

DE LA SALLE UNIVERSITY – MANILA COLLEGE OF SCIENCE Mathematics Department

SYLLABUS

COURSE CODE	MTH741M/D
COURSE TITLE	Real Analysis 2
CLASS DAY & TIME	
ROOM	
NAME OF FACULTY	
COURSE CREDIT	3 Units
CONTACT NO. (DEPT)	(02) 536-0270, (02) 524-4611 loc. 420/413
TERM/SCHOOL YEAR	

COURSE DESCRIPTION

This course discusses measure and integration. In particular, it focuses on Lebesgue integration, some differentiation, and a few additional topics, if time permits.

COURSE OBJECTIVES

- 1. Introduce algebras and σ -algebras.
- 2. Provide a sufficient background on measure, measurable sets, measurable spaces, and measurable functions.
- 3. Introduce the abstract concept of integration.
- 4. Discuss the relationship between the Riemann and the Lebesgue integrals.
- 5. Discuss differentiation and introduce the indefinite integral.
- 6. Instill values like:
 - cooperation through group study;
 - honesty by claiming credit only for the work he has done;
 - patience, perseverance and diligence by solving assigned exercises completely including the difficult ones;
 - faith by doing what is right and giving his best in performing any assigned task;
 - concern for the community through sharing of know-how and resources during group discussion;
 - self-reliance by being able to solve problems independently.

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting
1. Measures	Lecture-Discussions	9 hrs
1.1 Algebras, (-algebras, and Borel sets.	Report	
1.2 Outer measure	Problem Solving	

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting
1.3 Measurable sets and Lebesgue measure		
 2. Integration 2.1 Measurable spaces and measurable functions. 2.2 Integration of simple functions 2.3 The Lebesgue integral 2.4 Convergence Theorems 	Lecture-Discussions Report Problem Solving	15 hrs
 3. Differentiation 3.1 Vitali's Lemma. 3.2 Derivates and the derivative. 3.3 Functions of bounded variation 3.4 The indefinite integral. 3.5 Absolute continuity. 	Lecture-Discussions Report Problem Solving	12 hrs
 4. Additional Topics 4.1 Classical Banach spaces. 4.2 Baire Category. 4.3 Arzela-Ascoli Theorem 	Lecture-Discussions Report Problem Solving	3 hrs
FINAL EXAMINATION		3 hrs

COURSE REQUIREMENTS

- Examinations
- Problem Sets

SOURCES

TEXTBOOK

• Royden, H.L., Real Analysis, 3rd ed, New York: Macmillan, 1988.

REFERENCES

- Ambrosio, Luigi, *Introduction to Measure Theory and Integration* [electronic resource], Pisa : Edizioni della Normale, 2011.
- Bartle, Robert, The Elements of Integration and Lebesgue Measure, New York : Wiley; 1995
- Bridger, Mark, Real Analysis: a constructive approach, Hoboken, N.J.: Wiley, 2012.
- Kharazishvili, Alexander B., Topics in Measure Theory and Real Analysis, Paris: Atlantis Press, 2009.
- Klambauer, Gabriel, *Real Analysis*, Mineola, N.Y.: Dover Publications, 2005.

Noted by:

Graduate Syllabus

MTH741M/D

DR. ISAGANI B. JOS Chair, Mathematics Department

DR. JOSE SANTOS R. CARANDANG VI Dean, College of Science