sub-periods 
labeled pre-pandemic and pandemic eras. The day 
March 12, 2020, when the World Health Organization 
(WHO) officially declared the onset of the pandemic, 
serves as the breakpoint.  Source of data is www.
CoinMarketCap.com 

To Assess Whether Bitcoin (BTC) is Informationally 
Efficient or Not

The empirical strategy employed in the study to 
demonstrate BTC’s informational efficiency is to show 
that it exhibits the martingale difference sequence 
(MDS) properties during the periods under review (pre-
pandemic and pandemic). This can be accomplished 
by showing that Bitcoin has: (a) a unit root component 
and there is (b) the presence of uncorrelated increments 
of returns for each period.

MDS is a special form of the random walk under the 
stylized fact of volatility clustering of returns observed 
in most financial markets (Escanciano & Lobato, 

Data 

 Daily historical data on the closing price of Bitcoin in US$ per coin over the 

uninterrupted period of July 26, 2018, to February 20, 2022, involving 1,306 daily observations, 

constitutes the data base of the study. This data set is conveniently subdivided into sub-periods 

labeled pre-pandemic and pandemic eras. The day March 12, 2020, when the World Health 

Organization (WHO) officially declared the onset of the pandemic, serves as the breakpoint.  

Source of data is www.CoinMarketCap.com  

Figure 1   
Bitcoin Daily Closing Price and Continuously Compounded Rate of Return July 26, 2018 to 

February 20, 2022 

 
 
 
To Assess Whether Bitcoin (BTC) is Informationally Efficient or Not 

Figure 1.  Bitcoin Daily Closing Price and Continuously Compounded Rate of Return July 26, 2018 to 
February 20, 2022
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2009), and random walk is a hallmark of the so-called 
efficient market hypothesis (EMH; (Samuelson, 1965; 
Fama, 1970). Thus, market prices meeting the above two 
MDS requirements are deemed to be informationally 
efficient of the weak kind where supposedly, all available 
information is already factored into the market prices, 
and no one can take advantage of publicly available 
information to amass abnormal profit.

Variance Ratio Tests to Test for Uncorrelated Returns 
Lo and MacKinlay (1988) provided the seminal 

basis for the variance ratio (VR) test, which has been 
used extensively in testing the market efficiency of 
the weak form. This empirical procedure explores the 
validity of the random walk hypothesis (RWH) by 
testing the property that the variance of random walk 
increments is linear in all sampling intervals (that is, 
the variance of q-period return is q times the variance 
of one-period return; Charles & Darne, 2009; Smith & 
Hyun-Jung Ryoo, 2003. Hence, the VR at lag q, which 
is defined as the ratio between (1/q) of the q-period 
return to the variance of the one-period return, should 
equal to 1 for all q.

If rrt is assumed to be a realization of a stochastic 
process Rt that follows an MDS, which is known to 
be uncorrelated and may or may not be conditionally 
heteroscedastic, Lo and MacKinlay (1988) formulated 
two test statistics to undertake the VR test for the RWH. 
The first statistic works under the strong assumption of 
i.i.d. (identically and independently distributed) return 
with constant variance, whereas the other statistic 
downgraded the i.i.d. assumption to permit general 
types of time-varying volatility, which are often seen 
in financial time series (aka ARCH effect or volatility 
clustering). The associated null hypothesis under the 
heteroscedastic assumption is presented below. 

From the variance ratio (VR) statistic (where rt is 
rrt in our study) 
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As the variance ratio restriction holds for every q difference (or logarithmic difference) of 

the underlying series, for the holding period q  1, it is customary to evaluate this test statistics at 

several selected values of q (in this study q = 2, 4, 8, and 16). Chow and Denning (1993) 

proposed a test statistic used to examine the absolute values of a statistic set of multiple variance 

ratio statistics (for the different set values of q). The main purpose of this is to control the size 

(type I or the incorrect rejection of null hypothesis error probability) of a joint variance ratio test 
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for the SMM distribution is bounded above, with 
T approaching infinity. To apply the individual and 
joint MDS tests, the wild bootstrapping procedure 
(Mammen, 1993) is used as an alternative to the normal 
approximation because of its superior small sample 
properties (see Charles et al., 2009).

