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Abstract: Social media, like Twitter, has become a critical component in promoting public health. Due to the similar nature 
of information and viruses spreading, there is a new trend of using epidemiological models to study how information spreads 
on social media. In this study, the SEIR model is adapted to model how health information is disseminated over Twitter. Two 
models are presented: a basic Twitter interaction model and a model wherein the sentiments of tweets are considered. To our 
knowledge, these models are the first of their kind to study health information dynamics on Twitter and to understand the 
behavior of users based on the sentiments of tweets. In the basic interaction model (TwitHComm), we compared the dynamics 
of health information spreading of @WHO and @DOHgovph and found that the tweet data obtained from @DOHgovph 
do not achieve an epidemic state where @WHO does. In the model where sentiments were considered (TwitHCommS), 
despite increasing the number of positive sentiment tweets in the simulation, negative sentiments still influenced Twitter 
users. Overall, these models provide valuable information for using social media for public health communication.
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In this golden age of communication, people 
can be widely reached and easily influenced (Knoll, 
2016). The use of social media, such as Twitter, has 
become popular and continues to be studied in health 
communication (Hawn, 2009). Twitter has become a 
key part of social media as it is the most commonly used 
platform by public health agencies (Park et al., 2016). 
The role of social media in health communication is 
not only limited to providing health information to 
people but also connecting the public and healthcare 
providers (Diddi & Lundy, 2017). Social media also 
allows healthcare providers to spread information 
that may help improve health attitudes and behaviors 
(Hawn, 2009). In health communication, it is crucial 
to think of strategies that will engage and influence 

individuals and communities to share quality health 
information (Schiavo, 2013).

When outbreaks such as COVID-19 (coronavirus 
disease) become a pandemic, people often start to 
panic. Throughout the pandemic, false and misleading 
information spread across social media (Hornik et al., 
2021). Hornik et al. (2021) presented how to overcome 
challenges in misinformation for communicating 
public health recommendations. Social media provides 
a significant positive influence on public health 
protection that can cause positive behavior changes 
in individuals and, as a result, help reduce the spread 
of the pandemic by lowering the levels of fear and 
anxiety among the general public (Al-Dmour et al., 
2020). However, without the knowledge of health 
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communication, the information that must be spread 
may not reach the individuals and communities who 
need it. 

To determine whether health information had its 
intended effect(s), Freimuth et al. (2011) discussed 
the employment of modeling strategies to study the 
dissemination of health information. Mathematical 
modeling is an increasingly used method in studying 
the dynamics of how information spreads, evaluating 
the possible effects of interventions, predicting 
outcomes of epidemics, and forecasting the course of 
outbreaks (Villasin et al., 2021). 

Twitter is a popular social networking website that 
allows individuals (called users) to both send and read 
messages, known as tweets (Skaza & Blais, 2017). 
Compared to different message functions on Twitter, 
the study of Park et al. (2016) revealed that retweets 
and likes were the key engagement indicators for 
personal health action-based tweets. Although Twitter 
plays an important role in health communicators, Park 
et al. (2016) suggested that researchers further capture 
the engagement of individuals on Twitter to strengthen 
health-related tweets. 

Epidemiological models are used to understand 
how information spreads on Twitter (Jin et al., 2013). 
These models divide users on Twitter into groups or 
“compartments” that reflect the status of users (Jin 
et al., 2013) and simulate their interaction with each 
other (Villasin et al., 2021). An example of common 
compartments classifies users as susceptible (people 
who are ignorant about the information), infected 
(people who spread the information), or recovered 
(people who are removed from the information). Jin 
et al. (2013) used the SEIZ (susceptible, exposed, 
infected, skeptic) model to study the characterization 
of information flow on Twitter resulting from both 
news and rumors. This model introduces a new state 
of being exposed (E), wherein a user takes some time 
to believe in a story or get infected, and a new state of 
being a skeptic (Z), wherein a user has been informed 
about the news but chooses not to tweet about it. 
Their work explores modeling news and rumors on 
Twitter. Their study demonstrated how capable the 
SEIZ model is to quantify the compartment transition 
dynamics and showcased how information facilitates 
the development of screening criteria for distinguishing 
rumors from real news happenings on Twitter. 

When a severe health issue such as COVID-19 
arises to the public, everyone wants to know how to 

stay safe. Social media, such as Twitter, has become 
a widely used platform that enables individuals to 
connect and converse with each other. It is important 
to determine whether public health official channels 
are widely disseminating health information on Twitter. 
In this way, interventions and improvements may 
be suggested to these public health official channels 
so the public stays informed during public health 
crises. In this paper, we study the dynamics of health 
information spread on Twitter by constructing two 
SEIR-based health communication models. The first 
model constructed is a basic interaction model, and the 
second model is a similar model where the sentiments 
of tweets were considered. We performed sensitivity 
analysis and computed the basic reproduction number 
(R0) for the first model in this study. 

To our knowledge, these models are the first of their 
kind to study health information dynamics on Twitter 
and to understand the behavior of users based on the 
sentiments of tweets. These models provide valuable 
information for determining the spreading dynamics of 
information and can be used as a guideline in designing 
strategies and policies to control information spreading, 
especially false and misleading information. Likewise, 
it is helpful in designing public health messages for 
correcting false and misleading information in social 
media.

