

# MATHEMATICS DEPARTMENT College of Science COURSE SYLLABUS

COURSE CODE NAME OF FACULTY FACULTY'S E-MAIL ADDRESS CONTACT NO. (DEPT) CONSULTATION HOURS TERM/SCHOOL YEAR TIME/ROOM COURSE DESCRIPTION: Advanced Linear Algebra 2 (MTH713M/D)

|   | : | <br> | <br> |
|---|---|------|------|
| 3 | : |      |      |
|   | : |      |      |
|   | • |      | <br> |
|   |   |      |      |
|   | • | <br> | <br> |
|   | • | <br> | <br> |

A study of modules, canonical forms, orthogonal and unitary transformations, annihilators and duality of inner transformations.

## **COURSE OBJECTIVES**

At the end of the course, the students should be able to:

1. provide students with a stronger background in Linear Algebra;

:

:

- 2. introduce students to concepts in linear algebra which provides a better understanding of concepts from other fields such as analysis.
- 3. exhibit values like:
  - 3.1 cooperation through group study;
  - 3.2 honesty by claiming credit only for the work he has done;
  - 3.3 zeal and seriousness of intent to learn by participating actively in class discussion, doing his homework regularly and consulting his mentor;
  - 3.4 patience, perseverance and diligence by solving assigned exercises completely including the difficult ones;
  - 3.5 faith by doing what is right and giving his best in performing any assigned task;
  - 3.6 show concern for the community through sharing of know-how and resources during group discussion;
  - 3.7 self-reliance by being able to solve problems independently.

## **COURSE OUTLINE**

## TIME ALLOTMENT

## I. LINEAR FUNCTIONALS, BILINEAR FORMS AND QUADRATIC FORMS

21 HRS.

- 1.1 Linear Functionals
- 1.2 Duality
- 1.3 Change of Basis
- 1.4 Annihilators
- 1.5 The Dual of Linear Transformation



- 1.6 Bilinear Forms
- 1.7 Quadratic Forms
- 1.8 The Normal Form
- 1.9 Real Quadratic Forms
- 1.10 Hermitian Forms

## II. ORTHOGONAL AND UNITARY TRANSFORMATIONS 18 HRS.

- 2.1 Inner Products and Orthonormal Bases
- 2.2 Inner Products Representation of Linear Functionals
- 2.3 The Adjoint Transformation
- 2.4 Orthogonal and Unitary Transformations
- 2.5 Orthogonal and Unitary Matrices
- 2.6 Superdiagonal Form
- 2.7 Normal Matrices
- 2.8 Normal Linear Transformation
- 2.9 Hertmitian and Unitary Matrices

### FINAL EXAMINATION

### TEACHING STRATEGIES/METHODOLOGY:

To achieve the course objectives, a combination of lecture, group discussion and solution of problem sets will be used. For the research requirements, students are advised to access the databases included in the reading list below.

#### **REQUIREMENTS OF THE COURSE:**

- 1. Two Long Quizzes
- 2. Final Exam
- 3. Problem Sets

#### **GRADING SYSTEM:**

| Average of Long Exams | 50% |
|-----------------------|-----|
| Final Exam            | 30% |
| Problem Sets          | 20% |

## **GRADING SCALE:**

| 93-100 | 4.0 |
|--------|-----|
| 87-92  | 3.5 |
| 80-86  | 3.0 |
| 70-79  | 2.5 |
| 60-69  | 2.0 |

## **TEXTBOOK:** Nering, E.D. Linear Algebra and Matrix Theory, 2<sup>nd</sup> edition, John Wiley and Sons, Inc. USA, 1970

3 HRS.



### **REFERENCES:**

Herstein, I.N. and D.J. Winter, Matrix Theory and Linear Algebra, Macmillan Publishing Company, USA, 1989
Hoffman, K. & Kunze, R., Linear Algebra, 2<sup>nd</sup> ed., Prentice Hall, Inc., USA, 1977
Johnson, R.E., Linear Algebra, Prindle, Weber & Schmidt, Inc., USA 1967
Lang, S., Linear Algebra, 2<sup>nd</sup> ed., Addison-Wesley Publishing Co, Inc., USA 1971
Algebra by Thomas W. Hungerford, Springer-Verlag, NY 1996, c 1974
Algebra by Saunders Maclane and Garrett Birkhoff, Macmillan, 2<sup>nd</sup> ed., 1979, c 1967

# **READING LIST:**

<u>http://www.netlib.org/</u> <u>http://archives.math.utk.edu/topics/linearalgebra.html</u> <u>http://cerebro.xu.edu/math/appliedlinear</u>