Results and Discussion

Applying the empirical strategy outlined in the 
Methodology section, I began with the descriptive 
stylized facts analysis of both the closing price and 
rate of return to Bitcoin over the periods in review. 
I then proceeded with the analytical tests and other 
inference procedures as applied to the database. 
Looking at Figure 1, daily returns for the whole sample 
horizon somewhat cluster around a constant value 
and, to some extent, exhibit autoregressive behavior. 
Taking a hint at this observed stationary behavior, the 
mean equation of the return series may be specified 
as a first-order autoregressive linear equation plus 
a time-varying noise element. The time graph of 
the return series also reveals a phenomenon of 
volatility clustering, as evidenced by episodes of 
wild swings and tranquil periods. As seen here, wild 
swings exceed calm episodes. It may be noted that 
the pre-pandemic and pandemic eras are separated 
conveniently by an extreme negative return, which 
occurred a day after the pandemic announcement 

by WHO (March 12, 2020). That day also appears 
to start a steady bull run in Bitcoin price, which 
culminated in all-time highs towards the earlier 
parts of 2021 but lost steam during the middle of 
that year, only to register record highs in the second 
half of August 2021 after which, steadily declined 
until the end of the sample period.

Based on the results of a battery of individual unit 
root tests on the price and the return series of Bitcoin, 
exhibited in Table 2 over the periods in review, the price 
series during the pre-pandemic and the pandemic eras 
is non-stationary with a single unit root. Meanwhile, 
all the unit root tests on the return series during the 
two periods produced highly significant stationarity. 
Without loss of generality, it may be concluded that 
the daily closing price of Bitcoin in both periods is I(1) 
series, while the daily return is I(0).  

Table 3 presents the important descriptive statistics 
and empirical tests central in verifying certain important 
aspects of analysis relevant to the study. These tests 
include the normality test of the return series via the 
Jarque-Bera (JB) test (the result of which indicates 
the absence of normality of return during both eras), 
the Ramsey RESET procedure, which empirically 
validated the adequacy of the mean equation for the 
two periods; and the highly important ARCH-LM test 
which resulted in the significant presence of the ARCH 
effects during the two eras.

                                                                                                        

Table 2.  Individual Unit Root Tests on the Daily Price and Return on Bitcoin During Pre-Pandemic and Pandemic Periods 
(p-values are in brackets)

          							        Unit Root Tests
	

Time Period	 ADF
	 Philips-Perron	

ERS

Pre-Pandemic (7/26/18 – 3/12/20)
	 BTC Close	 -2.081774	 -2.023250	 28.91920
		  [0.5537]ns	 [0.5862]ns	 [>0.10]ns
	 BTC Daily Return	 -19.36095	 -19.36095	 0.520623
		  [0.0000]***	 [0.0000]***	 [<0.01]**
 Pandemic (3/13/20 – 2/20/22)
	 BTC Close	 -0.883783	 -0.919497	 51.99991	
		  [0.9554]ns	 [0.5862]ns	 [>0.10]ns
	 BTC Daily Return	 -21.18889	 -21.17266	 0.82396
		  [0.0000]***	 [0.0000]***	 [<0.01]**

	 Null Hypothesis: Closing Price/Return is I(1)	
	 	 	 ns – not significant	 	 **significant at 0.01 level	 	 ***significant at 0.001 level
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Table 3.  Stylized Facts and Relevant Statistical Tests

         
Time Period	 Mean	 StDev	 Min	 Max

	 JB-Stat	 ARCH-LM(7)	 Ramsey  
 							       RESET
						      (p-value)	 (p-value)	 (p-value)

   Pre-pandemic (T =596)	         
   
   Daily Price (US$)	 7165.19	 2377.25	 3236.76	 13016.23	 23.02456***	 1.519739	 1.539546n

   Daily Return (%)	 -0.0008	 0.0382	  -0.4647	 0.1601	 29619.15***	 (0.1577)	 (0.1511)

    Pandemic (T =710)
   Daily Price (US$)	 31963.45	 18749.09	 5014.48	 67566.83	 63.91396***	 2.89983	 1.265348ns

   Daily Return (%) 	 0.002628	 0.0475	 -0.1608	 0.0475	 36056.13***	 (0.0054)	  (0.26535)

**p<0.01	***p<0.001	 ns-not significant (p>0.10)

Table 4. Estimates of the Alternative GARCH(1,1) Models for the Daily Returns for Bitcoin Using Generalized 
Error Distribution (GED) During the Pre-Pandemic Period 

Coefficients/
Models

GARCH
(Bollerslev)

GARCH
(Taylor/ Schwert)

NARCH
(Higgins and Bera)

GJR
(Glosten, et. al.)