Methods

In this section, we present two mathematical 
models that capture the dynamics of health information 
spreading on Twitter. The SEIR compartmental 
model is adapted to study how health information 
is disseminated over Twitter. In the process of 
disseminating a tweet, users have different reactions 
towards the tweet and switch from different roles/
statuses at different time points after a tweet is posted. 
The users are transferred from one compartment to 
another compartment of the model as they change their 
role/status at different time points.

We present two models: a model that describes 
basic Twitter interaction and a similar model wherein 
we consider the sentiments of the tweets. In the 
formulation of these two models, newly added account 
users are not considered in the assumption of the 
model. Those who discontinued their Twitter accounts 
are also not considered in the model. We do not take 
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into consideration the mentions in replies to tweets. 
Throughout this section, when we say tweet/s, we only 
refer to tweets about health information.

Model 1: TwitHComm
The SEIR model divides the population into 

compartments: susceptible, exposed, infected, and 
recovered. To adapt this model for Twitter, we have 
given new meaning to these terms and categorized 
each (Twitter) user into compartments based on Twitter 
interactions. 

The first model is called Twitter Health 
Communicat ion  Model  wi thout  sent iment 
(TwitHComm), where we classify the users into seven 
compartments: Oblivious (O), Spreaders (S), Exposed 
(E), Infected by liking (Im), Infected by replying (Irp), 
Infected by retweeting (Irt), and Recovered (R). 

The Oblivious (O) or ignorant or susceptible to 
the information are users who have not come across 
a tweet (related to health communication information) 
on their (Twitter) feed. The Spreaders (S) of the 
information are the users who are tweeting about the 
information. Users who have come across or read a 
tweet in their feed are categorized under the Exposed 
(E) compartment. We have three types of infection in 

this model, and users are classified based on the three 
basic interactions they can make on tweets. For users 
who like tweets, we classify them as Infected by liking 
(Im). If users reply to a tweet, they are categorized 
as Infected by replying (Irp ). Lastly, for the infected 
population, when users retweet a tweet, regardless of 
whether they add a quote to the said tweet or not, they 
are classified as Infected by retweeting (Irt ). When 
users no longer interact with tweets for a specific 
number of time defined in the study, they will be 
classified into the Recovered (R) compartment. Such 
a specific number of times defined may be in hours, 
days, and so forth. The process of transfer of users 
from one compartment to another is shown in Figure 
1. Each compartment in Figure 1 is annotated with 
the rate at which a user transfers or transitions from 
one compartment to another. These rates represent 
the average frequency of a user to transfer from one 
compartment to another. These rates do not imply an 
exact rate for a user to transfer from one compartment 
to another, but rather, they are the expected number 
of arrivals of users in one unit of time (Miller, 1994). 
In the long term, the average number of events 
that occurred in one unit of time would equal the 
parameter rates (Miller, 1994). 

Figure 1. Twitter Health Communication Model Without Sentiment (TwitHComm)

Note. We classify the users into seven compartments: Oblivious (O), Spreaders (S), Exposed (E), 
Infected by liking (Im), Infected by replying (Irp), Infected by retweeting (Irt), and Recovered (R).
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The parameter α is the rate of transfer of an Oblivious 
user that becomes Exposed to the information. The 
outflow αOS represents the successful spreading 
of information to the Oblivious user, transitioning 
them into Exposed. The dotted lines pointing to this 
outflow indicate that αOS is regulated by the Spreader 
compartment. This means that for the Oblivious users to 
become Exposed, there has to be an interaction between 
the Spreaders and the Oblivious. Consequently, αOS 
is the inflow of Exposed coming from the Oblivious 
population. 

Users in the Exposed compartment may or may not 
mind or interact with tweets. If users in the Exposed 
compartment choose not to interact with a tweet, then 
they will recover from that information. The parameter 
λ is the rate at which users in the Exposed compartment 
will become Recovered. Thus, the Exposed compartment 
has the outflow λE that represents the recovery of 
Exposed users. The representation λE is the inflow 
for the Recovered compartment, and it has an outflow 
of γRS that represents Recovered users to become 
Exposed if they yet again come across a new tweet in 
their (Twitter) feed. The rate that Recovered users come 
across a tweet is given by the parameter γ. For users in 
the Recovered compartment to become Exposed, there 
must be an interaction between the Spreaders, and that is 
represented by the dotted lines pointing to this outflow. 
Consequently, the Exposed compartment has an inflow 
of γRS coming from the Recovered compartment. 

There are three types of infection: β1, β2, and β3, 
which are the rates at which Exposed users will become 
Infected by liking, Infected by replying, and Infected 
by retweeting, respectively. In return, the outflows 
β1E, β2E, and β3E represent the change of Exposed 
into Infected by liking, Infected by replying, and 
Infected by retweeting, respectively. As a result, these 
compartments will have inflows β1E, β2E, and β3E, 
respectively, that came from the Exposed compartment.