TARCH
(Zakoian)

EGARCH
(Nelson)

Mean Equation
Constant 0.0672287

0.0000 ***
0.0733939
0.0000 ***

0.0743691
0.0000 ***

0.0649216
0.0000 ***

0.0737051
0.0000 ***

0.0674831
0.0000 ***

AR(1) (ψ ) -0.0636674
0.0000 ***

-0.0427571
0.0000 ***

-0.0425670
0.0000 ***

-0.0793203
0.0000 ***

-0.0426965
0.0000 ***

-0.0634438
0.0000 ***

Conditional Variance Equation

Omega (ω  ) 0.436821
0.4603ns

0.558412
0.1271ns

0.728761
0.0930*

0.466989
0.4108 ns

0.557635
0.1275ns

-0.0725984
0.2725ns

Alpha (α ) 0.150413
0.2187ns

0.166344
0.0002***

0.132783
0.0654*

0.155838
0.1778 ns

0.166887
0.0002***

0.268234
0.0002***

Beta ( β ) 0.850684
3.97e-013***

0.857522
3.85e-092***

0.857600
3.32e-145***

0.843981
2.03e-014***

0.857034
1.81e-091***

0.960710
8.92e-209 ***

Gamma (γ  ) 0.0604310
0.5837ns

0.0444318
0.7620 ns

-0.0201452
0.5774 ns

Information Criteria
Log Likelihood -1466.56476 -1463.46225 -1462.78405 -1466.36137 -1463.41721 -1464.21291

AIC 2945.12953 2938.92450 2939.56810 2946.72274 2940.83442 2942.42582

BIC 2971.45080 2965.24578 2970.27625 2977.43089 2971.54258 2973.13398

HQC 2955.38048 2949.17545 2951.52754 2958.68218 2952.79386 2954.38526

Modeling the Conditional Variance Through GARCH 
Variants

Using the stylized facts uncovered in the descriptive 
analysis, together with the results of the different 
statistical tests, modeling the conditional variance in 
tandem with the mean equation model has become 
imperative. The seven different GARCH variants 
discussed earlier as the alternative conditional variance 
formulations for the autoregressive mean equation 
are implemented for the pre-pandemic and pandemic 
periods. In addition, the three different specifications 

on the error distribution give rise to a total of 21 
alternative models for the daily returns of the Bitcoin 
in each subperiod. To remain parsimonious, these 
models consider only p = 1 and q = 1 for good reasons. 
For one, GARCH (1,1) has been considered as the 
“gold standard” in the literature because adding more 
ARCH and GARCH terms (i.e., p, q > 1) rarely adds 
more information and more significant coefficients to 
infer the data-generating process (DGP) of the series. 
Furthermore, this parsimonious representation has 
been known to be robust in modeling countless applied 
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phenomena (Engle, 2001; Bollerslev et al., 1992; Zivot, 
2008). Tables 4 and 5 show the results of implementing 
the different GARCH variants using the GED, which is 
found to be the most appropriate error distribution for 
both eras (model selection results are not shown here 
for lack of space). The skewed versions of the Student’s 
t and GED are not considered because of the observed 
symmetry of the returns.

The outcome of modeling the return series during 
the pre-pandemic and the pandemic periods led to the 
use of the GED for the normalized error during both 
eras. Table 4 shows the modeling results of the variants 
of GARCH (1,1) during pre-pandemic, whereas Table 
5 gives the results after the pandemic was announced. 
It can be seen in both tables that the mean equation 
appears to be statistically adequate for all variants as 
the parameters are all significant at the highest level, 
supplementing the results of the RAMSEY Reset in 
Table 3; although during the Pandemic era, both the 
NARCH and the EGARCH models failed to converge. 
For empirical comparison, four information criteria 
were used to adjudge the best empirical model. These 
are the log likelihood (max), the Akaike information 

criterion (AIC) (min), the Bayesian information 
criterion (BIC) (min), and the Hannan-Quinn criterion 
(HQC) (min). Applying the above criteria to choose 
the best GARCH (1,1) variant, Tables 4 and 5 turned 
in the verdict—the GARCH (1,1) model of Taylor 
and Schwert won the empirical comparison almost 
unanimously during both eras in all criteria, except log 
likelihood. Hence, the most inference may be based on 
the estimated form of this model.