Twitter allows users to have multiple reactions 
to tweets. A user may like, reply, and retweet 
simultaneously. The reversible arrows between the 
infectious compartments indicate the non-mutual 
exclusivity among compartments. The parameters 
a1 and a2 indicate that users in the Infected by 
liking compartment may also reply or retweet the 
same tweet resulting in the outflows a1Im and a2Im, 
respectively. Similarly, users in the Infected by replying 
compartment may also like, given by the parameter b1, 
or retweet, given by the parameter b2, which results 

in the outflows b1Irp and b2Irp, respectively. It follows 
that the Infected by retweeting has outflows c1Irt and 
c2Irt, indicating that users who retweet a tweet may 
also like or reply. 

When users like a tweet, the rate given by the 
parameter μ means that they recover from that 
information if they choose not to interact further with 
a tweet. The outflow μIm represents users’ recovery 
in the Infected by liking compartment transitioning 
them into Recovered. Consequently, the Recovered 
compartment has an inflow of μIm coming from Im. 
On Twitter, likes show on users’ feeds when there are 
no more new tweets from their following list. Thus, 
there is a rate of 1 − μ of Infected by liking users to 
become Spreaders, and the outflow (1 − μ)Im represents 
the success of Infected by liking users to become 
Spreaders. Consequently, the Spreaders compartment 
has an inflow of (1 − μ)Im coming from Im. 

Meanwhile, replies and retweets of users’ following 
list are always shown in their feed so when they reply 
or retweet a tweet, they will immediately become 
Spreaders of information. Thus, the Infected by 
replying and Infected by retweeting compartments 
have outflows Irp and Irt, respectively, that represent the 
100% transfer rate of users in the Infected by replying 
and Infected by retweeting compartments to become 
Spreaders. Consequently, the Spreaders compartment 
has inflows Irp and Irt coming from Infected by replying 
and Infected by retweeting compartments. The outflow 
φS represents the recovery of Spreaders, transitioning 
them to the Recovered compartment. The parameter φ 
is the rate at which users no longer interact with tweets 
for a specific number of time defined in our study. 
Consequently, the Recovered compartment has an 
inflow of φS coming from the Spreaders compartment. 

Therefore, based on the discussion of the model, 
we obtain the following system of nonlinear ordinary 
differential equations (ODEs): 

(1)

where S(0), O(0), E(0), Im(0), Irp(0), Irt(0), R(0) ≥ 0 and 
α, λ, γ, β1, β2, β3, a1, a2, b1, b2, c1, c2,  μ, φ > 0. 
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Each equation in the ODE system given in 
Equation 1 is a reflection of the outflows and inflows in 
Figure 1. The outflows of the compartments indicate a 
negative term in its equation. Similarly, each inflow of 
a compartment indicates a positive term in its equation. 
For instance, E has the equation αOS + γRS − β1E − 
β2E − β3E − λE because E has inflows αOS and γRS 
and E has outflows β1E, β2E, β3E, and λE. In Figure 1, 
the inflow αOS from O to E denotes that S generates 
the transfer of users from O to E.

@WHO and @DOHgovph correspond to the Twitter 
accounts of the World Health Organization (WHO) 
and the Department of Health in the Philippines, 
respectively. In this model, we consider the parameters 
α, γ, and μ to have the same values for both @WHO 
and @DOHgovph. Due to the difference between the 
number of likes, replies, and retweets, the parameter 
values for rates in which Exposed users will like 
(β1), reply (β2), and retweet (β3) a tweet about health 
information are assigned differently for @WHO and @
DOHgovph. In addition, the parameters a1, a2, b1, b2, c1, 
and c2 on the reversible arrows between the infectious 
compartments also differ based on the values of β1, β2, 
and β3 for @WHO and @DOHgovph. 

 Data was collected from Twitter using the Tweepy 
library of Python (Yusoph, 2023). Based on the 
collected data, the average (or mean) number of likes 
and retweets of a specific user was obtained. This study 
focused only on the following accounts: @WHO and 
@DOHgovph. We computed the mean number of likes 
and retweets of @WHO and @DOHgovph over a total 
of 200 tweets. 

For @WHO, the mean number of likes over 
time is equal to 133.1, with the transition rate from 
the Exposed users to Infected by liking represented 
as β1 = 0.6655. As for the Exposed users becoming 
Infected by retweeting, the obtained transition rate is  
β3 = 0.385025. A similar computational approach is 
applied to @DOHgovph; the corresponding transition 
rates obtained are as follows: β1 = 0.04615 and β3 
= 0.026275. For the replies, we take the number of 
replies of @WHO and @DOHgovph’s pinned tweets 
and obtain the transition rates β2 = 0.72 for @WHO 
and β2 = 2.87 for @DOHgovph.

According to Barath (2021), about 42% of Twitter 
users log on to Twitter daily. In this study, it is assumed 
that whenever users open their Twitter, they will 
become Exposed to a tweet. In relation to TwitHComm, 
if a user posts a tweet related to health communication 

(users in the Spreaders compartment), 42% of their 
followers (Oblivious users) will become Exposed. This 
is used as a basis to set the transition rate of Oblivious 
users becoming Exposed as α = 0.42. Additionally, 
the parameter γ gives the rate at which users in 
the Recovered compartment will become Exposed 
again. In this study, this is assumed to be equal to the 
frequency at which users open their Twitter accounts. 
In other words, the parameter γ gives the same meaning 
as α, and so α = γ = 0.42. 

Barath (2021) also mentioned that 34% of Twitter 
users open Twitter more than once per day. Recall 
that likes on Twitter are only shown on one’s Twitter 
feed when there are no more new tweets from a user’s 
following list. This means that 34% of one’s following 
list opens Twitter more than once. This information is 
used to set the transition rate (1 − μ) of users Infected 
by liking that become Spreaders as 0.34. 

In our model, the parameters for the reversible 
arrows among the infected compartments are 
equivalently calculated to the rates at which Exposed 
users will transition to the infected compartments. For 
instance, the rate at which a user replies to a tweet 
after liking it is equal to the rate at which a user who 
is exposed replies to a tweet. This equivalence in 
transition rates illustrates that the tendency for users to 
engage with a tweet, such as replying, is influenced by 
their current state of exposure to the tweet. Thus, for 
TwitHComm, β1 = b1 = c1, β2 = a1 = c2 , and β3 = a1 = c1. 

In this study, we assume that the parameters φ and λ 
are equal, that is, the recovery rates of users in Exposed 
and Spreaders are assumed to be equal. 

Model 2: TwitHCommS
The second model ,  the  Twi t te r  Heal th 

Communication Model with positive and negative 
sentiments (TwitHCommS), is an extension of 
TwitHComm by considering the positive and negative 
sentiments of tweets represented by the “+” and “−” 
subscripts in the model. Analyzing the sentiment 
of tweets helps understand the dynamics of health 
communication and how the users engage in a 
healthy discussion. This will be helpful in designing 
better strategies to promote positive sentiment health 
communication tweets and control negative sentiment 
tweets. The users are divided into Oblivious (O), 
Spreaders of positive tweets (S+ ), Spreaders of 
negative tweets (S− ), Exposed to positive tweets (E+), 
Exposed to negative tweets (E− ), Infected by liking 
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positive tweets (Im+), Infected by liking negative 
tweets (Im−), Infected by replying with positive tweets 
(Irp+), Infected by replying with negative tweets (Irp−), 
Infected by retweeting with positive tweets (Irt+), 
Infected by retweeting with negative tweets (Irt−), and 
Recovered (R). Users transfer from one compartment 

to another, as shown in Figure 2. The transfer of users 
in TwitHCommS shown in Figure 2 is directly similar 
to the one discussed for TwitHComm.

The following system of nonlinear ordinary 
differential equations (ODEs) is acquired from 
TwitHCommS:

Figure 2. Twitter Health Communication Model With Positive and Negative Sentiments (TwitHCommS) 

Note. The users are divided into Oblivious (O), Spreaders of positive tweets (S+), Spreaders of 
negative tweets (S−), Exposed to positive tweets (E+), Exposed to negative tweets (E−), Infected 
by liking positive tweets (Im+), Infected by liking negative tweets (Im−), Infected by replying with 
positive tweets (Irp+), Infected by replying with negative tweets (Irp−), Infected by retweeting with 
positive tweets (Irt+), Infected by retweeting with negative tweets (Irt−), and Recovered (R).

(2)
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Results

Model Analysis
For general compartmental epidemic models, Van 

den Driessche and Watmough (2002) defined the basic 
reproduction number R0 to be the threshold parameter 
for the model. This determines that if R0 < 1, then the 
associated equilibria are locally asymptotically stable; 
that is, the infection cannot spread. Conversely, if  
R0 > 1, then the associated equilibria are unstable, or 
in other words, the infection will spread among the 
population. In this study, only the presence of the 
endemic equilibrium point is investigated. The free-
disease equilibrium requires the absence of infection, 
which, in this case, is the absence of Spreaders. Social 
media, such as Twitter, requires at least one Spreader to 
start a communication, and the free-disease equilibrium 
is irrelevant and excluded in this study.

In relation to analyzing health information 
dynamics, if the endemic equilibrium is unstable, 
then this exhibits that health information persists on 
Twitter. As discussed in section 2, α = γ (the parameters 
in which Oblivious and Recovered users become 
Exposed) and λ = φ (the parameters in which Exposed 
and Spreaders become Recovered) will be substituted 
in the computations in this section.

In the analysis of TwitHComm, we compute for the 
endemic equilibrium, where the infection is present. 
The computations for solving the equilibrium points 
are done using Mathematica, and the details are shown 
in the Appendix. In order to compute the endemic 
equilibrium point, we set each differential equation in 
Equation 1 to zero, as shown below,

then, we compute for the state variables.

Endemic Equilibrium, x*
The endemic equilibrium must satisfy the system 

of equations above where the presence of infection is 
considered in the computation for x*, i.e., Im, Irp, Irt ≠ 

0. We then solve for the state variables S, O, E, Im, Irp, 
Irt, and R, and so we arrive at the endemic equilibrium

The endemic equilibrium x* is in terms of S and 
φ, the parameter that gives the recovery rate of users 
in Exposed and Spreaders. The value for φ is later 
evaluated in the calculation of the basic reproduction 
number.