 Based on the GARCH results, it may be inferred that 
there existed no asymmetric effects before and during 
the pandemic. This is also evident by the insignificant 
gamma (γ  ) parameter of all asymmetric models (GJR, 
TARCH, and EGARCH) that converged in both eras. 
Further examining Tables 4 and 5, it may become 
clearer that volatility clustering is valid for Bitcoin 
returns by virtue of the significant estimates of the α 
and β parameters in all variants regardless of whether 
or not there is a pandemic. Volatility persistence is 
evident as captured by the estimate of α + β in GARCH 
(1,1) of Taylor (1986) and Schwert (1990) (TS), which 
is not significantly greater than 1 across eras. In fact, 
the estimate of TS gives α + β approximately equal to 

Table 5.  Estimates of the Alternative GARCH (1,1) Models for the Daily Returns for Bitcoin Using Generalized Error 
Distribution (GED) During the Pandemic Period (3/13/19 -2/20/22)

Coefficients/Models GARCH
(Bollerslev)

GARCH
(Taylor/Schwert)

NARCH
(Higgins and Bera)

GJR
(Glosten, et. al.)

TARCH
(Zakoian)

EGARCH
(Nelson)

Mean Equation

Constant 0.304556
0.0000***

0.304555
0.0000***

Did not
converge

0.300544
0.0000***

0.305395
0.0000***

Did not
converge

AR(1) (ψ ) -0.161615
0.0000***

-0.161615
0.0000***

Did not
converge

-0.157913
0.0000***

-0.161685
0.0000***

Did not
converge

Conditional Variance Equation

Omega (ω  )
0.110108
0.3826

0.184567
0.3524ns

Did not
converge

0.138224
0.2806

0.171456
0.3786

Did not
converge

Alpha (α )
0.0401731
0.0546*

0.0641230
0.0156**

Did not
converge

0.0345290
0.0556*

0.0644821
0.0155

Did not
converge

Beta ( β )
0.956487
0.0000***

0.946734
5.54e-279***

Did not
converge

0.959023
0.0000***

0.947140
1.85e-289***

Did not
converge

Gamma (γ  )
0.239770
0.2649

-0.0964862
0.5264

Did not
converge

Information Criteria

Log Likelihood -1974.98667 -1966.38692 Did not converge -1973.82792 -1966.23630 Did not converge

AIC 3961.97334 3944.77383 Did not converge 3961.65584 3946.47260 Did not converge

BIC 3989.36493 3972.16542 Did not converge 3993.61270 3978.42945 Did not converge

HQC 3972.55485 3955.35535 Did not converge 3974.00094 3958.81770 Did notconverge
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1 (0.0402 plus 0.9565) during the pandemic, implying 
that the unconditional variance tends to infinity; hence 
volatility is persistent. Mathematically, if the ratio 
of ω  / (1- (α + β)) is infinite, as in TS during the 
pandemic, the future unconditional variance is not 
constant (or persistent). This may lead to extremely 
high or extremely low returns, which offers a lot of 
earning opportunities to long-term investors (a.k.a. 
the “HODLers”).

Informational Efficiency of Bitcoin Market
Potential investors of Bitcoin during the pandemic 

are expectant of unlimited earning possibilities of this 
cryptocurrency. Some even speculate that BTC may 
even replace gold as a refuge asset during uncertain 
times, like what the world is now facing (e.g., see 
Chemkha et al., 2021). One way of providing the 
empirical content to this expectation is to show that 
BTC is informationally efficient. In this study, I 
endeavor to ascertain that there has been a transition 
of BTC from informationally efficient before the 
pandemic into one that is informationally inefficient 
during the pandemic. Using the empirical strategy 
adopted for this purpose, I venture to prove that BTC 
was a “Martingale” before the pandemic, but has 
transitioned into a non-Martingale stochastic process 
during the pandemic. Table 6 provides the empirical 
results.

Conclusion

The emergence of the COVID-19 pandemic has been 
leaving in its wake countless broken lives, devastated 
institutions, and compromised processes—widespread 
suffering among various stakeholders of the global 
economy. Prior to the pandemic, Bitcoin was hailed 
as the future of money with its numerous desirable 

attributes. Many are wondering about the future of 
Bitcoin in light of the pandemic, which for more than 
two years now has been devastating the world. This 
study, through stylized facts analysis, statistical testing, 
and cutting-edge econometric modeling, hopes to 
contribute to the understanding of this most dominant 
cryptocurrency. The general conclusion of the study: 
the pandemic further strengthen the volatility structure 
of Bitcoin with no leverage effects, and the market for 
this prime cryptocurrency has become informationally 
inefficient, which may give rise to tremendous profit 
opportunities for long-term investors.
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