Basic Reproduction Number, REE
The basic reproduction number for TwitHComm 

with respect to the endemic equilibrium x* is denoted 
by REE. The next-generation matrix is used to compute 
for REE. Recall that a1 = β2, a2 = β3, b1 = β1, b2 = β3, c1 = 
β1, and c2 = β2, and thus substituted in order to simplify 
the computations.

In TwitHComm, the compartments that contain 
infection are x = [S, E, Im, Irp, Irt], which will be used 
in the formation of the transmission matrix F and 
transition matrix V.

Let F(x) be the 5 × 1 matrix whose entries Fi(x) are 
the rates of appearance of  new infectious individuals in 
compartment i, and let V(x) be the 5 × 1 matrix whose 
entries Vi(x) are the rates of transfer of individuals into 
and out of the compartment i. The matrix V(x) satisfies 
V(x) = Vi

-(x) − Vi
+(x), where Vi

+(x) is the rate of transfer 
of individuals into compartment i, and Vi

-(x) is the rate 
of transfer of individuals out of compartment i. Thus, 
we have

and
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and so

For the endemic equilibrium point x*, we define the transmission matrix F and transition matrix V to be the 
respective Jacobian of matrices F(x) and V(x). That is, the 5 × 5 matrices F = 
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 shown below:

The basic reproduction number REE is then 
calculated as the spectral radius ρ of the next-generation 
matrix FV−1 given by REE = ρ(FV−1). In other words, 
REE is the maximum eigenvalue of the next-generation 
matrix FV−1 in absolute form. The computations are 
done in Mathematica and are found in the Appendix.

In computing the eigenvalues of FV−1, the values 
are in terms of φ because it is the only unknown 
parameter in the model. The maximum eigenvalue of 
FV−1, such that 0 < φ < 1, is obtained, and thus REE = 
24.8058 > 1, with φ = 0.385584, indicating that the 
endemic equilibrium is unstable. This implies that 
the information will spread among the population. In 
relation to health communication spreading on Twitter, 
this shows that people are engaging in topics regarding 
health on Twitter.

The computations for the parameters obtained 
from @DOHgovph are the same for @WHO. For @
DOHgovph, the basic reproduction number REE is 
equal to 0.13765 < 1 with φ = 0.71. This shows that 
the basic reproduction number is locally asymptotically 
stable and the information will not spread among the 
population. The parameters obtained from @WHO 
and @DOHgovph differ based on the number of 

engagements they get on Twitter, which is the total 
number of times a user interacts with their tweet. The 
engagement of users on Twitter is the key outcome 
of tweeting for health organizations. Although some 
tweets may be more engaging than others, based on our 
results, users on Twitter engage more with the tweets 
of @WHO compared to @DOHgovph. One factor that 
explains why the tweets obtained from @WHO are 
widespread while @DOHgovph is not is because @
WHO has a higher user engagement and may also relate 
to people’s trust in health organizations (Bernadas, 
2021). It is important for health organizations to build 
relationships among their users. Trust is critical for 
public health, especially during vulnerable situations 
when insufficient, misleading, or even “fake” 
information are spreading (Bernadas, 2021). It follows 
from our results that @WHO has built stronger trust 
among its users than @DOHgovph.

The parameters that differ between @WHO and 
@DOHgovph are the rates in which Exposed users 
get infected either by liking (β1), replying (β2), and 
retweeting (β3); and the recovery rate, which is 
calculated when the eigenvalues of FV−1 in terms of 
φ is obtained. To turn the communication based on 
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@DOHgovph into an epidemic, the parameters can 
be modified so that the basic reproduction number is 
unstable. For instance, if we assume the same recovery 
rate for @WHO and @DOHgovph and adjust the rates 
in which Exposed users will like (β1) and retweet (β2) 
to both 70%, then REE = 1.09136 > 1 and thus the 
conversation on Twitter lead by @DOHgovph will 
turn into an epidemic. 

Sensitivity analysis enables us to examine how 
changes in the parameters of the model can impact 
the number of users in each compartment of the model 
(Rodrigues et al., 2013). Sensitivity analysis reveals the 
significance of each parameter on the spread of disease 
(Rodrigues et al., 2013). The sensitivity analysis of the 
parameters with respect to the compartments of the 
model was conducted on MATLAB, and the results 
are given by live script shown in Yusoph (2023). 
Sensitivity coefficients were calculated for each of 
the parameters with respect to each compartment of 
the model. These coefficients indicate how much the 
population of users in each compartment changes 
in response to a 10% increase and decrease in each 
parameter while keeping all other parameters constant. 

We performed a sensitivity analysis for the cases 
where tweets of @DOHgovph are both endemic 
and non-endemic and where tweets of @WHO are 
endemic. For all these cases, the sensitivity analysis 
results show that the recovery rates, φ and λ, have the 
strongest influence on all compartments of the model. 
However, the influence of these rates shows an inverse 
relationship. That is, an increase and decrease in the 
recovery rates decreases and increases the number 
of users in each compartment, respectively. This 
implies that the number of information spreaders of 
@DOHgovph decreases as the recovery rate in the 
model increases, as users become disengaged from the 
content more quickly, and vice versa.

Discussion

The simulations of TwitHComm and TwitHCommS 
models are illustrated in this section. Table 1 shows 
the parameters used for the model simulations for 
TwitHComm and TwitHCommS.
TwitHComm

Table 1
Table of Parameter Values Used for the Simulations on TwitHComm and TwitHCommS

Parameter TwitHComm
Original parameter values Adjusted parameter values

@WHO @DOHgovph @WHO @DOHgovph
α = γ 0.42 0.42

β1 =  b1 = c1 0.6655 0.04615 0.6655 0.7
β2 =  a1 = c2 0.72 2.87 0.72 2.87
β3 =  a2 = b2 0.385025 0.026275 0.385025 0.7

μ 0.66 0.66

φ = λ 0.38558 0.71 0.38558 0.71

TwitHCommS (from @WHO)

21% (positive Sentiments) 40% (negative sentiments)
α α+ = 0.882 α– = 0.168
β1 β1+ = 0.139755 β1– = 0.2662
β2 β2+ = 0.1512 β2– = 0.288
β3 β3+ = 0.0 8085525 β3– = 0.15401
μ μ+ = 0.1386 μ– = 0.264
φ φ+ = 0.0809718 φ– = 0. 154232

Note. The values were generated based on @WHO and @DOHgovph Health Communication Tweet Data, 
computed from the Tweepy package using Python (Yusoph, 2023), and sources (Barath, 2021).
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For TwitHComm, we demonstra ted two 
simulations to compare the interactions of users 
based on the Tweet Data obtained from @WHO 
and @DOHgovph. The scenario portrayed in the 
simulations is where there is only one Spreader in the 
population and 100 Oblivious users. As observed in 

Figure 3. Simulation Results Presenting the Dynamics of TwitHComm 

Note. The tweets being shown by @WHO are widespread (epidemic, represented by the black 
lines), whereas the tweets being shown by @DOHgovph are not widely disseminated (no 
epidemic, represented by the light gray lines), and the parameters used for @DOHgovph are 
modified for their tweets to be widespread (represented by the light gray dotted lines).

the previous section, the Tweet Data obtained from 
@WHO exhibits that information about health issues 
spread among the population on Twitter while @
DOHgovph does not. We calibrated the parameters 
such that the reproduction numbers for @WHO and 
@DOHgovph will both yield an epidemic.
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Figure 3 shows the simulations performed for  
@WHO and @DOHgovph. The black lines correspond 
to the interactions of @WHO, the light gray lines 
correspond to the interactions of @DOHgovph with 
no epidemic, and the light gray dotted lines correspond 
to the tweets of @DOHgovph being widespread. The 
x-axis in the graphs represents the time in hours, and so 
each graph shows the simulations of tweet interaction 
over 12 hours, and the y-axis represents the population 
of the compartments in the model. In Figure 3, when  
@DOHgovph does not achieve an epidemic state,  
@WHO shows a higher number in the population of 
Spreaders, Oblivious, Exposed, Infected by liking, 
Infected by retweeting, and Recovered users, except 
for the number of users replying. This is because the 
parameter values set for @WHO are where it exhibits 
an epidemic state. However, adjusting the parameter 
values such that @DOHgovph achieves an epidemic 
state shows a significant change in their interactions.

Both simulations from @WHO and @DOHgovph 
start from one Spreader, and it shows that when 
we transform @DOHgovph into an epidemic 
state, it has more interactive followers who spread 
health communication information compared to  
@WHO. It can be seen in the graph of Spreaders that  
@WHO peaked in information spreading later than 
@DOHgovph by approximately 30 minutes. The 
simulations started with 100 Oblivious users, which 
follows the decrease of Oblivious users as they 
transition into becoming Exposed. There is only a 
minimal difference between the number of Oblivious 
users from @WHO and @DOHgovph. This is because 
the parameter values set for the change in the number of 
Oblivious users are the same for both Twitter accounts. 
There are more Exposed users from @WHO than  
@DOHgovph, which means that users get Exposed 
faster from the data obtained from @WHO compared 
to @DOHgovph.

The numbers of infected users from likes, replies, 
and retweets are based on how many Exposed users 
transition to becoming Infected by liking, Infected 
by replying, and Infected by retweeting, respectively. 
These parameters are given by the βs. @WHO has 
a higher percentage going to Im from E (66.55%) 
compared to @DOHgovph (4.615%) when its tweets 
are not widespread. For the adjusted parameters on  
@DOHgovph, although it has a higher rate (β1 = 0.7) 
going to Im compared to @WHO, the graph of the 
number of users liking is higher for @WHO compared 

to @DOHgovph. This is because more users are 
getting Exposed from @WHO, and then 66.55% of 
those become Infected by liking. For the number of 
users retweeting, @WHO also has a significantly 
higher number of users retweeting compared to  
@DOHgovph because @WHO has a higher rate of 
getting Infected by retweeting (38.5%) compared 
to @DOHgovph (2.63%). On the other hand, when 
changing the parameters of @DOHgovph, the number 
of users retweeting is not that huge because there are 
more Exposed users for @WHO, but @DOHgovph has 
almost double the rate (β3 = 0.7) of becoming Infected 
by replying compared to @WHO (β3 = 0.385025). 
For the users Infected by replying, @DOHgovph 
has a higher rate (287%) of Exposed users becoming 
Infected by replying compared to @WHO (72%), 
which explains the big difference in the number of 
users replying.

 In relation to health communication spreading on 
Twitter, the goal is for users to have a minimal recovery 
rate so that information persists in the population. 
It can be seen that both @WHO and @DOHgovph 
peaked in recovery at the approximately 30-minute 
mark, and both decreased in the number of Recovered 
users after an hour and became stable throughout the 
day. This suggests that users on Twitter recover from 
health information after 30 minutes of being Exposed 
and Infected, but when users get Exposed and Infected 
again, they recover from the information at a slower 
rate throughout the day. The small difference between 
the number of Recovered users from @WHO and  
@DOHgovph (when it is not epidemic) comes from 
the difference in their recovery rate, where @WHO 
has a lower recovery rate (38.55%) compared to  
@DOHgovph (71%). When adjusting the parameter 
values for @DOHgovph, it has fewer Recovered 
users than desired. This indicates that among the users 
in @DOHgovph, where the simulation started with 
one Spreader and 100 Oblivious users, no more than 
four users are recovering from health communication 
information in a span of 12 hours. This shows that when 
we changed the parameter values for @DOHgovph 
to its desired values (turning @DOHgovph into an 
epidemic), even if both Twitter accounts have the 
same recovery rate, @DOHgovph showed somewhat 
better results in the simulations for the recovery of 
the users on Twitter. This indicates that fewer users 
from @DOHgovph recover, so health communication 
information persists in the population.
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TwitHCommS 
In this section, we show simulations for the model 

with positive and negative sentiments. The scenario 
portrayed in this section is similar to section 4, where 
there is one Spreader of positive sentiments, one 
Spreader of negative sentiments, and 100 Oblivious 
users. The parameter values used in this section are 
based on the results of Simanjuntak and Pramana 

(2021) from Twitter with the query “Indonesian 
Corona Virus,” where it has been found that the 
positive sentiments amount to 21%, 40% for negative 
sentiments, and 39% for neutral sentiments. Neutral 
sentiments are not included in the formulation of 
TwitHCommS and are, therefore, not covered in this 
study. The parameter values discussed in section 2 
for @WHO are used to assume the rates used in the 

Figure 4. Simulation Results Show the Dynamics of TwitHCommS 

Note. The solid lines represent positive sentiments (light gray solid lines represent starting 
the simulation with 100 positive spreaders), whereas the dotted lines represent the negative 
sentiments (light gray dotted lines represent starting the simulation with 100 positive spreaders).
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simulation of TwitHCommS. As the exposure rate 
(α = γ) discussed in section 2 is equal to 0.42, then 
21% are positive sentiments, and 40% are negative 
sentiments. Hence, we get the exposure rates for 
positive sentiments to be 21% of the exposure rate of 
the basic interaction (α = γ = 0.42∗0.21), and so we 
get α+ = γ+ = 0.0882. The rates at which Exposed users 
become Infected by liking (β1) are assumed to be the 
same (or equal) for users Infected by replying (b1) 
and Infected by retweeting (c1) to become Infected by 
liking. In other words, the rates for any population to 
become Infected by liking, Infected by replying, and 
Infected by retweeting are equal. Hence, we have, 
β1+ = c1+ = b1+,β2+ = c2+ = a1+ = c3− = a3− = β5−, β3+ = a2+ 
= b2+ = b3− = a4− = β4−, β1− = b1− = c1−, β2− = a1− = c2− = 
c3+ = a3+ = β5+, and β3− = a2− = b2− = b3+ = a4+ = β4+. In 
addition, we recall that the recovery rates φ and λ are 
equal. This is observed in TwitHCommS, and so φ+ = λ+ 
and φ− = λ−. Positive sentiments amount to 21% and 
negative sentiments amount to 40% (Simanjuntak & 
Pramana, 2021), which explains why users are more 
inclined to interact with negative tweets. Changing the 
scenario so that more spreaders of positive sentiments 
are employed to attract more users to interact with 
positive tweets, we start the scenario where there 
is only one spreader of negative tweets and 100 
spreaders of positive tweets. Figure 4 shows the model 
simulations performed for TwitHCommS.

Given that there is one spreader for each of the 
positive and negative sentiments, negative sentiment 
tweets attract more negative spreaders in a shorter 
span of time than positive sentiment tweets. Between 
the 5th and 6th hour, the number of negative spreaders 
has already peaked, whereas the number of positive 
spreaders continuously increases at a slower pace. 
This result reflects how information with negative 
sentiments spreads faster than those with positive 
sentiments. From the projection of the plots, the number 
of negative spreaders started to decrease as it peaked, 
whereas the number of positive spreaders continuously 
increased. Adding 100 times more spreaders of positive 
sentiment tweets in the simulation shows that negative 
sentiment tweets still persist in the population. The 
number of spreaders of positive sentiment tweets 
is decreasing at a slow pace, whereas the spreaders 
of negative sentiment tweets are increasing despite 
starting the simulation with 100 times more spreaders 
of positive sentiment tweets.

There are also more users exposed to negative 
tweets than those exposed to positive ones. Users 
Exposed to positive tweets peaked at the approximate 
15-minute mark and swiftly decreased throughout 
the day. These results are consistent with the work of 
Simanjuntak and Pramana (2021), where the aspects 
assessed are in a more negative manner, including 
opinions on how the country is not responding quickly 
enough to anticipate this outbreak in the earlier time, 
having a high number of death cases, less ability to 
restrict people activity to cease the spread, and so on. 
The government certainly did not predict the pandemic, 
but they also have not communicated well with the 
public (Bernadas, 2021). This may have contributed 
to the spread of misinformation or negative tweets 
on Twitter because of government unpreparedness. 
Bernadas (2021) suggested that health organizations 
must emphasize that crisis communication is a 
process so that organizations are relatively prepared 
to communicate to the public during the early stages 
of a pandemic.

Users on Twitter react to tweets with negative 
sentiments more than those with positive sentiments. It 
can be seen in these projections that more users “like” 
the tweets containing negative sentiments. Additionally, 
users reply and retweet negative sentiment tweets more 
than positive sentiment tweets. The simulations show 
that tweets with negative sentiments have more impact 
on Twitter users. The interactions among users Infected 
by liking, replying, and retweeting show that users 
interact more in a negative manner. At the 1-hour mark, 
the number of users “liking” positive tweets peaked 
and became greater than the number of users “liking” 
negative tweets. However, as time passes, the number 
of users “liking” positive tweets decreases, whereas 
the number of users liking negative tweets gradually 
increases. Users reply and retweet more with negative 
tweets than positive tweets. This shows that despite 
increasing the number of spreaders of positive tweets 
in the simulation, users on Twitter are more influenced 
by negative sentiments.

Conclusion

As Twitter gained popularity among public health 
agencies in spreading health information about 
health issues to the public, mathematical modeling 
has increasingly been used as a method in studying 
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the dynamics of the spread of information epidemic 
on Twitter. The dynamics of information spreading 
on Twitter were studied in this paper by designing 
two SEIR-based health communication models of 
the interactions on Twitter. To our knowledge, these 
models are the first of their kind to study health 
information dynamics. The first model (TwitHComm) 
allowed us to compare and capture the interaction rates 
of @WHO and @DOHgovph. By calculating the basic 
reproduction number R0, we found that the tweets of 
@WHO show that users engage in topics regarding 
health on Twitter. Meanwhile, @DOHgovph’s tweets 
do not achieve an epidemic state; that is, users do not 
engage suitably for the information to spread among 
the population on Twitter.

It is critical for health organizations that are 
on Twitter to build relationships and develop trust 
among their users. The trust that is built among 
healthcare organizations and users on Twitter is 
important, especially during vulnerable situations 
when misleading information is spreading (Bernadas, 
2021). As Bernadas (2021) suggested, a step towards 
building trust with users on Twitter is for healthcare 
organizations to be open regarding their programs and 
services, especially during times of uncertainty.

Spreading timely and correct health information 
from the official channels to the general public 
is essential to avoid panic and the spread of fake 
news. To improve the information dissemination 
rate of @DOHgovph, the Philippines’ official health 
communication channel, we have proposed to 
adjust some of the model parameters for it to obtain 
information epidemic. Another possible suggestion 
for @DOHgovph is to invite or identify influential 
ambassadors to increase the interactions among its 
users. It is our recommendation for future work to 
consider adding a compartment to the model for 
influential spreaders (or super-spreaders) and identify 
its contributions to the information-spreading dynamics 
on Twitter. As the interaction of @DOHgovph 
increases, the behavior of users when it comes to 
recovery has also improved.

For TwitHCommS, the parameters used for 
TwitHComm were calibrated in a way that 21% 
are considered to be positive sentiments and 40% 
are negative sentiments (Simanjuntak & Pramana, 
2021). With a greater rate of negative sentiments, the 
simulations conducted for TwitHCommS show that 
users are more inclined to interact with negative tweets. 

Because the goal is to spread more positive sentiment 
tweets, we have performed simulations wherein more 
spreaders of positive sentiments were employed to 
attract more users to interact with positive tweets. 
Despite forcing more spreaders of positive tweets, 
users on Twitter are still more influenced by negative 
sentiments.

For future work, we suggest the inclusion of neutral 
sentiments in the model to obtain more information 
on the spreading dynamics on Twitter. It is intended 
for future works to perform the stability analysis for 
the second model where the sentiment of tweets is 
considered. In addition, we recommend looking at 
computing the range of values for the engagement 
rates at which tweets will become widespread or for 
information to spread among users on Twitter.
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